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Abstract 

The emerging class of systems known as Systems of Systems 
(SoS) are composed of many distributed, heterogeneous and 
autonomous components. Such systems are typically separately 
designed and manufactured and evolve throughout their 
lifetime. However, they are expected to work together, often in 
safety-critical areas of operation such as civil transportation, 
military operations and space exploration. As such, the systems 
are required to interact in ways that do not result in accidents. 
However, hazards that can lead to accidents can arise from the 
interaction of any of the behaviours of the system , not just 
from explicit failures.  
 
Given the complexity and dynamism of interactions within a 
network-enabled SoS it can be extremely hard to analyse the 
potential for interactions and communications between 
components to lead to unsafe behaviour. Performing hazard 
analysis on such systems is therefore challenging, in part 
because it is difficult to know in advance which of the many 
observable or measurable features of the system are important 
for maintaining system safety. Having discovered the potential 
for hazardous behaviour, it is then necessary to mitigate its 
effects. However, the nature of SoS configurations means that 
interactions between system components cannot be restricted 
by designed-in safety features used in many other systems. 
Therefore, system behaviour must often be managed and 
constrained operationally.  
 
Describing the results of research performed within the High 
Integrity Real Time Systems (HIRTS) Defence and Aerospace 
Partnership (DARP) at York, this paper describes how a 
simulation and machine-learning based approach can facilitate 
hazard analyses of SoS. It also explains how a safety policy can 
be systematically derived and expressed in a structured fashion 
in order to constrain system behaviour within the boundaries of 
that which is deemed acceptably safe. Examples derived from 
battlefield scenarios and SoS configurations will be used to 
illustrate the approach presented in the paper. 

 

1 Introduction 
Large-scale military and transport Systems of Systems (SoS) present 
many challenges for safety. Attempts to define the term ‘SoS’ have been 
controversial - examples can be found in [1] and [2]. It is easy, however, 
to identify uncontroversial examples, Air Traffic Control and Network 
Centric Warfare being the most prominent. These examples feature 



mobile components distributed over a large area, such as a region, 
country or entire continent. Their components frequently interact with 
each other in an ad-hoc fashion, and have the potential to cause large-
scale destruction and injury. It follows that for SoS that are being 
designed and procured now, safety has a high priority. 
 
A SoS is a complex multi-agent system (MAS) in which many entities have 
a mobile physical presence. The agents within this MAS are, in 
themselves, very complex. This complexity means that conventional 
system safety techniques are not adequate for identifying safety hazards 
in a SoS. In this paper, we propose multiagent simulation augmented by 
machine learning and agent tracing techniques as a viable alternative. 
 
In order to ensure the safe behaviour of SoS, the behaviour of the 
individual system entities must be controlled, as must the overall 
behaviour that emerges from their individual actions and interactions. One 
way to achieve this is to impose a system-wide safety policy, which 
describes the rules of behaviour which agents in the system must obey. 
Due to the geographically distributed nature of many entities, the policy 
typically cannot be directly enforced by some external controller (as in 
security policy); rather, the entities must comply with it individually. 
 
Section 2 of this paper elaborates on the problems for SoS safety. Section 
3 shows how multiagent simulation can be used for SoS hazard analysis. 
Section 4 describes how an appropriate safety policy can be derived from 
the results of such hazard analysis. Section 5 presents an example of the 
technique in application, and Section 6 presents a summary and 
conclusions. 

2 The Problem of SoS Safety 
The Oxford English Dictionary [3] defines safety as “The state of being 
safe; exemption from hurt or injury; freedom from danger.” In system 
safety engineering, it is common to restrict the definition of ‘hurt or injury’ 
to the physical injury or death of humans. For the purposes of this paper, 
we will restrict ourselves to this definition. It can be noted, however, that 
the approach presented can easily be expanded to cover alternative 
conceptions of safety, such as those including avoidance of material loss. 
 
The problems faced by safety analysts when attempting to analyse SoS 
fall into three categories: the difficulty of performing hazard analysis, the 
restricted means by which safety features can be introduced, and the 
problem of ‘System Accidents’. In their discussion of functional hazard 
analysis, Wilkinson and Kelly [4] note that these problems are present in 
conventional systems. The characteristics of SoS, however, exacerbate 
them. 

