
Ensuring Dependable Systems of Systems

Robert Alexander, Martin Hall-May and Tim Kelly
University of York

Abstract

The emerging class of systems known as Systems of Systems
(SoS) are composed of many distributed, heterogeneous and
autonomous components. Such systems are typically separately
designed and manufactured and evolve throughout their
lifetime. However, they are expected to work together, often in
safety-critical areas of operation such as civil transportation,
military operations and space exploration. As such, the systems
are required to interact in ways that do not result in accidents.
However, hazards that can lead to accidents can arise from the
interaction of any of the behaviours of the system , not just
from explicit failures.

Given the complexity and dynamism of interactions within a
network-enabled SoS it can be extremely hard to analyse the
potential for interactions and communications between
components to lead to unsafe behaviour. Performing hazard
analysis on such systems is therefore challenging, in part
because it is difficult to know in advance which of the many
observable or measurable features of the system are important
for maintaining system safety. Having discovered the potential
for hazardous behaviour, it is then necessary to mitigate its
effects. However, the nature of SoS configurations means that
interactions between system components cannot be restricted
by designed-in safety features used in many other systems.
Therefore, system behaviour must often be managed and
constrained operationally.

Describing the results of research performed within the High
Integrity Real Time Systems (HIRTS) Defence and Aerospace
Partnership (DARP) at York, this paper describes how a
simulation and machine-learning based approach can facilitate
hazard analyses of SoS. It also explains how a safety policy can
be systematically derived and expressed in a structured fashion
in order to constrain system behaviour within the boundaries of
that which is deemed acceptably safe. Examples derived from
battlefield scenarios and SoS configurations will be used to
illustrate the approach presented in the paper.

1 Introduction
Large-scale military and transport Systems of Systems (SoS) present
many challenges for safety. Attempts to define the term ‘SoS’ have been
controversial - examples can be found in [1] and [2]. It is easy, however,
to identify uncontroversial examples, Air Traffic Control and Network
Centric Warfare being the most prominent. These examples feature

mobile components distributed over a large area, such as a region,
country or entire continent. Their components frequently interact with
each other in an ad-hoc fashion, and have the potential to cause large-
scale destruction and injury. It follows that for SoS that are being
designed and procured now, safety has a high priority.

A SoS is a complex multi-agent system (MAS) in which many entities have
a mobile physical presence. The agents within this MAS are, in
themselves, very complex. This complexity means that conventional
system safety techniques are not adequate for identifying safety hazards
in a SoS. In this paper, we propose multiagent simulation augmented by
machine learning and agent tracing techniques as a viable alternative.

In order to ensure the safe behaviour of SoS, the behaviour of the
individual system entities must be controlled, as must the overall
behaviour that emerges from their individual actions and interactions. One
way to achieve this is to impose a system-wide safety policy, which
describes the rules of behaviour which agents in the system must obey.
Due to the geographically distributed nature of many entities, the policy
typically cannot be directly enforced by some external controller (as in
security policy); rather, the entities must comply with it individually.

Section 2 of this paper elaborates on the problems for SoS safety. Section
3 shows how multiagent simulation can be used for SoS hazard analysis.
Section 4 describes how an appropriate safety policy can be derived from
the results of such hazard analysis. Section 5 presents an example of the
technique in application, and Section 6 presents a summary and
conclusions.

2 The Problem of SoS Safety
The Oxford English Dictionary [3] defines safety as “The state of being
safe; exemption from hurt or injury; freedom from danger.” In system
safety engineering, it is common to restrict the definition of ‘hurt or injury’
to the physical injury or death of humans. For the purposes of this paper,
we will restrict ourselves to this definition. It can be noted, however, that
the approach presented can easily be expanded to cover alternative
conceptions of safety, such as those including avoidance of material loss.

The problems faced by safety analysts when attempting to analyse SoS
fall into three categories: the difficulty of performing hazard analysis, the
restricted means by which safety features can be introduced, and the
problem of ‘System Accidents’. In their discussion of functional hazard
analysis, Wilkinson and Kelly [4] note that these problems are present in
conventional systems. The characteristics of SoS, however, exacerbate
them.

2.1 Hazard Analysis
In a conventional system, such as a single vehicle or a chemical plant, the
system boundary is typically well-defined and the components within that
boundary can be enumerated. Once hazard analysis has been performed
to identify events that may cause injury or death, safety measures can be

introduced and the risk of accidents computed from the probabilities of
failure. Conventional techniques such as fault tree analysis are effective in
this task.

