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Abstract 

When you create a System of Systems (SoS), you are doing wilful design. It follows that you need a safety case: 

a justification of why that system will be safe. All safety cases must have certain common properties: they must 

focus on risk, they must provide appropriate confidence in their claims, and they must have a clear relationship 

to a causal model of the system's safety behaviour. None of those are particularly easy for SoS, and there are 

several areas where SoS are particularly problematic, such as what exactly "the system" comprises, and what on 

Earth its lifecycle actually is. On the other hand, not everything about SoS safety is necessarily hard, and not 

every problem faced in SoS safety is an "SoS problem". 

Motivation: have we got a case? 

A System of Systems (SoS) is a system composed of components that are themselves systems, and that have 

their own goals and some degree of autonomy, yet still remain part of a whole with some shared goals and 

management. When you create an SoS, you are doing wilful design. If you define a configuration of assets to 

achieve certain aims, and agree that they will communicate and coordinate in certain specific ways, then you are 

doing explicit, conscious design. When you allow personnel within an SoS to adopt a pattern of using a certain 

configuration of assets to achieve certain aims, and habitually coordinate their actions by specific patterns of 

communication, then you are doing implicit, passive design. Either way, you are responsible for the 

consequences of those design decisions, and could be held accountable if they lead to an accident which causes 

loss of life.  

SoS accidents do happen. There have been several accidents described in the literature that fit the title “Systems 

of Systems accident”. Examples include the Uberlingen mid-air collision (ref. 1), the Black Hawk fratricide (ref. 

2, 3), and several fratricide incidents related to GPS use. At the same time, it seems that there is an ongoing 

trend towards creating more, larger and more coupled SoS, and to opening architectures so as to create multi-

vendor SoS in place of traditional single-vendor systems. This should be a concern for everyone within the SoS 

and safety communities, and for anyone who is legally responsible for the actions of an SoS.  

A safety case is an argument that some system is safe enough to operate, supported by evidence. There is much 

written about explicit safety cases, and some standards require them (e.g. Def Stan 00-56 (ref. 4)). However, if 

an operator of a system is convinced that some system is safe enough to operate, then they have an implicit 

safety case which contains their beliefs about the system's safety. It constitutes an account of why the system is 

safe that they can give to others, and indeed to themselves. Currently, few SoS have explicit safety cases, so it is 

worth giving some attention to the implicit cases that are being used. As researchers and consultants involved 

with industry and with military practitioners, we have encountered several forms of implicit case, which we will 

describe in the following paragraphs. 

The first implicit case is that the system is safe because no serious accidents have occurred so far, and therefore 

no accidents will occur in the future. We may have been coordinating our fire control over some sensor fusion 

system for months and never yet called down fire on our own troops. This is some evidence of safety, but it is 

limited. It is very unlikely that we have sufficient operating hours to make a statistical claim of safety at the 1 × 
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 per hour that typical standards would ask for. Even if we have, we may be vulnerable to small changes in 

circumstance, or to (reasonably rare) equipment failure, which will lead quickly to accident. For fifty years, 

system safety has made great strides by probing systems for hazards in every conceivable circumstance. 

Allowing safety to be assumed from track record alone discards these gains. 



A second implicit case is to assert that every part of the system has its own, local, safety case, and that the 

overall SoS is therefore safe. Here, we are admitting that there are risks in the system, but argue that the existing 

cases take care of it; after all, if no part can have an accident then the SoS cannot have an accident. The main 

weakness here is that those local cases do not, and cannot, take the entire SoS context into account. Most of the 

creators of the local cases will have been unaware of the specific SoS context of use, and will have had to make 

assumptions in their local cases. It is likely that the SoS context violates at least some of those assumptions. In 

other words, the SoS context may erode the adequacy of the local cases, and the only way to assess the result is 

to check all of these assumptions and how they interact – in effect, to create an explicit SoS case. In any case, 

some of the risks in an SoS may not be visible at the level of the component systems – they may be emergent. 

A third possibility is to admit that the overall SoS safety arrangements are inadequate. We have no SoS-wide 

analysis, we have no SoS-wide risk mitigations, so we have no adequate SoS safety cases. However, we can 

then claim that the system contains humans, and humans are intelligent beings. We can argue that our personnel 

know about the risks and take regular intelligent action to control them: they check electronic orders verbally, 

they recognise suspicious sensor readings and compare them with others, they hold off on the final fire action to 

give time for a check-fire to reach them. We can argue that humans have few hard upper bounds on what safety 

actions they can spontaneously take. 