2.1 Hazard Analysis 
In a conventional system, such as a single vehicle or a chemical plant, the 
system boundary is typically well-defined and the components within that 
boundary can be enumerated. Once hazard analysis has been performed 
to identify events that may cause injury or death, safety measures can be 



introduced and the risk of accidents computed from the probabilities of 
failure. Conventional techniques such as fault tree analysis are effective in 
this task. 
 
In a SoS, the necessary hazard analysis is itself very difficult. When 
hazard analysis postulates some failure of a component, the effect of that 
failure must be propagated through the system to reveal whether or not 
the failure results in a hazard. The system boundary is not well defined, 
and the set of entities within that boundary can vary over time, either as 
part of normal operation (a new aircraft enters a controlled airspace 
region) or as part of evolutionary development (a military unit receives a 
new air-defence system). Conventional tactics to minimise interactions 
may be ineffective, because the system consists of component entities 
that are individually mobile. In some cases, particularly military systems, 
the entities may be designed (for performance purposes) to form ad-hoc 
groupings amongst themselves. Conventional techniques may be 
inadequate for determining whether or not some failure in some entity is 
hazardous in the context of the SoS as a whole. 
 
It follows from this that a hazard analysis approach is needed which can 
reveal hazards caused by failure propagation through complex systems 
and that can consider the effect of multiple simultaneous failures. 

2.2 Ensuring Safety 
A purely functional design with no safety features is unlikely to be 
adequately safe.  Therefore, design changes need to be made in order to 
reduce safety risk to acceptable levels. In a conventional monolithic 
system, there are many features that can be introduced to prevent or 
mitigate hazards; examples include blast doors, interlocks, and pressure 
release valves. 
 
The SoS that are considered here contain many mobile agents with a high 
degree of autonomy. Such `hard' safety features are therefore not 
available. Consider, for example, air traffic control. If a controller wants to 
prevent a given aircraft from entering an airspace region (say, one 
reserved for an airshow) then he or she can instruct the aircraft to fly 
around it. The controller cannot, however, physically prevent the aircraft 
from flying into the region. (In a military scenario there are more drastic 
measures for dealing with aberrant agents, particularly if they are 
unmanned.) 
 
Therefore, achieving safety in a SoS will rely to a large extent on 
responsible behaviour from the individual agents. In order to achieve this, 
agents need to know what behaviour is acceptable in any given 
circumstance. It follows from this that system designers and operators 
need to know how the agents in the system can safely interact. 

2.3 System Accidents 
Perrow, in [5], discusses what he calls ‘normal accidents' in the context of 
complex systems. His ‘Normal Accident Theory' holds that any complex, 
tightly-coupled system has the potential for catastrophic failure stemming 



from simultaneous minor failures. Similarly, Leveson in [6] notes that 
many accidents have multiple necessary causes; in such cases it follows 
an investigation of any one cause prior to the accident (i.e. without the 
benefit of hindsight) would not have shown the accident to be plausible. 
 
A SoS can certainly be described as a ‘complex, tightly-coupled system', 
and as such is likely to experience such accidents. It can also be noted 
that a ‘normal accident' could result from the combination of apparently 
safe, normal behaviours which are safe in isolation but hazardous in 
combination. Imagine, for example, a UAV that aggressively uses airspace 
and bandwidth under some circumstances. This may be safe when the 
UAV is operating on its own, but not when it is part of larger SoS. 
 
It follows from this that a SoS safety analysis approach will need to be 
able to capture the effects of interactions between multiple simultaneous 
failures and normal agent behaviour.  

3 Hazard Analysis Using Multiagent Simulation 
Ferber, in [7] provides the following definition of multi-agent simulation: 
“Multi-agent simulation is based on the idea that it is possible to represent 
in computerised form the behaviour of entities which are active in the 
world, and that it is possible to represent a phenomenon as the fruit of 
the interactions of an assembly of agents with their own operational 
autonomy.” 
 
Similarly, Ilachinski, in [8] offers “[Multi-agent simulations] consist of a 
discrete heterogenous set of spatially distributed individual agents, each 
of which has its own characteristic properties and rules of behaviour.” 
 
