
Crash Course in C++
R F L Evans

www-users.york.ac.uk/~rfle500/

Course overview

• Lecture 1 - Basic Programming

• hello world

• Variables and scope - int, double, float, bool

• Standard library

• string

• constructs - for, while, if

Additional resources

• www.cplusplus.com/doc/tutorial

• http://www.parashift.com/c++-faq/index.html

• http://www.agner.org

http://www.cplusplus.com/doc/tutorial
http://www.cplusplus.com/doc/tutorial
http://www.parashift.com/c++-faq/index.html
http://www.parashift.com/c++-faq/index.html
http://www.agner.org
http://www.agner.org

Lecture I
Basic programming

• Introduction

• Hello world

• Variables and Operators

• The C++ standard library

• Loops and conditional statements

• Scope

“A good FORTRAN
programmer can write a good

FORTRAN program in any
programming language”

Introduction

• Many programming languages - C, C++, Java,
FORTRAN, C#, Go, Camel, Python, MATLAB...

• All have advantages and disadvantages - what is
your objective?

• Performance

• Rapid prototyping

• Portability

• Which to choose?

Some common choices of
programming language

• Performance - FORTRAN, C, C++

• Rapid development - Python, MATLAB, R

• Portability - Java

• Which to choose?

Strengths of C++

• Compiled code - capable of high performance
comparable with Fortran, C

• Flexible coding styles - Functional, object
oriented, high level, low level

• Powerful standard library with many functions,
more added with time (BOOST)

• Local scoping of variables (more later)

• Widespread adoption and support - cross
platform, industry, academia

Disadvantages of C++

• A powerful and expansive tool - easy to code
for coding’s sake (over engineering)

• Matrices and arrays are horrible

• High performance code is harder to write
(write for the compiler)

• Cryptic debugging for advanced features, and
some not so advanced features

What about C?

• Isn’t C++ not just C with extra stuff?

• NOT the same language!

• Relies heavily on pointers to do things (pointers
are evil, see later)

• Object orientation is ‘roll your own’ - bug
prone and cumbersome

• A purely ‘low level’ language

• Archaic and no place in most software (only
extremely performance and memory limited
applications - not very common today)

C++

Type
the ‘type’ of object, e.g. logical, real, integer

Variable
a named object which can store a single value

e.g. a, b, time, distance...

Operator
something which ‘operates’ on a variable

 e.g. +, -, *, /, = ...

Basic statement

int a = 5;

Type

Variable

Operator

Syntax of C++

• C++ code is case sensitive: INT is not the same
as int is not the same as Int

• Code is usually written in files with the .cpp file
extension

• // signify comments and are ignored by the
compiler

Hello World

#include <iostream>

int main(){

 std::cout << “hello world” << std::endl;

 return 0;

}

include statement
type
code
string

Hello World

#include <iostream>

int main(){

 std::cout << “hello world” << std::endl;

 return 0;

}

Include files/libraries

return statement to ‘return’ or end the program
(the function is of type int and so ‘0’ is returned, indicating success)

 iostream is part of the C++
standard library and allows

input/output to screen

main() is a
function of
type int and
is where all

C++
programs

start

Hello World

#include <iostream>

int main(){

 std::cout << “hello world” << std::endl;

 return 0;

}

std is the ‘namespace’
for the standard library

and contains a wide
range of functions

cout is a ‘stream’
which prints variables

and text to screen

defines the text to be
printed to screen

special stream object
which ‘ends the line’
and flushes the buffer

(more later)

Hello World

#include <iostream>

int main(){

 std::cout << “hello world” << std::endl;

 return 0;

}

Almost forgot - semi
colon to end each

statement; after this
course will be

automatic;

Variables and Operators

Standard types in C++

int
bool
float
double
char

integer 0, 1, 2, 100
logical true, false
single precision real number 1.234f, -3.86f
double precision real number 2.3456, 1.0e234
character variable a,b,c,£,ü etc

Let’s declare an integer variable called ‘a’

int a;

Can also give it an initial value

int a = 123;

Declaring (initialized) variables

int a = 123;
bool flag = true;
float distance = 1.238f;
double time = 1.0;
char character = ‘b’;

• Uninitialized variables have a value which is
compiler dependent - always initialize your
variables

• Real constants are always declared as double
precision - use ‘f ’ suffix to specify single precision
variable

Operators

• An operator ‘operates’ on a variable

• Most basic is the assignment operator

• Assigns value from right to left

• Simple arithmetic operations

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo

a = b;
a = 5;

Operators

• Examples

• Be careful of order of evaluation

int a = 5;
int b = 3;
int c = a; // c = 5
b = a*c; // b = 25
c = b/2; // c = 12 (truncation)
a = 7;
c = a%2; // c = 1 (remainder 7 - 2*(7/2))

b = a*4+c+b-1/3;
b = a*(4+c) + ((b-1)/3); // use brackets

Logical Operators

• Logical operators evaluate to true or false

• Be careful with real numbers - generally unsafe!