In a SoS, the necessary hazard analysis is itself very difficult. When
hazard analysis postulates some failure of a component, the effect of that
failure must be propagated through the system to reveal whether or not
the failure results in a hazard. The system boundary is not well defined,
and the set of entities within that boundary can vary over time, either as
part of normal operation (a new aircraft enters a controlled airspace
region) or as part of evolutionary development (a military unit receives a
new air-defence system). Conventional tactics to minimise interactions
may be ineffective, because the system consists of component entities
that are individually mobile. In some cases, particularly military systems,
the entities may be designed (for performance purposes) to form ad-hoc
groupings amongst themselves. Conventional techniques may be
inadequate for determining whether or not some failure in some entity is
hazardous in the context of the SoS as a whole.

It follows from this that a hazard analysis approach is needed which can
reveal hazards caused by failure propagation through complex systems
and that can consider the effect of multiple simultaneous failures.

2.2 Ensuring Safety
A purely functional design with no safety features is unlikely to be
adequately safe. Therefore, design changes need to be made in order to
reduce safety risk to acceptable levels. In a conventional monolithic
system, there are many features that can be introduced to prevent or
mitigate hazards; examples include blast doors, interlocks, and pressure
release valves.

The SoS that are considered here contain many mobile agents with a high
degree of autonomy. Such `hard' safety features are therefore not
available. Consider, for example, air traffic control. If a controller wants to
prevent a given aircraft from entering an airspace region (say, one
reserved for an airshow) then he or she can instruct the aircraft to fly
around it. The controller cannot, however, physically prevent the aircraft
from flying into the region. (In a military scenario there are more drastic
measures for dealing with aberrant agents, particularly if they are
unmanned.)

Therefore, achieving safety in a SoS will rely to a large extent on
responsible behaviour from the individual agents. In order to achieve this,
agents need to know what behaviour is acceptable in any given
circumstance. It follows from this that system designers and operators
need to know how the agents in the system can safely interact.

2.3 System Accidents
Perrow, in [5], discusses what he calls ‘normal accidents' in the context of
complex systems. His ‘Normal Accident Theory' holds that any complex,
tightly-coupled system has the potential for catastrophic failure stemming

from simultaneous minor failures. Similarly, Leveson in [6] notes that
many accidents have multiple necessary causes; in such cases it follows
an investigation of any one cause prior to the accident (i.e. without the
benefit of hindsight) would not have shown the accident to be plausible.

A SoS can certainly be described as a ‘complex, tightly-coupled system',
and as such is likely to experience such accidents. It can also be noted
that a ‘normal accident' could result from the combination of apparently
safe, normal behaviours which are safe in isolation but hazardous in
combination. Imagine, for example, a UAV that aggressively uses airspace
and bandwidth under some circumstances. This may be safe when the
UAV is operating on its own, but not when it is part of larger SoS.

It follows from this that a SoS safety analysis approach will need to be
able to capture the effects of interactions between multiple simultaneous
failures and normal agent behaviour.

3 Hazard Analysis Using Multiagent Simulation
Ferber, in [7] provides the following definition of multi-agent simulation:
“Multi-agent simulation is based on the idea that it is possible to represent
in computerised form the behaviour of entities which are active in the
world, and that it is possible to represent a phenomenon as the fruit of
the interactions of an assembly of agents with their own operational
autonomy.”

Similarly, Ilachinski, in [8] offers “[Multi-agent simulations] consist of a
discrete heterogenous set of spatially distributed individual agents, each
of which has its own characteristic properties and rules of behaviour.”

Typically, the value of multi-agent simulation is asserted in comparison to
the mathematical models that have traditionally been used in biology,
economics and military analysis. Ferber notes that agent-based models
allow the integration of quantitative variables, differential equations and
symbolic rules into agent behaviour, thereby providing a means to exploit
qualitative observations as well as quantitative information [7]. He also
notes that such ‘micro-worlds' allow analysts to experiment by modifying
agent behaviour and adding new agent types, which is not possible with
high-level mathematical models. Most significantly for our purposes,
Ferber comments that such simulations “make it possible to model
complex situations whose overall structures emerge from interactions
between individuals”.

Ilachinski, in [8] makes a similar point: in a multi-agent simulation,
different levels of behaviour can be observed. Analysts can examine both
the top-level emergent behaviour and the low-level interactions between
individual agents. That is, the simulations can both predict overall
behaviour and explain why it occurs. It can be seen that this relates to the
concerns raised in section problem about the hazard analysis of SoS. On a
more general level, Ilachinski also notes that working with multi-agent
models gives a researcher an insight into the dynamics of the modelled

Build
Model

Analyse
Model

Source Model

Top-level
Safety Concerns

Top-level
Safety Requirements

Policy

Modify SoS

System Design

Configuration

Evaluate
Results

Figure 1 – Overview of SoS Hazard Analysis Process

system that is not provided by high-level mathematical models. For
emerging classes of system, this kind of insight is extremely valuable.

The authors have developed a process for using multiagent simulation to
perform hazard analysis, which will be summarised here. Further details
can be found in [9].