Typically, the value of multi-agent simulation is asserted in comparison to 
the mathematical models that have traditionally been used in biology, 
economics and military analysis. Ferber notes that agent-based models 
allow the integration of quantitative variables, differential equations and 
symbolic rules into agent behaviour, thereby providing a means to exploit 
qualitative observations as well as quantitative information [7]. He also 
notes that such ‘micro-worlds' allow analysts to experiment by modifying 
agent behaviour and adding new agent types, which is not possible with 
high-level mathematical models. Most significantly for our purposes, 
Ferber comments that such simulations “make it possible to model 
complex situations whose overall structures emerge from interactions 
between individuals”. 
 
Ilachinski, in [8] makes a similar point: in a multi-agent simulation, 
different levels of behaviour can be observed. Analysts can examine both 
the top-level emergent behaviour and the low-level interactions between 
individual agents. That is, the simulations can both predict overall 
behaviour and explain why it occurs. It can be seen that this relates to the 
concerns raised in section problem about the hazard analysis of SoS. On a 
more general level, Ilachinski also notes that working with multi-agent 
models gives a researcher an insight into the dynamics of the modelled 
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system that is not provided by high-level mathematical models. For 
emerging classes of system, this kind of insight is extremely valuable. 
 
The authors have developed a process for using multiagent simulation to 
perform hazard analysis, which will be summarised here. Further details 
can be found in [9]. 
 

3.1  Overall Process 
In this process, the SoS safety team must develop a multiagent model of 
the SoS. They do this by taking an appropriate source model (such as a 
MODAF description of the system) and identifying specific safety concerns 
that they need to model (such as collisions between aircraft). They must 
also identify (a) the vignettes that the SoS will be expected to participate 
in and (b) a set of reasonable deviations that may occur in practice, such 
as a system suffering a particular kind of failure. The resulting multiagent 
model must be implemented in a multiagent simulation framework, 
thereby making the model executable. 
 
Once an executable model is available, the ‘space’ represented by the 
deviations of that model must be explored. This is performed by running 
the model with different combinations of deviations and observing the 
results. 
 
As each run executes, the actions and states of the system components 
are logged so that they can be studied later. This invariably produces a 
huge volume of output. To aid comprehension of this data, machine 
learning techniques can then be used to extract high-level descriptions of 
hazards, and, once interesting accident runs are identified, causal 
explanations can be derived using an agent tracing tool. 
 
An outline of this process is shown in figure 1, and key aspects are 
expanded on in the following sections. 



3.2 Modelling 
A common concern in simulation modelling is that, in going from a paper 
model to an implemented simulation, distortions and errors can be 
introduced. It must therefore be possible to show that the aspects of the 
system that are of concern to the modeller are represented in the model 
in all its various representations and artefacts, including the final 
executable simulation and the output that it produces. These concerns 
must be expressed in terms of aspects of the source model, and updated 
and checked at each modelling stage or iteration of the model. 
 
In this approach, the source model is a MODAF description of the SOS. 
The MODAF Executive Summary [10] describes MODAF thus: 
 
“The MOD Architectural Framework (MODAF) is a framework for 
developing architectures that provide a means to model, understand, 
analyse and specify Capabilities, Systems, Systems of Systems (SoS) and 
Business Processes.” 
 
Once a set of concerns have been identified, the modeller must relate 
them to the MODAF model, identifying which concerns have particular 
implications for particular MODAF products or operational nodes. For 
example, for the concern ‘unreliable radio communications' the modeller 
could note that deviations of radio communication impact needlines in OV-
2 (operational node connectivity description) that would be served by 
radio communication and interactions in OV-5 (operational activity model) 
that correspond to radio messages. 
  
The process of hazard analysis is inevitably based on identifying what 
deviations of expected system behaviour could lead to hazards. Simple 
‘brainstorming' techniques can be effective here, but explicit, systematic 
techniques can provoke modellers to consider deviations that they 
otherwise would have missed. Such systematic techniques can capture 
accumulated expertise and knowledge from past experience with similar 
systems. 
 
In the current approach, agent deviation is performed using an approach 
based on Failure Modes and Effects Analysis (FMEA) as described in [11]. 
In FMEA, a safety analyst works systematically over a set of components 
of a system, asking at each step “how could the failure modes of this 
component affect the subsystem it is part of, and thereby affect the wider 
system”. 
 