This is third implicit argument is stronger that the others, but it is not sufficient. Human prevention of accidents 

is often possible, but not necessarily reliable. Decades of human factors research has shown us the many factors 

that shape human performance, and therefore shape human management of accidents. We have a broad 

understanding of human behaviour in accident prevention, and it is irresponsible (an inadequate response to the 

accountability of an SoS operator) to ignore this information. Without it, we will frequently place personnel in 

situations where they are responsible for safety, but do not have the authority (or information) to make it safe. 

We have now discussed three possible implicit arguments, none of which is adequate. We therefore propose that 

a safe SoS requires explicit SoS safety engineering and a corresponding explicit SoS safety case. In this paper, 

we review the requirements on an adequate SoS safety case. 

The (explicit) safety case concept has a long history in the UK and achieved embodiment for military systems in 

the core Ministry of Defence equipment safety standard Def Stan00-56 (ref. 4). More recently, it has begun to 

make inroads internationally, under the guise of the assurance case, where it is applied beyond safety, to any 

number of non-functional properties – see, for example, the forthcoming software assurance standard ISO 

15026, and the articles on security cases by Lipson, Goodenough and others (ref. 5, 6). The value of the safety 

case approach is that it challenges us to define all aspects of safety engineering and their outputs, and to look 

closely at the analysis we can do and the evidence we can generate. 

Thus far, explicit safety cases have been mostly used for individual equipment items (e.g. this is UK MOD 

policy). There have been no attempts to require safety cases for large-scale SoS. Consequently, there is a lack of 

method and a lack of prior art to copy from. We can, however, define some requirements for SoS safety cases, 

drawing on two sources. First, SoS safety cases should meet the requirements and quality criteria identified for 

safety cases in other domains. Second, they should take account of the unique properties of SoS. 

What makes a good safety case?  

Kelly (ref. 7) identifies seven key ways in which a safety case can fail. Here, we draw out a few implications of 

that which are particularly relevant for SoS cases. 

Must Focus on Risk 

All safety cases are concerned with claiming that harm and loss will not occur. In order to do this we must 

manage specific risks; specific ways by which accidents could occur. Safety cases should, therefore, be 

structured around risk. This idea is widely accepted, and is a central part of Def Stan 00-56. 



It is easy to identify the top-level risks in any SoS; we can quickly generate an exhaustive set of accidents from 

possible interaction between SoS elements and their peers in the environment. See Aitken et al (ref. 8) for some 

discussion of this, and a basic method for deriving it from models expressed in the Ministry of Defence 

Architecture Framework (MODAF). 

Some clarity is needed here. For example, Bibby et al (ref. 9) provide the following set of “SoS safety 

accidents” for deployed military SoS: 

 “Fratricide: When allied forces fire at each other („friendly fire‟) having mistaken them as the enemy 

due to poor combat identification. [...] 

 Collision: When a vehicle, aircraft or boat crashes into any other object, vehicle, land or sea[,] 

unintentionally causing damage to itself and/or its occupants. 

 Unintentional entry into hostile zone: When troops accidentally find themselves in an enemy occupied 

or dangerous area. 

 Logistics and supply errors/Inadequate protection: Death, injury or damage resulting from errors from 

inefficient logistic supply or lack of equipment available. 

 Collateral damage: Includes all unintentional damage to locations and people which are not the target, 

such as civilians.” 

We can note that the above is a mixture of accident types (1 and 2), hazards (3), events that have causal 

relationship to loss but are some way from being legitimately called a hazard (4) and generic loss types (5). This 

lack of clarity is common in discussion of SoS, and may lead to expansion of the scope of “SoS safety 

engineering”; if this expansion is unchecked, such engineering may become impractical and ultimately 

ineffective. 

A further aspect  of risk is that it must be prioritised – given limited resources for analysis, understanding and 

mitigation, safety engineers should target the most serious risks first and with the greater part of their effort. 