3.1 Overall Process
In this process, the SoS safety team must develop a multiagent model of
the SoS. They do this by taking an appropriate source model (such as a
MODAF description of the system) and identifying specific safety concerns
that they need to model (such as collisions between aircraft). They must
also identify (a) the vignettes that the SoS will be expected to participate
in and (b) a set of reasonable deviations that may occur in practice, such
as a system suffering a particular kind of failure. The resulting multiagent
model must be implemented in a multiagent simulation framework,
thereby making the model executable.

Once an executable model is available, the ‘space’ represented by the
deviations of that model must be explored. This is performed by running
the model with different combinations of deviations and observing the
results.

As each run executes, the actions and states of the system components
are logged so that they can be studied later. This invariably produces a
huge volume of output. To aid comprehension of this data, machine
learning techniques can then be used to extract high-level descriptions of
hazards, and, once interesting accident runs are identified, causal
explanations can be derived using an agent tracing tool.

An outline of this process is shown in figure 1, and key aspects are
expanded on in the following sections.

3.2 Modelling
A common concern in simulation modelling is that, in going from a paper
model to an implemented simulation, distortions and errors can be
introduced. It must therefore be possible to show that the aspects of the
system that are of concern to the modeller are represented in the model
in all its various representations and artefacts, including the final
executable simulation and the output that it produces. These concerns
must be expressed in terms of aspects of the source model, and updated
and checked at each modelling stage or iteration of the model.

In this approach, the source model is a MODAF description of the SOS.
The MODAF Executive Summary [10] describes MODAF thus:

“The MOD Architectural Framework (MODAF) is a framework for
developing architectures that provide a means to model, understand,
analyse and specify Capabilities, Systems, Systems of Systems (SoS) and
Business Processes.”

Once a set of concerns have been identified, the modeller must relate
them to the MODAF model, identifying which concerns have particular
implications for particular MODAF products or operational nodes. For
example, for the concern ‘unreliable radio communications' the modeller
could note that deviations of radio communication impact needlines in OV-
2 (operational node connectivity description) that would be served by
radio communication and interactions in OV-5 (operational activity model)
that correspond to radio messages.

The process of hazard analysis is inevitably based on identifying what
deviations of expected system behaviour could lead to hazards. Simple
‘brainstorming' techniques can be effective here, but explicit, systematic
techniques can provoke modellers to consider deviations that they
otherwise would have missed. Such systematic techniques can capture
accumulated expertise and knowledge from past experience with similar
systems.

In the current approach, agent deviation is performed using an approach
based on Failure Modes and Effects Analysis (FMEA) as described in [11].
In FMEA, a safety analyst works systematically over a set of components
of a system, asking at each step “how could the failure modes of this
component affect the subsystem it is part of, and thereby affect the wider
system”.

In the approach described here, the analyst works over distinct parts of
agents and services provided by them (analogous to FMEA ‘components'),
using a set of generic deviation forms to derive deviations that are specific
to the agent in question. In effect, the analyst proceeds across an
identified `atomic unit' of the system and derives the deviations that
could reasonably be expected to occur.

Unlike (manual) FMEA, no particular attempt is made at this stage to
derive the effects of the deviations --- that is a matter for the simulation

to achieve. Of course, the modeller will need to bear in mind the identified
concerns, to ensure that the deviations adequately explore them.

The generic deviation forms are derived by combining the set of generic
agent parts and services with a set of guide words.

Table 1 Generic Deviations
Entity Part/Service Guide Word Generic Deviation

Total loss of sensing OMISSION
Reduction of sensor range
Duplication of contacts
Wholly ‘imaginary’ contacts

COMMISSION

Increase of sensor range
EARLY n/a
LATE Delay in registering sensor contacts

Incorrect identification of contact side/force
Incorrect identification of contact entity type

Sensor

INCORRECT

Incorrect determination of contact location
Total loss of function
Reduction in magnitude of function (e.g.
damage, speed, range)

OMISSION

Partial loss of applicability of function
COMMISSION n/a
 Increase in magnitude of function
EARLY n/a
LATE Delay in performing function

Function applied to wrong target (e.g. entity,
location, direction)

Actuator

INCORRECT

General loss of precision/control (e.g. wide
area, extra entities)
Plan step omitted OMISSION
Trigger condition not implemented
Plan step duplicated COMMISSION
Extra trigger condition

EARLY Plan step moved earlier in sequence
Plan step moved later in sequence LATE
Plan takes more thinking/processing time

Plan

INCORRECT Substitute entire plan with another
Loss of transmission
Loss of receiving

OMISSION

Entity excluded from network
Duplicate messages sent
Duplicate messages sent later
Entity added to network

COMMISSION

Additional bandwidth used
EARLY n/a

Delay in sending messages LATE
Delay in receiving/processing messages

Communications

INCORRECT Value error in message
OMISSION SA does not persist
COMMISSION Duplication of entity traces
EARLY Trace prematurely removed from SA
LATE Trace persists in SA after known to be

moved/destroyed

Situational
Awareness (SA)