• Also AND, OR and NOT operators

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

&& Logical AND
|| Logical OR
! Logical NOT

Compound Operators

• Combine arithmetic with assignment

• Increment operators

a += b a = a+b
a -= 5 a = a-5
a *= 2 a = a*2
a /= 3 a = a/3

++a a=a+1
--a a=a-1

The C++ Standard Library

Standard Library

• A range of higher level functions and data
structures to simplify code development

• Includes strings, mathematical functions, input
and output, arrays, lists

• C++ is a minimal language - have to explicitly
include library features using include statement:

#include <iostream>

Input/Output to screen

• Declares std::cout, std::cin, std:endl and stream
operators << and >>

• More in Lecture 3

#include <iostream>

// print to screen
std::cout << “Hello: ” << a << std::endl;

// read a from screen
std::cin >> a;

Common functions

#include <iostream> // Output to screen
#include <cmath> // math functions
#include <vector> // vector container
#include <string> // text strings
#include <fstream> // output to file
#include <sstream> // output to string(!)

• More information as we go along

• Just remember that you need to include the right
component for the part of the library you want
to use

Controlling program flow:

Loops and conditional statements

Controlling program flow

• Computers excel at something humans are not
good at: doing boring things lots of times

• Programming is the task of telling the computer
what you want it to do

• This is done through loops and logical
statements

• Loops repeat tasks within the loop multiple
times

• logical statements choose which task to do
based on a logical (yes/no) choice

The for loop

• for loop is the basic loop structure in C++

• Declares a loop variable i which only exists
inside the loop and controls the number of
times the code inside is executed

• i = 0 is the initial value and the code is
executed as long as i<10

• ++i increments i by one each time the code is
executed

for(int i=0; i<10; ++i){
 // any code here is executed 10 times
}

for loop examples
for(int i=0; i<10; ++i){
 // output i to screen
 std::cout << i << std::endl;
}

for(int i=0; i<100; ++i){
 // Write my lines to screen 100 times
 std::cout << “I will not throw pencils in class” << std::endl;
}

for(int i=2; i<13; i+=2){
 // output even numbers up to 12 to screen
 std::cout << i << std::endl;
}

for loop examples

for(int i=0; i<10; ++i){
 // nested loop (a loop of a loop)
 for(int j=0; j<10; ++j){
 std::cout << i << “\t” << j << std::endl;
 }
}

// Single line loop without {}
for(int i=0; i<100; ++i) std::cout << i << std::endl;

The if statement

• if statement is the basic logical statement

• Checks a condition (e.g. a==b, a<b) that is
either true or false and executes the code
within only if the condition is true

if(a == b){
 // this code is only executed if a == b
}

if statement examples
int a = 5;
int b = 7;

// check whether a is less than b
if(a<b){
 std::cout << “a is less than b” << std::endl;
}

bool today_is_tuesday = true;

// check whether today is tuesday
if(today_is_tuesday==true){
 std::cout << “Go to C++ class” << std::endl;
}

if statement examples
bool today_is_pancake_day = true;
bool i_have_flour = false;

// Do I need to buy flour?
if(today_is_pancake_day == true && i_have_flour == false){
 std::cout << “Go to buy flour” << std::endl;
}

bool it_is_raining = true;

// Do I need an umbrella?
if(it_is_raining){ // note: == true not necessary
 std::cout << “Take a Brolly” << std::endl;
}

else statements
int a = 5;
int b = 7;

// check whether a is less than b
if(a<b){
 std::cout << “a is less than b” << std::endl;
}
// only executed if condition is false (a >= b)
else{
 std::cout << “a is not less than b” << std::endl;
}

else statements
int a = 5;
int b = 7;

// single line version
// check whether a is less than b
if(a<b) std::cout << “a is less than b” << std::endl;
else std::cout << “a is not less than b” << std::endl;

else if statements
int a = 5;
int b = 7;

// check whether a is less than b
if(a<b){
 std::cout << “a is less than b” << std::endl;
}
// only executed if condition is false (a >= b)
else if(a==b){
 std::cout << “a is equal to b” << std::endl;
}
else{
 std::cout << “a is greater than b” << std::endl;
}

The while statement

• while statement is a combination of the for and
if statements, which repeats the task as long as
the condition is true

int i = 0;
while(i < 10){
 // this code is only executed if i < 10
 std::cout << i << std::endl;
 // Don’t forget to update i each time!
 ++i;
}

The while statement
int i = 0;
while(i < 10){
 // this code is only executed if i < 10
 std::cout << i << std::endl;
 // I forgot to update i each time
 // Infinite loop as i=0 every time
}

Scope

Variable scope

• Defines where a variable is visible in a program

• Important and powerful concept

• Declare variables as you need them - not at the
top of functions of the program

Simple example

#include <iostream>

int a=2; // visible everywhere -
 // a ‘global variable’

int main(){

 int b=5; // only visible in main()

 std::cout << a << “\t” << b << std::endl;

 return 0;

}

#include <iostream>

int a=2; // visible everywhere -
 // a ‘global variable’ (bad)

int main(){

 int b=5; // only visible in main()

 // print out a+b 10 times
 for(int i=0; i<10; ++i){
 // declare c inside loop
 int c = a+b;
 std::cout << c << std::endl;
 }

 a = c; // error here - c is not visible
 // outside loop

 return 0;

}

Scoping with curly braces

#include <iostream>

int main(){

 {
 int b=5; // only visible here
 }
 std::cout << b << std::endl; // error

 return 0;

}

Coffee Time