Failure to prioritise was major criticism of the developers of the Nimrod safety case by Haddon-Cave (ref. 10) – 

they approached the safety case in systematic but un-prioritised fashion, without giving special attention to those 

parts that they knew were more dangerous. Haddon-Cave criticises the UK Ministry of Defence for accepting 

the (unfinished) Nimrod safety case, but in the presence of an active, aggressive regulator a prioritised approach 

to risk also makes strong business sense – it minimises the chance of an unexpected failure to certify. 

Must be Product-based 

We can create a safety case that argues that suitable processes have been followed, and that therefore a safe 

system will have been produced. This is not a good strategy – the resulting argument is very indirect, and 

therefore gives us little confidence that our claim of safety is true. 

The core evidence that is used in a safety case should be direct – it should provide evidence about the specific 

system (e.g. software test results, design review, past incident rates) rather than indirect evidence about the 

processes used to create and manage it. See Hawkins in (ref. 11) for an expansion of this point. Direct evidence 

supports claims that some specific hazardous phenomena will not occur. 

Safety engineering and management processes are important, but they have only a supporting role – their use 

provides confidence that particular direct evidence is valid (for example, good software testing processes will 

increase your confidence that your software test results are trustworthy). 

Following the assured safety argument approach described in (ref. 12) forces this issue, as the main safety 

argument may only refer to a causal model of the system itself; only the separate confidence argument may refer 

to the engineering and management processes used. 



Must Provide Appropriate Confidence  

When creating a safety case, we can make any claim we wish, but without supporting evidence that claim is 

worthless. As well as a convincing structure for our safety argument, we need adequate confidence that each 

claim holds. 

One corollary of that is that we need adequate research into the confidence provided by sources of evidence; if 

we use a testing technique, a trials regime, or a particular notation for encoding our system design, then we need 

research into how effective those techniques are. This is of interest for SoS because there is limited research into 

methods and techniques. 

Must be Related to a Causal Model of the System 

If we are going to create a safety case, it must be closely related to a causal model of the system (see Hawkins et 

al (ref. 12)). This allows claims about causation (e.g. a claim that a certain safety function will prevent a given 

hazard) to be checked. There are two types of methods that matter here – ways of generating causal models from 

system models, and ways of deriving risk assessments (e.g. hazard probabilities) from the causal model itself. 

We should only have confidence in our safety case if both of these are sound. 

Must be Tractable, Understandable and Reusable 

A safety case must be tractable, understandable and reusable. It is easy for a safety case to become a huge write-

only artefact, created to meet a regulatory need and then abandoned. Kelly (ref. 7) calls this “safety case shelf-

ware”, and Haddon-Cave (ref. 10) noted that the Nimrod safety case had such properties. This is inefficient, and 

indeed actively dangerous because it can provide a false sense of security that everything “has been made safe”. 

An effective safety case must be a living part of an effective safety management system. 

The Goal Structure Notation (GSN) was originally developed to make prose safety cases more tractable and 

manageable (ref. 13). Merely using a graphical notation, however, is not sufficient to make a case 

comprehensible, and having a complex graphical case with many nodes in the diagram proves nothing. This is 

“the illusion of pictures” in Kelly (ref. 7). 

What makes a good SoS safety case?  

The trick in understanding the specific requirements of SoS safety cases is to look at the characteristics that 

distinguish SoS from “mere systems”. For each requirement, we need to draw out its implications and suggest 

compensatory measures. The adequacy of these compensatory measures will, to a large extent, determine the 

quality of our safety case. 

The following subsections discuss the characteristics that matter the most for SoS safety cases. Section 0 then 

reviews those characteristics which are not unique to SoS and so should not be treated as such. 

Must Appropriately Bound the SoS 

There is a longstanding complaint that the boundary used for systems safety modelling is often too narrow (e.g. 

see Leveson (ref. 14),  Rasmussen (ref. 15), Hollnagel and Woods (ref. 16)). Obviously, when we decide where 

to place the model boundary, we implicitly decide what model dynamics we will get. Yet it is not clear where 

we should draw the line – the boundary of SoS can be amorphous and there are a great many lines that could be 

drawn. Leveson has included governments agencies in some of her STAMP models (e.g. in (ref. 17)). 