INCORRECT SA coordinate system mismatched with peer
entities

OMISSION Processing tasks dropped
COMMISSION n/a
EARLY Accelerated processing
LATE Delay in processing (reduced processing

capability)

Computation/thinking

INCORRECT n/a

3.3 Analysis
Once the model has been built, including specification of the deviations
that can be applied, it must be analysed. The analysis technique must
select simulation runs to be performed so as to achieve adequate
coverage of the parameter space of the simulation while spending the
minimum of computation time. Exhaustive exploration of the parameter
space demarcated by all agent deviations would be highly desirable, in
that all behaviour paths that were implemented by the simulation model
would then be revealed. In practice, this is not going to be possible for
anything more than a toy example.

The solution adopted in the work described here is to specify a probability
for the occurrence of each deviation in any given simulation run, and then
perform runs only for those combinations where the combined probability
is above a certain threshold. The plausibility of this combination can be
determined by setting a threshold for ‘incredibility of failure'. This concept
originally stems from the nuclear industry, and situations that appear to
be more improbable than this threshold are not studied further in hazard
analysis. A value for this is given in [12] as 10-7 per year of operation
(equivalent to 10-11 per hour), and this value is adopted here.

Once those runs have been performed, the accidents that occurred need
to be identified and their causes found. The former task is relatively easy,
since the set of possible accidents is small. The latter, however, is harder,
and machine learning techniques have been adopted to make it tractable.

The task of machine learning can be viewed as one of function
approximation from a set of training instances expressed as input-output
pairs; given a function specification (a set of named input parameters (the
‘features' used for learning) and a particular form of output value), the
algorithm learns the relationship between combinations of parameter
values and the output of the target function for those values.

For our purposes, the features represent parameters of the simulation and
the output values are the consequences within the simulation. All the
features used in the current work are deviations that are applied to the
model, and the target function is the set of accidents that occurs during
the simulation run.

The output of the learning algorithm is a set of rules that describes the
relationship between deviations and accidents. For example, a rule might
be “Aircraft 1 lost_radio_comms causes aircraft 1 to collide with aircraft
2”.

Such rules, however, only explain how accidents occur in very broad
terms. In order to choose appropriate definitions of our hazards, or to
take action to prevent or mitigate them, more detailed information about
causation is required.

Lam and Barber, in [13] present a tool-supported approach to the
comprehension of agent systems. The core of the approach is that, given

a log of the events that occurred in a single simulation run, and an
identified event of interest within that run, the system attempts to explain
why that event happened in terms of its immediate causes. Those causes
can each then be explained in the same way, and the process repeated
until the final explanation is in terms of the initial state of the simulation
run or ‘external' events that occurred. This explanation, complete or
partial, can be expressed as a causal graph leading to the event that we
asked the tool to explain.

A simple example of such an explanation would be of the form “UAV 1
received a percept indicating the location of an enemy unit. This caused it
to form a goal of destroying that enemy unit, which it selected the ‘air
strike' plan to resolve, and as a consequence of that plan the UAV
conducted the ‘attack' action using a laser-guided bomb”.

The tool achieves this by storing what Lam and Barber call ‘background
knowledge'. This takes the form of a set of possible causal relationships
between events of different types and different properties. As the tool
tries to explain each event, it reviews these rules to find which previous
events could have caused it.

3.4 Responding to the Results
Once the analysis is complete, the analyst must evaluate the significance
of the results, in consultation with the rest of the project safety team and
other stakeholders. It is likely, particularly early on in development, that
the analysis will reveal problems with the SoS that need to be resolved.
As indicated in figure 1, this may involve changes to the configuration of
the SoS, to the design of the individual elements, or to the policy under
which the SoS operates. The role of design changes in safety is well
understood, but that of policy is less so, and is discussed in the following
section.

4 Policy

4.1 Background on Policy
The belief that numerous independently designed and constructed
autonomous systems can work together synergistically and without
accident is naïve, unless they are operating to a shared set of rules which
is informed by a high level view of the system. In existing systems of
systems such rules already exist, to a degree, because otherwise such
systems would be nothing more than an uncoordinated collection of parts.
Burns, in [14]: “The proper functioning of the network as a whole is a
result of the coordinated configuration of multiple network elements
whose interaction gives rise to the desired behaviours.”

The problems that we face, however, are that often these rules or
procedures are either not explicitly expressed, not well understood or are
inconsistent. Similarly, they typically do not consider the inter-operating
systems as a whole SoS, or simply do not address the safety aspects
arising from this inter-operation. A term that can be used to encompass
such rules and procedures is policy. Whilst some existing work covers

security policy, no work yet deals with a policy for the safe operation of a
system of systems.