In the approach described here, the analyst works over distinct parts of 
agents and services provided by them (analogous to FMEA ‘components'), 
using a set of generic deviation forms to derive deviations that are specific 
to the agent in question. In effect, the analyst proceeds across an 
identified `atomic unit' of the system and derives the deviations that 
could reasonably be expected to occur. 
 
Unlike (manual) FMEA, no particular attempt is made at this stage to 
derive the effects of the deviations --- that is a matter for the simulation 



to achieve. Of course, the modeller will need to bear in mind the identified 
concerns, to ensure that the deviations adequately explore them. 
 
The generic deviation forms are derived by combining the set of generic 
agent parts and services with a set of guide words. 
 

Table 1 Generic Deviations 
Entity Part/Service Guide Word Generic Deviation 

Total loss of sensing OMISSION 
Reduction of sensor range 
Duplication of contacts 
Wholly ‘imaginary’ contacts 

COMMISSION 

Increase of sensor range 
EARLY n/a 
LATE Delay in registering sensor contacts 

Incorrect identification of contact side/force 
Incorrect identification of contact entity type 

Sensor 

INCORRECT 

Incorrect determination of contact location 
Total loss of function 
Reduction in magnitude of function (e.g. 
damage, speed, range) 

OMISSION 

Partial loss of applicability of function 
COMMISSION n/a 
 Increase in magnitude of function 
EARLY n/a 
LATE Delay in performing function 

Function applied to wrong target (e.g. entity, 
location, direction) 

Actuator 

INCORRECT 

General loss of precision/control (e.g. wide 
area, extra entities) 
Plan step omitted OMISSION 
Trigger condition not implemented 
Plan step duplicated COMMISSION 
Extra trigger condition 

EARLY Plan step moved earlier in sequence 
Plan step moved later in sequence LATE 
Plan takes more thinking/processing time 

Plan  

INCORRECT Substitute entire plan with another 
Loss of transmission 
Loss of receiving 

OMISSION 

Entity excluded from network  
Duplicate messages sent 
Duplicate messages sent later  
Entity added to network 

COMMISSION 

Additional bandwidth used 
EARLY n/a 

Delay in sending messages LATE 
Delay in receiving/processing messages 

Communications  

INCORRECT Value error in message 
OMISSION SA does not persist 
COMMISSION Duplication of entity traces  
EARLY Trace prematurely removed from SA 
LATE Trace persists in SA after known to be 

moved/destroyed 

Situational 
Awareness (SA)  

INCORRECT SA coordinate system mismatched with peer 
entities 

OMISSION Processing tasks dropped  
COMMISSION n/a 
EARLY Accelerated processing 
LATE Delay in processing (reduced processing 

capability) 

Computation/thinking 

INCORRECT n/a 

 



3.3 Analysis 
Once the model has been built, including specification of the deviations 
that can be applied, it must be analysed. The analysis technique must 
select simulation runs to be performed so as to achieve adequate 
coverage of the parameter space of the simulation while spending the 
minimum of computation time. Exhaustive exploration of the parameter 
space demarcated by all agent deviations would be highly desirable, in 
that all behaviour paths that were implemented by the simulation model 
would then be revealed. In practice, this is not going to be possible for 
anything more than a toy example. 
 
The solution adopted in the work described here is to specify a probability 
for the occurrence of each deviation in any given simulation run, and then 
perform runs only for those combinations where the combined probability 
is above a certain threshold. The plausibility of this combination can be 
determined by setting a threshold for ‘incredibility of failure'. This concept 
originally stems from the nuclear industry, and situations that appear to 
be more improbable than this threshold are not studied further in hazard 
analysis. A value for this is given in [12] as 10-7 per year of operation 
(equivalent to 10-11 per hour), and this value is adopted here. 
 
Once those runs have been performed, the accidents that occurred need 
to be identified and their causes found. The former task is relatively easy, 
since the set of possible accidents is small. The latter, however, is harder, 
and machine learning techniques have been adopted to make it tractable. 
 
The task of machine learning can be viewed as one of function 
approximation from a set of training instances expressed as input-output 
pairs; given a function specification (a set of named input parameters (the 
‘features' used for learning) and a particular form of output value), the 
algorithm learns the relationship between combinations of parameter 
values and the output of the target function for those values. 
 