It is important that SoS safety cases concern themselves specifically with hazards that result from interactions 

within the SoS, and relegate hazards stemming solely from a single system‟s behaviour to the safety case of that 

individual system. Similarly, it is important to bound the SoS being analysed such that it is tractable – the call to 

model SoS is not a call to model the whole universe. By deciding to do “SoS safety cases” we of course don‟t 

magically gain more resources – most likely, we‟ll have to retarget existing safety resources. We need to make 

our SoS analysis count.  

What is the “product” that an SoS case should focus on? There is no convenient metal boundary as there is for 

an aircraft or ship. Perhaps the best option is to analyse a well-defined capability – a capability that we know 



can cause harm (e.g. to a specific example of networked-supported kill chain capability, as discussed by Caseley 

et al in (ref. 18)). This will lead us to a network of interacting nodes or agents – but only to the aspects of those 

nodes or agents that relate to the capability in question. This may reduce our effort significantly. 

In the UK military, safety case creation is part of equipment acquisition. This is sensible in many cases (when 

major vehicles or weapon systems are acquired) but is of little value for systems that are only safety-significant 

as part of a larger SoS (such as communications equipment or information-related software). It is impossible in 

those latter cases to understand enough of the context of use (all possible contexts of use) to reason adequately 

about the safety of the system. An SoS approach provides an opportunity to produce safety cases at a level 

where they can be effective, i.e. at a level where enough context is known to connect supporting 

communications and information systems to the systems that can directly cause harm. 

Must Take Account of the Role of Humans in the Systems 

It is recognised that most SoS are sociotechnical systems and include the humans that manage it and participate 

in it. SoS cannot be adequately analysed or engineered from a purely technical perspective – the human 

dimension must be thoroughly managed. This is a contrast with some traditional safety engineering, which has 

tended to enforce a system/operator dichotomy, but it is neither entirely new nor specific to SoS: the need for a 

sociotechnical view is recognised by Qureshi (ref. 19), Leveson (ref. 14), Hollnagel and Woods (ref. 16), none 

of whom are explicitly writing about “SoS”. Keating et al. suggest in (ref. 20), however, suggest that current 

SoS engineering work overemphasises the technical at the expense of these other factors. 

For military SoS, and some other domains (such as the healthcare and the emergency services), we have a 

problem in that prevention of harm cannot be fully proceduralized – there are many cases where “unsafe” 

decisions are required in order to prevent unwanted losses. The classic examples involve taking safety risk order 

to prevent near-certain enemy risk, e.g. by calling down artillery fire without adequate knowledge of friendly 

movements, justified by your certainty of strong enemy forces in the area who are very likely to cause harm if 

you do not fire.  

Thus, during SoS safety case development, we have to somehow „bracket‟ around the human – we have to 

create a safety case that remains valid even when the goals and intentions of the humans involved change. One 

approach to this is to evaluate the safety case based not on its absolute achievement of safety but on its ability to 

support safe behaviour if the humans involved want that. In other words, we need to show that operators can 

maintain control of key safety constraints, in the manner recommended by Rasmussen in (ref. 15).  

If we are going to achieve this, we need to work with human participants rather than against them – we need to 

provide the information and control that they need in order to make safety-related decisions and safety-related 

trade-offs. Much of an SoS safety case will thus involve claims that operators will be able to intelligently and 

safely manage the system. In other words, they will need to argue that they won‟t introduce anything that they 

won‟t be able to control. 

One caveat here is that doing “SoS safety” does not necessarily mean that we need to consider government, 

culture or other large-scale sociological systems. Although SoS require a sociotechnical approach on one level, 

it is not necessarily true that they are more affected by these wider than smaller systems are. The decision of 

what higher-level containing systems to consider is an engineering decision that needs to be made regardless of 

the level or scale of the core system being analysed.  

Must Take Account of Negative Emergence 

SoS are complex, in that their overall behaviour will emerge from diverse interactions between their 

components. If not explicitly managed, some of those interactions will cause unwanted behaviours – negative 

emergence. There is a commonality here with common-cause failures in simpler systems, and there will be gains 

from applying similar techniques at the SoS level, but we cannot expect them to find all such cases. 

The complication here is that we want to achieve safety affordably, and that means subdividing SoS components 

in a modular way as much as possible. We need to decompose SoS into small, tractable parts, but we need to be 



aware of the aspects that are not actually decomposable in that way. There is a strong human factor here – a 

human can learn to rely on a system that you didn‟t think they needed on (indeed, that you didn‟t even think 

they had access to). 