The Oxford English Dictionary [3] defines ‘policy’ as:

“A course of action or principle adopted by a government, party,
individual, etc.; any course of action adopted as advantageous or
expedient.”

Intuitively, therefore, a policy guides the action of an individual or group
according to some criteria. Foreign policy, for example, is a familiar
concept from everyday language and sets out ground rules for guiding a
nation’s diplomatic interactions with other nations. Similarly, common law
attempts to curtail undesirable—and hence illegal—behaviour and promote
desirable behaviour amongst the populace.

Much of government policy, however, confuses policy with ‘goal-setting’.
Although some definitions of policy mention goals, they are in the context
of policy goals, or high-level actions, such as “the system is to operate
safely at all times” or “no University applicant should be discriminated
against based on his/her ability to pay tuition fees”, as distinct from
targets, e.g. “to ensure 50% of school-leavers continue to higher
education”. Policy can therefore be thought of as being orthogonal, but
complementary, to plans and goals.

Policy is defined in the literature in various ways, but the most generally
applicable system-oriented definition is given in [15]:

“A policy is a rule that defines a choice in behaviour of a system.”

This definition is distinct from that used in, for example, reinforcement
learning, where a prescriptive policy maps from perceived internal state to
a set of actions. Indeed, it can be seen that policy is persistent [16];
policy is not a single action which is immediately taken, because a policy
should remain relatively stable over a period of time. Any policy
containing one-off actions is brittle, in that it cannot be reused in a
different context and quickly becomes out-of-date and invalid.

Most organisations issue policy statements, intended to guide their
members in particular circumstances [17]. Some provide positive
guidance, while others set out constraints on behaviour. To take a simple
example as an illustration, consider a mother who asks her child to go to
the corner shop to buy a pint of milk. She may lay down two rules with
which the child must comply on this trip:

1. The child must not talk to strangers.
2. The child must use the pedestrian crossing when crossing the road.

The first of these rules defines what the child is allowed to do, specifically
it proscribes conversation with people with whom the child is not
previously acquainted. The second statement expresses the obligation
that the child should take a safe route across the road, namely by using

the pedestrian crossing. Together these rules form a policy that guides the
behaviour of the child on his journey to the corner shop. The rules are
invariant to the child’s ‘mission’; they still hold whether the child is going
to buy a loaf of bread or a dozen eggs, or not going to the corner shop at
all.

4.2 Systems of Systems and Safety Policy
According to Bodeau [17], the goal of SoS engineering is “to ensure the
system of systems can function as a single integrated system to support
its mission (or set of missions).” Among the principle concerns of SoS
engineering that Bodeau identifies are interoperability, end-to-end
performance, maintainability, reliability and security. Unfortunately, he
neglects to mention safety.

Wies, in [18], describes policy as defining the desired behaviour of a
system, in that it is a restriction on the possible behaviour. Leveson
extends this sentiment to say that the limits of what is possible with
today’s (software-based) systems are very different to the limits of what
can be accomplished safely [6]. In terms of collaborative groups of
systems, SoS, whose behaviour has been observed to be non-
deterministic, a policy is a mechanism to create order or (relative)
simplicity in the face of complexity. Sage and Cuppan [19] talk of
“abandoning the myth of total control”, while Clough [20] describes it as
creating a system that is “deterministic at the levels that count”, i.e. at
the ‘black-box’ level, and Edwards [21] observes the need to “selectively
rein in the destructive unpredictability present in collaborative systems”.

In discussing policy many different terms are employed, such as rule,
procedure, convention, law and code of conduct. The presence of so many
terms would seem to suggest a lack of clarity about what policy is, but
these terms can be viewed as policy at different levels of abstraction.
Often policy specifications cause confusion by combining statements at
high and low levels of abstraction [18].

Policy statements or goals can be organised into a hierarchy, with the
most abstract at the top. There is a need to refine from these abstract
policies down to implementable, atomic procedures. Existing goal-oriented
techniques and notations, such as GSN [22], KAOS [23] and TROPOS
[24], provide a basis for the decomposition of high-level goals.
Specifically, the Goal Structuring Notation (described by Kelly in [22])
allows the explicit capture of contextual assumptions, for example
assumptions made about other agents’ behaviour, and of strategies
followed to perform the decomposition.

At the lowest level of abstraction policies can be expressed in terms of the
permissions, obligations and prohibitions of individual and groups of
agents. In this paper, an approach is suggested for decomposing and
implementing policy goals motivated by safety concerns in a simulation of
a SoS. The effect of this policy is to moderate the behaviour of the agents
such that no accidents occur in the simulated SoS.