For our purposes, the features represent parameters of the simulation and 
the output values are the consequences within the simulation. All the 
features used in the current work are deviations that are applied to the 
model, and the target function is the set of accidents that occurs during 
the simulation run.  
 
The output of the learning algorithm is a set of rules that describes the 
relationship between deviations and accidents. For example, a rule might 
be “Aircraft 1 lost_radio_comms causes aircraft 1 to collide with aircraft 
2”. 
 
Such rules, however, only explain how accidents occur in very broad 
terms. In order to choose appropriate definitions of our hazards, or to 
take action to prevent or mitigate them, more detailed information about 
causation is required. 
 
Lam and Barber, in [13] present a tool-supported approach to the 
comprehension of agent systems. The core of the approach is that, given 



a log of the events that occurred in a single simulation run, and an 
identified event of interest within that run, the system attempts to explain 
why that event happened in terms of its immediate causes. Those causes 
can each then be explained in the same way, and the process repeated 
until the final explanation is in terms of the initial state of the simulation 
run or ‘external' events that occurred. This explanation, complete or 
partial, can be expressed as a causal graph leading to the event that we 
asked the tool to explain. 
 
A simple example of such an explanation would be of the form “UAV 1 
received a percept indicating the location of an enemy unit. This caused it 
to form a goal of destroying that enemy unit, which it selected the ‘air 
strike' plan to resolve, and as a consequence of that plan the UAV 
conducted the ‘attack' action using a laser-guided bomb”. 
 
The tool achieves this by storing what Lam and Barber call ‘background 
knowledge'. This takes the form of a set of possible causal relationships 
between events of different types and different properties. As the tool 
tries to explain each event, it reviews these rules to find which previous 
events could have caused it. 

3.4 Responding to the Results 
Once the analysis is complete, the analyst must evaluate the significance 
of the results, in consultation with the rest of the project safety team and 
other stakeholders. It is likely, particularly early on in development, that 
the analysis will reveal problems with the SoS that need to be resolved. 
As indicated in figure 1, this may involve changes to the configuration of 
the SoS, to the design of the individual elements, or to the policy under 
which the SoS operates. The role of design changes in safety is well 
understood, but that of policy is less so, and is discussed in the following 
section. 

4 Policy 

4.1 Background on Policy 
The belief that numerous independently designed and constructed 
autonomous systems can work together synergistically and without 
accident is naïve, unless they are operating to a shared set of rules which 
is informed by a high level view of the system. In existing systems of 
systems such rules already exist, to a degree, because otherwise such 
systems would be nothing more than an uncoordinated collection of parts. 
Burns, in [14]: “The proper functioning of the network as a whole is a 
result of the coordinated configuration of multiple network elements 
whose interaction gives rise to the desired behaviours.”  
 
The problems that we face, however, are that often these rules or 
procedures are either not explicitly expressed, not well understood or are 
inconsistent. Similarly, they typically do not consider the inter-operating 
systems as a whole SoS, or simply do not address the safety aspects 
arising from this inter-operation. A term that can be used to encompass 
such rules and procedures is policy. Whilst some existing work covers 



security policy, no work yet deals with a policy for the safe operation of a 
system of systems.  
 
The Oxford English Dictionary [3] defines ‘policy’ as:  
 
“A course of action or principle adopted by a government, party, 
individual, etc.; any course of action adopted as advantageous or 
expedient.”  
 
Intuitively, therefore, a policy guides the action of an individual or group 
according to some criteria. Foreign policy, for example, is a familiar 
concept from everyday language and sets out ground rules for guiding a 
nation’s diplomatic interactions with other nations. Similarly, common law 
attempts to curtail undesirable—and hence illegal—behaviour and promote 
desirable behaviour amongst the populace.  
 
Much of government policy, however, confuses policy with ‘goal-setting’. 
Although some definitions of policy mention goals, they are in the context 
of policy goals, or high-level actions, such as “the system is to operate 
safely at all times” or “no University applicant should be discriminated 
against based on his/her ability to pay tuition fees”, as distinct from 
targets, e.g. “to ensure 50% of school-leavers continue to higher 
education”. Policy can therefore be thought of as being orthogonal, but 
complementary, to plans and goals.  
 