Where techniques exist that have the potential to reveal negative emergence, they should be used. Simulation-

based techniques have significant potential here (e.g. see (ref. 21). In practice, however, the solution will rely 

heavily on online incident reporting systems, and on monitoring of safety proximity measures (literal ones like 

air proximity, or more abstract ones such as the time between designating an invalid target and a check fire 

being called). Incident reporting and investigation must take on greater importance as the system we analyse 

increase in complexity, and when we move to an SoS view we are increasing the complexity of “the system” 

that we are analysing. 

It is important to maintain a sense of perspective here – we cannot provide perfect analysis, particularly in 

military environments, so we should not seek to do so. What can, and should, do much of our safety activity at a 

level and perspective where we can effectively take account of SoS interactions and therefore improve aspects 

of safety that can only be understood at that levels. In the UK, the ALARP principle may make this legally 

possible, although it is more difficult to justify limiting analysis (e.g. by not performing certain analyses at the 

SoS level) than it is to justify limiting ensurance (e.g. by not implementing some expensive safety function). 

There is work on the ACARP principle (“As Confident As Reasonably Practicable”) that may be useful here (see 

Hawkins in (ref. 11) for more on ACARP, albeit in the context of software only). 

Must Allow for a Non-equipment Lifecycle 

Keating et al state in (ref. 20) that for SoS “it is naïve to assume that „one size fits all‟ and a singular n-step 

process can be successfully applied to any complex system problem context with an equivalent probability of 

success”. They propose, instead, that the focus be on engineering „methodologies‟ as defined by Checkland in 

(ref. 22): “… not a method but a set of principles of method which in any particular situation have to be 

reduced to a method uniquely suitable to that  particular situation.” This has implications for the value of any 

explicit SoS lifecycle or engineering process – inevitably, steps or phases will be performed in an order, or with 

repetitions, that cannot be easily foreseen in advance. It may be better to abandon the idea of a “lifecycle” for 

SoS entirely, and instead treat SoS engineering activities as responses to triggers for action – an example of 

such a trigger would be the introduction of a new entity type into the SoS. 

Must Deal with Tradeoffs 

Trade-offs between desirable attributes are a fact of life in any engineered system. SoS, however, can make 

them particularly difficult to do. This is largely a side-effect of complexity – of having a great many component 

systems which are coupled in diverse ways. As a result of this coupling, changes in one place may cause 

changes in another place. As Raheja and Moriarty observe in (ref. 23) “Systems today are connected directly 

and indirectly with many other systems. A typical weapon system is linked to other systems, vehicles, soldiers 

and satellites in almost unlimited interactions. Tweaking in one place is bound to create some change in another 

place.”  

Brooker‟s paper on Uberlingen (ref. 1) discusses a form of this problem – he emphasises the role of the TCAS 

collision avoidance system in preventing accidents as well as causing them (and rightly criticises those safety 

professionals who don‟t acknowledge this). A nastier extreme is the tradeoff of life against life in the military, 

emergency services and healthcare cases – as we noted earlier, failure to perform can cost in the same currency 

as accidents do (if the system does not perform, them people will die). For healthcare, this issue is tackled in 

Brennan et al (ref. 24) who call for less emphasis on accidents and more emphasis on quantitative measures of 

overall care effectiveness. 

It is difficult to do this if only safety has a developed case. It may be that this will ultimately require 

dependability cases to be developed for SoS, which argue explicitly about varied attributes and their trade-offs 

(ref. 25). This of course has its own cost implications, and there is little industry experience with producing 

dependability cases. Further work is needed – in particular, further practical experience of the dependability case 

concept is needed before we can advance it as a solution to the trade-off problem. 



Must Take Account of Past SoS Accidents 

A final, crucial requirement for SoS safety cases is that they must take account of past SoS accidents. This is an 

indirect “meta-requirement” – SoS must use thinking and methods that take account of the insights we have 

gained from past SoS accidents. 

Past accidents provide something real for us to measure ourselves against – if nothing else, we can try to check 

whether our methods would likely have preventing such accident. If they don‟t then our behaviour is suspect; in 

effect, we are denying empirical feedback of a very definite kind. That is foolish (and potentially negligent).  

By definition (see Aitken et al in (ref. 8)), SoS accidents emerge from interactions between component systems. 