4.3 Deriving Safety Policy from Hazard Analysis
A safety policy can be thought of as a set of operational rules that guides
the behaviour of individual systems, collaborating as part of a SoS, such
that the emergent SoS-level behaviour does not result in accident. Such a
safety policy aims to stop hazards that may arise from inadequate control
over the interaction between component systems. Given that the
component systems exhibit some degree of autonomy, and that this
autonomy is considered beneficial, policy rules serve to circumscribe the
limits of safe behaviour, not to unduly restrict the inherent flexibility of
the SoS. In terms of the safety concepts already discussed, a policy is
derived from hazards and ensures the operational satisfaction of safety
requirements. In order to arrive at rules that govern system operations a
policy decomposition is needed.

Policy decomposition refers to the process of transformation of high-level
policy goals into more specific policies that are defined in terms of lower-
level entities and operations of the system. Figure 1 shows the top-level
structure for the scenario that is described in section 5. At this level the
hazards are quite generic, and hence the safety policies contain very little
SoS-specific detail. Figure 2 shows an excerpt from the policy hierarchy
concerning a decomposition of the goal “avoid enemy fire”. The policy
decomposition hierarchy is represented using the Goal Structuring
Notation (GSN) [22], typically used to describe safety arguments for use
in single-system safety cases. Policy goals are depicted as rectangles. A
parallelogram indicates a strategy, which describes the type of goal
decomposition approach taken. For example, a strategy might be to
decompose over the nature of an obstacle to be avoided, since the policy
to avoid an oncoming aircraft (which has a pilot who can reason about
your behaviour and manoeuvre to avoid you too) is different to that for
avoiding a stationary object.

Similar assumptions (captured by context models) can be used to
generate different rules for systems with varying capabilities, or properties
of the environment (e.g. two policies for day and night time, or for
systems equipped with radar vs. those without). What at first appears to
be simply an operational decision is in fact a design decision for
autonomous systems, but is masked by the flexibility of human operators
to adapt to changing requirements. Consider, for example, the policy for a
group of aircraft either to flock or to follow diverse routes to a common
destination. For manned aircraft, this would be a simple enough exercise
(provided the pilots were suitably trained); however for a group of UAVs it
would entail extra flight control algorithms and the exchange of flight path
information. This, in turn, impacts the design of the flight control system
of the UAVs. In a manner similar to that shown in Figure 2, it is possible
to generate further safety policy rules for the other system/hazard
combinations given in Table 1. For instance, safety policy rules for the
UAV to avoid collision must involve the use of sense-and-avoid, however
they can also reduce the probability of collisions between UAVs by obliging
them to patrol discrete (non-overlapping) areas or at different altitudes.

Avoid hazards

SoS avoids hazardous
states

Avoid Collision

SoS avoids collision
state

Avoid Receiving Fire

SoS avoids receiving
fire state

Hazardous States

Decompose over
identified hazardous
states

Affect Collision

Decompose over
system states that affect
collision

System Collision

Decompose over
collision obstacle

Avoid Vehicle
Collision

Systems avoid collision
with other vehicles

Mobile Systems

Systems capable of
collision are those that
are mobile: UAV,
helicopter

Avoid Stationary Object
Collision

Systems avoid collision with
stationary objects, ground

Fire Source

Decompose over
source of fire

Avoid Enemy Fire

Systems avoid receiving
fire from enemy

Avoid Friendly Fire

Systems avoid receiving
fire from friendlies

FHA

Hazards
identified by FHA

Figure 2 - Top-level Policy Decomposition

Figure 3 - Policy Rule Specification

Figure 4 - Anti-Guerrilla Operations

5 Case Study
This case study deals with a hypothetical military system operating in an
anti-guerrilla role. It uses network-centric technology to coordinate
(unmanned) mobile artillery and airborne special forces in action against
an enemy who are hard to detect and spread across a wide area.

An overview of the system's operation in shown in figure 4. There are key
parts to the unit: unmanned air vehicles, unmanned self-propelled guns,
transport helicopters and special forces sections. The standard operating
procedure is that UAVs locate targets, the guns provide artillery
bombardment to suppress, disorder and weaken the target, then the
special forces move in (carried by the helicopters) to deal with any
remaining enemy and secure the area.

Only a single vignette is described for this scenario. The UAVs patrol the
area, using a variety of sensors to observe any activity in the terrain
below them. When they detect signs of enemy movement, they
communicate this to the other entities via some form of data fusion, and
this allows the guns to open fire. The UAVs continue to monitor the
situation, and feed their observations back to the other entities. When it
appears from the shared picture that the enemy have been adequately
weakened the guns will cease fire and the helicopters will move in.

A partial MODAF description of the system is given by Despotou in [25].
This was used to derive a simulation model. A small number of deviations
were devised and implemented, as shown in table 2.