Policy is defined in the literature in various ways, but the most generally 
applicable system-oriented definition is given in [15]:  
 
“A policy is a rule that defines a choice in behaviour of a system.”  
 
This definition is distinct from that used in, for example, reinforcement 
learning, where a prescriptive policy maps from perceived internal state to 
a set of actions. Indeed, it can be seen that policy is persistent [16]; 
policy is not a single action which is immediately taken, because a policy 
should remain relatively stable over a period of time. Any policy 
containing one-off actions is brittle, in that it cannot be reused in a 
different context and quickly becomes out-of-date and invalid.  
 
Most organisations issue policy statements, intended to guide their 
members in particular circumstances [17]. Some provide positive 
guidance, while others set out constraints on behaviour. To take a simple 
example as an illustration, consider a mother who asks her child to go to 
the corner shop to buy a pint of milk. She may lay down two rules with 
which the child must comply on this trip:  
 

1. The child must not talk to strangers.  
2. The child must use the pedestrian crossing when crossing the road.  

 
The first of these rules defines what the child is allowed to do, specifically 
it proscribes conversation with people with whom the child is not 
previously acquainted. The second statement expresses the obligation 
that the child should take a safe route across the road, namely by using 



the pedestrian crossing. Together these rules form a policy that guides the 
behaviour of the child on his journey to the corner shop. The rules are 
invariant to the child’s ‘mission’; they still hold whether the child is going 
to buy a loaf of bread or a dozen eggs, or not going to the corner shop at 
all.  

4.2 Systems of Systems and Safety Policy  
According to Bodeau [17], the goal of SoS engineering is “to ensure the 
system of systems can function as a single integrated system to support 
its mission (or set of missions).” Among the principle concerns of SoS 
engineering that Bodeau identifies are interoperability, end-to-end 
performance, maintainability, reliability and security. Unfortunately, he 
neglects to mention safety.  
 
Wies, in [18], describes policy as defining the desired behaviour of a 
system, in that it is a restriction on the possible behaviour. Leveson 
extends this sentiment to say that the limits of what is possible with 
today’s (software-based) systems are very different to the limits of what 
can be accomplished safely [6]. In terms of collaborative groups of 
systems, SoS, whose behaviour has been observed to be non-
deterministic, a policy is a mechanism to create order or (relative) 
simplicity in the face of complexity. Sage and Cuppan [19] talk of 
“abandoning the myth of total control”, while Clough [20] describes it as 
creating a system that is “deterministic at the levels that count”, i.e. at 
the ‘black-box’ level, and Edwards [21] observes the need to “selectively 
rein in the destructive unpredictability present in collaborative systems”.  
 
In discussing policy many different terms are employed, such as rule, 
procedure, convention, law and code of conduct. The presence of so many 
terms would seem to suggest a lack of clarity about what policy is, but 
these terms can be viewed as policy at different levels of abstraction. 
Often policy specifications cause confusion by combining statements at 
high and low levels of abstraction [18].  
  
Policy statements or goals can be organised into a hierarchy, with the 
most abstract at the top. There is a need to refine from these abstract 
policies down to implementable, atomic procedures. Existing goal-oriented 
techniques and notations, such as GSN [22], KAOS [23] and TROPOS 
[24], provide a basis for the decomposition of high-level goals. 
Specifically, the Goal Structuring Notation (described by Kelly in [22]) 
allows the explicit capture of contextual assumptions, for example 
assumptions made about other agents’ behaviour, and of strategies 
followed to perform the decomposition.  
 
At the lowest level of abstraction policies can be expressed in terms of the 
permissions, obligations and prohibitions of individual and groups of 
agents. In this paper, an approach is suggested for decomposing and 
implementing policy goals motivated by safety concerns in a simulation of 
a SoS. The effect of this policy is to moderate the behaviour of the agents 
such that no accidents occur in the simulated SoS. 



4.3 Deriving Safety Policy from Hazard Analysis 
A safety policy can be thought of as a set of operational rules that guides 
the behaviour of individual systems, collaborating as part of a SoS, such 
that the emergent SoS-level behaviour does not result in accident. Such a 
safety policy aims to stop hazards that may arise from inadequate control 
over the interaction between component systems. Given that the 
component systems exhibit some degree of autonomy, and that this 
autonomy is considered beneficial, policy rules serve to circumscribe the 
limits of safe behaviour, not to unduly restrict the inherent flexibility of 
the SoS. In terms of the safety concepts already discussed, a policy is 
derived from hazards and ensures the operational satisfaction of safety 
requirements. In order to arrive at rules that govern system operations a 
policy decomposition is needed.  
 
