Crash Course in C++

R F L Evans

www-users.york.ac.uk/~rfle500/

Course overview

Lecture | - Basic Programming

hello world

Variables and scope - int, double, float, bool
Standard library

string

constructs - for, while, if

Additional resources

® www.cplusplus.com/doc/tutorial

® http://www.parashift.com/c++-fag/index.html

® http://www.agner.org

http://www.cplusplus.com/doc/tutorial
http://www.cplusplus.com/doc/tutorial
http://www.parashift.com/c++-faq/index.html
http://www.parashift.com/c++-faq/index.html
http://www.agner.org
http://www.agner.org

Lecture |
Basic programming

Introduction

Hello world

Variables and Operators

The C++ standard library

Loops and conditional statements

Scope

“A good FORTRAN
programmer can write a good
FORTRAN program in any

programming language”

Introduction

® Many programming languages - C, C++, Java,
FORTRAN, C#, Go, Camel, Python, MATLAB...

® All have advantages and disadvantages - what is
your objective!

® Performance

® Rapid prototyping

® Portability

® Which to choose!

Some common choices of
programming language

Performance - FORTRAN, C, C++
Rapid development - Python, MATLAB, R

Portability - Java

Which to choose!?

Strengths of C++

Compiled code - capable of high performance
comparable with Fortran, C

Flexible coding styles - Functional, object
oriented, high level, low level

Powerful standard library with many functions,
more added with time (BOOST)

Local scoping of variables (more later)

Widespread adoption and support - cross
platform, industry, academia

Disadvantages of C++

A powerful and expansive tool - easy to code
for coding’s sake (over engineering)

Matrices and arrays are horrible

High performance code is harder to write
(write for the compiler)

Cryptic debugging for advanced features, and
some not so advanced features

What about C!?

Isn’t C++

not just C with extra stuff?

NOT the same language!

Relies heavily on pointers to do things (pointers
are evil, see later)

Object orientation is ‘roll your own’ - bug
prone and cumbersome

A purely

ow level’ language

Archaic and no place in most software (only
extremely performance and memory limited
applications - not very common today)

C++

Type

the ‘type’ of object, e.g. logical, real, integer

Variable

a named object which can store a single value

e.g. a, b, time, distance...

Operator

something which ‘operates’ on a variable

eg. +,-%/,= ..

Basic statement

int a = 5

/ N
Type Operator
Variable

Syntax of C++

® (C++ code is case sensitive: INT is not the same
as int is not the same as Int

® Code is usually written in files with the .cpp file
extension

® // signify comments and are ignored by the
compiler

Hello World

#include <iostream>
int main(){
std::cout << “hello world” << std::endl;

return 0;

include statement
type
code
string

Hello World

Include files/libraries . .
iostream is part of the C++

standard library and allows

/ input/output to screen

o N "4

main() is a #include <jostream>

function of

type intand _—p 1Nt main(){

is where all std::cout << “hello world” << std::endl;
C++

programs return 0;
start
}

/

return statement to ‘return’ or end the program
(the function is of type int and so ‘0’ is returned, indicating success)

Hello World

std::cout << “hello world” << std::endl;

/N

std is the ‘namespace’ defines the text to be
for the standard library printed to screen
and contains a .wide special stream object
range of functions which ‘ends the line’

cout is a ‘stream’
which prints variables
and text to screen

and flushes the buffer
(more later)

Hello World

Almost forgot - semi
colon to end each
statement; after this
course will be
automatic;

Variables and Operators

Standard types in C++

int integer 0, 1, 2, 100

boo'l logical true, false

float single precision real number 1.234f, -3.86f
double double precision real number 2.3456, 1.0e234
char character variable a,b,c,£,U etc

Let’s declare an integer variable called ‘@’

int a;

Can also give it an initial value

int a = 123;

Declaring (initialized) variables

int a = 123;

bool flag = true;

float distance = 1.238f;
double time = 1.0;

char character = ‘b’;

® Uninitialized variables have a value which is
compiler dependent - always initialize your
variables

® Real constants are always declared as double
precision - use ‘f’ suffix to specify single precision
variable

Operators

An operator ‘operates’ on a variable

Most basic is the assignment operator

a = b;
a = 5;

Assigns value from right to left

Simple arithmetic operations

+ Addition

- Subtraction

* Multiplication
/ Division

% Modulo

Operators

® Examples

int
int
int
b =

C
a =
C

a = 5;

b = 3;

c =a; //
a*c; // b
b/2; // c
I8!

a%2; // c

C

= 5
25
12 (truncation)

1 (remainder 7 - 2*(7/2))

® Be careful of order of evaluation

a*4+c+b-1/3;
= a*(4+c) + ((b-1)/3); // use brackets

Logical Operators

® | ogical operators evaluate to true or false

== Equal to

= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

® Be careful with real numbers - generally unsafe!