Agent Part/Service Generic

Deviation
Specifics Code

UAV Comms Loss of
transmission

ok LOSSOFCOMMS

 Air obstacle
sensor

Total loss of
sensing

ok NOAIRSENSORS

 SA/worldview SA coordinate
system
mismatched
with peer
entities

Just do one
version

FUSIONGRIDNORTHWEST
SKEW

Gun Artillery fire
actuator

General loss of
precision /
control

Increase
area over
which fire is
distributed

FIRESPREADWIDELY

 SA/worldview SA coordinate
system
mismatched
with peer
entities

Just do one
version

FIRESKEWNORTHWEST

Table 2 - AGO System Deviations

5.1 Performing Hazard Analysis on the Case Study
Performing all combinations of deviations requires 262 thousand runs. A
decision tree learner (C4.5, described by Quinlan in [26]) was used to
derive rules that described hazards. A more detailed discussion of the
results can be found in [9], but here we will just show the exploration of
one example rule:

IF
UAV 2 has NOT lost communications AND
UAV 4 has lost communications AND
Gun 3 NOT generally inaccurate AND
Gun 3 NOT skewed northwest

THEN
Some gun destroys helicopter 1

A tracing tool was applied to a run that exhibited that accident, and a
trace was produced to explain the accident event as shown in figure 5.

[254] heli1: destroyed by
gun3 at (32:16)

[254] gun3: fire at at (32:16)

[252] heli1: move (1;-1)
towards (32:16)

[210] gun3: artillery
bombardment at (33:17)

[244] heli1: ground attack at
(32:16)

EVENT

ACTIONPLAN

[244] heli1: neutralised target
at (24:15)

BELIEF

[210] gun3: weakened target
at (32:16)

[210] suppress strong enemy
at (33:17)

GOAL

[244] heli1: neutralise
position at (32:16)

Figure 5 - Tracing result

It can be seen that the helicopter adopts the goal of neutralizing anything
at a particular coordinate and so moves into it. The gun, at the same
time, adopts the goal of suppressing the enemy in the neighbouring
square and fulfils the goal with plan of artillery bombard. But the action
actually performed (due to the ‘skew’ deviation applied to the gun) is to
fire at the square that the helicopter has just moved into. The artillery fire
therefore hits the helicopter.

5.2 Safety Policy for the Case Study
It has been shown that securing the area in the AGO scenario involves
both suppressing and neutralising the enemy. The task of providing
suppressing fire has been assigned to the artillery agent, while
neutralising the enemy involves transporting special forces by helicopter
to the already suppressed enemy for close combat. This means that the
helicopters are brought into proximity of the same target as the guns
have been firing on.

It should be obvious that, although the helicopter and artillery’s efforts
are coordinated via the reports of the UAV scouts, there is no direct
communication between the helicopter and the artillery. The hazard
therefore exists that the infantry may be in the vicinity of the target at the
same time as the artillery fires upon it. If the artillery piece is inaccurate
in its fire, this can lead to a friendly fire accident. Given that no direct
communication is possible between the two agents (nor indeed necessary
to achieve the aims of the mission), a safety policy must be derived to
make the artillery aware of the helicopter’s movements.

The resulting policy decomposition is shown in 6. The left-hand side of the
policy structure concentrates on informing the artillery of the helicopter
locations so as to avoid accidental attack, whereas the right-hand side
focuses on informing the helicopters to avoid an area designated as a
target for the artillery.

Figure 6 - Policy Structure for Avoiding Friendly Fire

6 Summary and Conclusions
SoS safety engineering is a challenging task, and the existing manual
methods that are widely used do not readily extend to the SoS context.
There is, however, potential to use multiagent simulation to replace these
traditional methods.

In this paper, we have presented a promising method and shown how it
can be used with a small but plausible example of a SoS. The construction
of a multiagent simulation model allowed the system behaviour to be
derived under a variety of conditions, while machine learning and agent
tracing techniques allowed the overall safety-critical behaviour of the
system to be comprehended.

Future work will include application to larger case studies, and to use with
more detailed models of agents and their environment. There is also
potential to apply similar techniques a range of challenging hazard
analysis applications, such as highly autonomous systems. Key research
concerns include the credibility of the results derived from such simulation
models, and the relative effectiveness of this work compared to key
alternatives such as model checking.