This may involve the classic composition of multiple failures (which is a common reason for non-SoS 

accidents) and the interaction of diverse non-failure behaviour (which again, is often part of accidents in all 

kinds of systems – see Perrow (ref. 26)).  

Beyond investigations into individual accidents, there is great value in summarising work that draws together 

multiple analyses by multiple authors and comments on their validity and draws overall conclusions. Examples 

of this include Brooker (ref. 1), which draws some “Macro-Level Lessons for ATM” from the Uberlingen 

accident, and Caseley et al (ref. 18), which summarises a range of information on SoS-related fratricide 

accidents. 

What is Not Unique to SoS? 

In contrast to the previous section, it is important that we are clear about what is not unique to SoS safety, that 

we are clear about where SoS safety is just like the safety of a vehicle or the safety of a weapon. It is very easy 

to make “SoS safety” subsume all safety, because in a sense it does; making an SoS safe ultimately means that 

all other aspects of safety must have been practiced on it and its constituent systems. But treating these issues as 

if they uniquely belong to SoS just muddies the waters and obscures the SoS safety work that really matters. 

For example, doing good safety engineering is not unique to SoS. Good SoS safety requires that we set the 

boundary in an intelligent way, appropriate to the control we have and ways in which accidents can occur; but 

that is true of non-SoS safety too. Good SoS safety requires that we look wider than “faults and failures” and 

consider how “normal” or “acceptable” behaviour by users or components could lead to accidents (see Leveson 

(ref. 14) and Qureshi (ref. 19)); but this is true of non-SoS safety too.  

Similarly, good SoS safety requires that we acknowledge the sociotechnical nature of most systems and take 

steps to support their human operators and participants (see Rasummusen (ref. 15), Hollnagel (ref. 16)). But this 

is not unique to SoS. 

As “SoS engineers” we should be modest, and restrict our claims to those areas where thinking about “the SoS” 

really makes a difference. 

Longer term, we should probably move away from talking about “SoS safety”, and instead make a more 

nuanced mapping of system properties to techniques and guidance. Classifications of SoS such as the (virtual, 

collaborative, acknowledged, directed) of the DOD SOSE guide (ref. 27) and the (mission-level, platform-level, 

IT-based) of Dahmann et al (ref. 28) may be important. However, we suspect that it will be more useful to map 

techniques and guidance to specific properties – identifying techniques, for example, for systems that have an 

open architecture, for systems that have only just been recognised as systems (and hence where the only safety 

engineering done so far is at the component level), and for systems that you know have a flexible composition 

and high component autonomy.  

Who Should Produce SoS Safety Cases? 

Realistically, SoS safety cases need to be produced and maintained by the system owner and operator. 

Obviously equipment suppliers and contractors have a role to play, but they cannot know enough detail of how 



the system is being operated. A real-world SoS may change quite rapidly, especially in military domain, and this 

implies a new way of thinking about how safety cases are managed. More than ever, it is imperative that safety 

cases are live documents and are useful in operation. 

Conclusions 

We need SoS safety cases. They will need to be good safety cases by standards common to all safety cases: they 

need to be focussed on risk, they need to be product-based, and they need to provide appropriate, legitimate 

confidence, they need to be based on a causal model, and they need to be comprehensible. 

SoS safety cases also need to take account of the unique challenges posed by SoS. This creates hard decisions 

for SoS safety case maintainers, decisions that need to be taken at the (operating) organisational level. Not least 

this means that SoS safety cases need to be owned and maintained by an operating organisation (not by a system 

developer, even if they are initially responsible for the delivery of the “the SoS”), and that they must be owned 

at a level where a wide view of the SoS is possible. In UK military terms, this suggests that the safety case is for 

a particular capability deployed in a particular theatre. This raises its own problems (not least that there will be 

overlap between the systems that provide different capabilities), but there are existing methods (e.g. modular 

safety cases) that may help here. 

Creating SoS safety cases may help you do better safety overall; in some cases, the SoS level will be a much 

more natural level for doing safety work than the equipment level. The measure of success for SoS safety cases 

(and, indeed, any other safety engineering activity done at the SoS level) should be their costs versus their 

benefits. In the short term this can be estimated by the acceptance they achieve; in the longer term, this should 

be judged by their impact on SoS safety management. 
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