Policy decomposition refers to the process of transformation of high-level 
policy goals into more specific policies that are defined in terms of lower-
level entities and operations of the system. Figure 1 shows the top-level 
structure for the scenario that is described in section 5. At this level the 
hazards are quite generic, and hence the safety policies contain very little 
SoS-specific detail. Figure 2 shows an excerpt from the policy hierarchy 
concerning a decomposition of the goal “avoid enemy fire”. The policy 
decomposition hierarchy is represented using the Goal Structuring 
Notation (GSN) [22], typically used to describe safety arguments for use 
in single-system safety cases. Policy goals are depicted as rectangles. A 
parallelogram indicates a strategy, which describes the type of goal 
decomposition approach taken. For example, a strategy might be to 
decompose over the nature of an obstacle to be avoided, since the policy 
to avoid an oncoming aircraft (which has a pilot who can reason about 
your behaviour and manoeuvre to avoid you too) is different to that for 
avoiding a stationary object. 
 
Similar assumptions (captured by context models) can be used to 
generate different rules for systems with varying capabilities, or properties 
of the environment (e.g. two policies for day and night time, or for 
systems equipped with radar vs. those without). What at first appears to 
be simply an operational decision is in fact a design decision for 
autonomous systems, but is masked by the flexibility of human operators 
to adapt to changing requirements. Consider, for example, the policy for a 
group of aircraft either to flock or to follow diverse routes to a common 
destination. For manned aircraft, this would be a simple enough exercise 
(provided the pilots were suitably trained); however for a group of UAVs it 
would entail extra flight control algorithms and the exchange of flight path 
information. This, in turn, impacts the design of the flight control system 
of the UAVs. In a manner similar to that shown in Figure 2, it is possible 
to generate further safety policy rules for the other system/hazard 
combinations given in Table 1. For instance, safety policy rules for the 
UAV to avoid collision must involve the use of sense-and-avoid, however 
they can also reduce the probability of collisions between UAVs by obliging 
them to patrol discrete (non-overlapping) areas or at different altitudes.  
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Figure 2 - Top-level Policy Decomposition 

 
 

 
Figure 3 - Policy Rule Specification 

 



 
Figure 4 - Anti-Guerrilla Operations 

5 Case Study 
This case study deals with a hypothetical military system operating in an 
anti-guerrilla role. It uses network-centric technology to coordinate 
(unmanned) mobile artillery and airborne special forces in action against 
an enemy who are hard to detect and spread across a wide area.  
 
An overview of the system's operation in shown in figure 4. There are key 
parts to the unit: unmanned air vehicles, unmanned self-propelled guns, 
transport helicopters and special forces sections. The standard operating 
procedure is that UAVs locate targets, the guns provide artillery 
bombardment to suppress, disorder and weaken the target, then the 
special forces move in (carried by the helicopters) to deal with any 
remaining enemy and secure the area. 
 
Only a single vignette is described for this scenario. The UAVs patrol the 
area, using a variety of sensors to observe any activity in the terrain 
below them. When they detect signs of enemy movement, they 
communicate this to the other entities via some form of data fusion, and 
this allows the guns to open fire. The UAVs continue to monitor the 
situation, and feed their observations back to the other entities. When it 
appears from the shared picture that the enemy have been adequately 
weakened the guns will cease fire and the helicopters will move in. 
 
A partial MODAF description of the system is given by Despotou in [25]. 
This was used to derive a simulation model. A small number of deviations 
were devised and implemented, as shown in table 2. 
 