7 References
[1] Maier, M.W.: Architecting principles for systems-of-systems. In: 6th Annual

Symposium of INCOSE. (1996) 567–574

[2] Periorellis, P., Dobson, J.: Organisational failures in dependable
collaborative enterprise systems. Journal of Object Technology 1 (2002)
107–117

[3] Simpson, J., Weiner, E., eds.: Oxford English Dictionary. Second edn.
Oxford University Press (1989)

[4] Wilkinson, P.J., Kelly, T.P.: Functional hazard analysis for highly integrated
aerospace systems. In: IEE Seminar on Certification of Ground / Air
Systems, London, UK (1998)

[5] Perrow, C.: Normal Accidents: Living with High-Risk Technologies. Basic
Books, New York (1984)

[6] Leveson, N.G.: A new accident model for engineering safer systems. Safety
Science 42 (2004) 237–270

[7] Ferber, J.: Multi-Agent Systems: an Introduction to Distributed Artificial
Intelligence. Addison-Wesley (1999)

[8] Ilachinski, A.: Exploring self-organized emergence in an agent-based
synthetic warfare lab. Kybernetes: The International Journal of Systems &
Cybernetics 32 (2003) 38–76

[9] Alexander, R., Kazakov, D., Kelly, T.: System of systems hazard analysis
using simulation and machine learning. In Gorski, J., ed.: Proceedings of the
25th International Conference on Computer Safety, Reliability and Security
(SAFECOMP ’06). Volume 4166 of LNCS., Gdansk, Poland, Springer-
Verlag (2006) 1–14

[10] MODAF Partners: MODAF Executive Summary. Version 1.0, 31 August
2005. www.modaf.com

http://www.modaf.com/

[11] Alain Villemeur. Reliability, Availability, Maintainability and Safety
Assessment: Volume 1 — Methods and Techniques. John Wiley & Sons,
Chicester, England, 1992.

[12] Ammirato, F., Bieth, M., Chapman, O.J.V., Davies, L.M., Engl, G., Faidy, C.,
Seldis, T., Szabo, D., Trampus, P., Kang, K.S., Zdarek, J.: Improvement of
in-service inspection in nuclear power plants. Technical Report IAEA-
TECDOC-1400, International Atomic Energy Agency (2004)

[13] D N Lam and K S Barber. Comprehending agent software. In Proceedings
of the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2005), 2005.

[14] Burns, J., Cheng, A., Gurung, P., Rajagopalan, S., Rao, P., Rosenbluth, D.,
Surendran, A.V., Martin, Jr, D.M.: Automatic management of network
security policy. In: Proceedings of the DARPA Information Survivability
Conference and Exposition. Volume 2., Anaheim, California, USA, IEEE
Computer Society (2001) 1012–1026

[15] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: Managing security in object
based distributed systems using Ponder. In: Proceedings of the 6th Open
European Summer School (Eunice 2000), Twente University Press (2000)

[16] Moffett, J.D., Sloman, M.S.: The representation of policies as system
objects. In: Proceedings of the Conference on Organizational Computing
Systems, Atlanta, Georgia, USA, ACM Press (1991) 171–184

[17] Bodeau, D.J.: System-of-systems security engineering. In: Proceedings of
the 10th Annual Computer Security Applications Conference, Orlando,
Florida, USA, IEEE Computer Society (1994) 228–235

[18] Wies, R.: Using a classification of management policies for policy
specification and policy transformation. In Sethi, A.S., Raynaud, Y., Fure-
Vincent, F., eds.: Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management. Volume 4., Santa Barbara, California,
USA, Chapman & Hall (1995) 44–56

[19] Sage, A.P., Cuppan, C.D.: On the systems engineering and management of
systems of systems and federations of systems. Information, Knowledge,
and Systems Management 2 (2001) 325–345

[20] Clough, B.T.: Autonomous UAV control system safety—what should it be,
how do we reach it, and what should we call it? In: Proceedings of the
National Aerospace and Electronics Conference 2000, Dayton, Ohio, USA,
IEEE Computer Society (2000) 807–814

[21] Edwards, W.K.: Policies and roles in collaborative applications. In:
Proceedings of the Conference on Computer-Supported Cooperative Work,
Cambridge, Massachusets, USA, ACM Press (1996) 11–20

[22] Kelly, T.P.: Arguing Safety—A Systematic Approach to Managing Safety
Cases. DPhil thesis, University of York, Heslington, York, YO10 5DD, UK
(1998)

[23] Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements
acquisition. Science of Computer Programming 20 (1993) 3–50

[24] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An agent-oriented software development methodology. Journal of
Autonomous Agents and Multi-Agent Systems 8 (2004) 203–236

[25] Despotou, G: DODAF Model Development Methodology; The AGO
Example. Technical Report DARP/TR/2005/16, University of York.

[26] J R Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman,
1993.

	1 Introduction
	2 The Problem of SoS Safety
	2.1 Hazard Analysis
	2.2 Ensuring Safety
	2.3 System Accidents

	3 Hazard Analysis Using Multiagent Simulation
	3.1 Overall Process
	3.2 Modelling
	3.3 Analysis
	3.4 Responding to the Results

	4 Policy
	4.1 Background on Policy
	4.2 Systems of Systems and Safety Policy
	4.3 Deriving Safety Policy from Hazard Analysis

	5 Case Study
	5.1 Performing Hazard Analysis on the Case Study
	5.2 Safety Policy for the Case Study

	6 Summary and Conclusions
	7 References