® Also AND, OR and NOT operators

&& Logical AND
| | Logical OR
! Logical NOT

Compound Operators

® Combine arithmetic with assignment

a += b a = atb
a -=5 a = a-5
a *= 2 a = a*2
a /=3 a = a/3

® |ncrement operators

++a a=a+l
--a a=a-1

The C++ Standard Library

Standard Library

® A range of higher level functions and data
structures to simplify code development

® |ncludes strings, mathematical functions, input
and output, arrays, lists

® C++ is a minimal language - have to explicitly
include library features using include statement:

#include <iostream>

Input/Output to screen

#include <iostream>

// print to screen
std::cout << “Hello: ” << a << std::endl;

// read a from screen
std::cin >> a;

® Declares std::cout, std::cin, std:endl and stream
operators << and >>

® More in Lecture 3

Common functions

#include <iostream> // Output to screen
#include <cmath> // math functions
#include <vector> // vector container
#include <string> // text strings
#include <fstream> // output to file
#include <sstream> // output to string(!)

® More information as we go along

® Just remember that you need to include the right
component for the part of the library you want
to use

Controlling program flow:

Loops and conditional statements

Controlling program flow

Computers excel at something humans are not
good at: doing boring things lots of times

Programming is the task of telling the computer
what you want it to do

This is done through loops and logical
statements

Loops repeat tasks within the loop multiple
times

logical statements choose which task to do
based on a logical (yes/no) choice

The for loop

for(int 1=0; 1i<10; ++1){
// any code here is executed 10 times

}

for loop is the basic loop structure in C++

Declares a loop variable i which only exists
inside the loop and controls the number of
times the code inside is executed

i = 0 is the initial value and the code is
executed as long as i<I|0

++j increments i by one each time the code is
executed

for loop examples

for(int 1=0; 1i<10; ++1){
// output 1 to screen
std::cout << 1 << std::endl;

}

for(int 1=0; 1<100; ++1){
// Write my lines to screen 100 times
std::cout << “I will not throw pencils in class” << std::endl;

}

for(int 1=2; 1i<13; 1i+=2){
// output even numbers up to 12 to screen
std::cout << 1 << std::endl;

}

for loop examples

for(int 1=0; 1<10; ++1){
// nested loop (a loop of a loop)
for(int j=0; j<10; ++j){
std::cout << 7 << “\t” << j << std::endl;
}
}

// Single line loop without {}
for(int 1=0; 1<100; ++1) std::cout << 1 << std::endl;

The if statement

if(a == b){
// this code is only executed if a ==

}

® jf statement is the basic logical statement

® Checks a condition (e.g. a==b, a<b) that is
either true or false and executes the code
within only if the condition is true

if statement examples

int a = 5;
int b = 7;

// check whether a is less than b
if(a<b){
std::cout << “a 1is less than b” << std::endl;

}

bool today_is_tuesday = true;

// check whether today 1is tuesday
if(today_is_tuesday==true){
std::cout << “Go to C++ class” << std::endl;

}

if statement examples

bool today_is_pancake_day = true;
bool 1i_have_flour = false;

// Do I need to buy flour?
if(today_is_pancake_day == true && i_have_flour == false){

}

std::cout << “Go to buy flour” << std::endl;

bool it_is_raining = true;

// Do I need an umbrella?
if(it_is_raining){ // note: == true not necessary
std::cout << “Take a Brolly” << std::endl;

}

else statements

int a = 5;
int b = 7;

// check whether a is less than b
if(a<b){
std::cout << “a is less than b” << std::endl;
}
// only executed if condition is false (a >= b)
else{
std::cout << “a 1s not less than b” << std::endl;

}

else statements

int a = 5;
int b = 7;

// single line version

// check whether a is less than b

if(a<kb) std::cout << “a s less than b” << std::endl;
else std::cout << “a 1i1s not less than b” << std::endl;

else if statements

int a = 5;
int b = 7;

// check whether a i1s less than b
if(a<b){
std::cout << “a is less than b” << std::endl;
}
// only executed if condition is false (a >= b)
else if(a==b){
std::cout << “a 1s equal to b” << std::endl;
}
elseq{
std::cout << “a ds greater than b” << std::endl;

}

The while statement

int i = 0}

while(i < 10){
// this code 1is only executed if 1 < 10
std::cout << i << std::endl;
// Don’t forget to update i each time!
++7;

® while statement is a combination of the for and
if statements, which repeats the task as long as
the condition is true

The while statement

int 1 = 03
while(i < 10){
// this code 1is only executed if 1 < 10
std::cout << i << std::endl;
// I forgot to update i each time
// Infinite loop as 1=0 every time

}

Scope

Variable scope

® Defines where a variable is visible in a program
® |mportant and powerful concept

® Declare variables as you need them - not at the
top of functions of the program

Simple example

#include <iostream>

int a=2; // visible everywhere -
// a ‘global variable’

int main(){
int b=5; // only visible in main()
std::cout << a << “\t” << b << std::endl;

return 0;

#include <iostream>

int a=2; // visible everywhere -
// a ‘global variable’ (bad)

int main(){
int b=5; // only visible in main()
// print out a+b 10 times
for(int 1=0; 1<10; ++1i){
// declare c inside loop

int ¢ = a+b;
std::cout << ¢ << std::endl;

a =<c; // error here - ¢ is not visible
// outside loop

return 0;

Scoping with curly braces

#include <iostream>
int main(){

{
int b=5; // only visible here

}

std::cout << b << std::endl; // error

return 0;