Agent Part/Service Generic 

Deviation 
Specifics Code 

UAV Comms Loss of 
transmission 

ok LOSSOFCOMMS 

 Air obstacle 
sensor 

Total loss of 
sensing 

ok NOAIRSENSORS 



 SA/worldview SA coordinate 
system 
mismatched 
with peer 
entities 

Just do one 
version 

FUSIONGRIDNORTHWEST
SKEW 

Gun Artillery fire 
actuator 

General loss of 
precision / 
control 

Increase 
area over 
which fire is 
distributed 

FIRESPREADWIDELY 

 SA/worldview SA coordinate 
system 
mismatched 
with peer 
entities 

Just do one 
version 

FIRESKEWNORTHWEST 

Table 2 - AGO System Deviations 
 

5.1 Performing Hazard Analysis on the Case Study 
Performing all combinations of deviations requires 262 thousand runs. A 
decision tree learner (C4.5, described by Quinlan in [26]) was used to 
derive rules that described hazards. A more detailed discussion of the 
results can be found in [9], but here we will just show the exploration of 
one example rule: 
 

IF 
UAV 2 has NOT lost communications AND 
UAV 4 has lost communications AND 
Gun 3 NOT generally inaccurate AND 
Gun 3 NOT skewed northwest 

THEN 
Some gun destroys helicopter 1 

 
A tracing tool was applied to a run that exhibited that accident, and a 
trace was produced to explain the accident event as shown in figure 5. 
 

[254] heli1: destroyed by 
gun3 at (32:16)

[254] gun3: fire at at (32:16)

[252] heli1: move (1;-1) 
towards (32:16)

[210] gun3: artillery 
bombardment at  (33:17)

[244] heli1: ground attack at 
(32:16)

EVENT

ACTIONPLAN

[244] heli1: neutralised target 
at (24:15)

BELIEF

[210] gun3: weakened target 
at (32:16)

[210] suppress strong enemy 
at (33:17)

GOAL

[244] heli1: neutralise 
position at (32:16)

 
Figure 5 - Tracing result 

 



It can be seen that the helicopter adopts the goal of neutralizing anything 
at a particular coordinate and so moves into it. The gun, at the same 
time, adopts the goal of suppressing the enemy in the neighbouring 
square and fulfils the goal with plan of artillery bombard. But the action 
actually performed (due to the ‘skew’ deviation applied to the gun) is to 
fire at the square that the helicopter has just moved into. The artillery fire 
therefore hits the helicopter. 

5.2 Safety Policy for the Case Study 
It has been shown that securing the area in the AGO scenario involves 
both suppressing and neutralising the enemy. The task of providing 
suppressing fire has been assigned to the artillery agent, while 
neutralising the enemy involves transporting special forces by helicopter 
to the already suppressed enemy for close combat. This means that the 
helicopters are brought into proximity of the same target as the guns 
have been firing on. 
 
It should be obvious that, although the helicopter and artillery’s efforts 
are coordinated via the reports of the UAV scouts, there is no direct 
communication between the helicopter and the artillery. The hazard 
therefore exists that the infantry may be in the vicinity of the target at the 
same time as the artillery fires upon it. If the artillery piece is inaccurate 
in its fire, this can lead to a friendly fire accident. Given that no direct 
communication is possible between the two agents (nor indeed necessary 
to achieve the aims of the mission), a safety policy must be derived to 
make the artillery aware of the helicopter’s movements.  
 
The resulting policy decomposition is shown in 6. The left-hand side of the 
policy structure concentrates on informing the artillery of the helicopter 
locations so as to avoid accidental attack, whereas the right-hand side 
focuses on informing the helicopters to avoid an area designated as a 
target for the artillery. 
 

 
Figure 6 - Policy Structure for Avoiding Friendly Fire 

 



6 Summary and Conclusions 
SoS safety engineering is a challenging task, and the existing manual 
methods that are widely used do not readily extend to the SoS context. 
There is, however, potential to use multiagent simulation to replace these 
traditional methods. 
 
In this paper, we have presented a promising method and shown how it 
can be used with a small but plausible example of a SoS. The construction 
of a multiagent simulation model allowed the system behaviour to be 
derived under a variety of conditions, while machine learning and agent 
tracing techniques allowed the overall safety-critical behaviour of the 
system to be comprehended. 
 
Future work will include application to larger case studies, and to use with 
more detailed models of agents and their environment. There is also 
potential to apply similar techniques a range of challenging hazard 
analysis applications, such as highly autonomous systems. Key research 
concerns include the credibility of the results derived from such simulation 
models, and the relative effectiveness of this work compared to key 
alternatives such as model checking. 
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