Crash Course in C++

R F L Evans

www-users.york.ac.uk/~rfle500/

Course overview

| ecture | -

_ecture 2 -

ntroduction to C++

~unctions and Data

_ecture 3 - Namespaces and Files

Lecture 4 - Code Organization and Git

Lecture 5 - Object Oriented Programming

Lecture 4
Code organisation and Git

e Multi-file projects

® Makefiles

® Git version control

Code spaghetti

Imagine having a large project with 100,000
lines of code in a single file

Each change to the source code requires
recompiling everything

Say you have a typo on line 45908 - you have
to scroll through all those lines to get to it

Then there is a related function on line
75652 so you have to scroll there to check
the function arguments

There is obviously a better way...

Multi-file Projects

Projects with more than a handful of
functions are often split between multiple
files

Typically one large or a few related functions
per file

Changing one file only requires that file to
be recompiled

Functions are easier to find and text editors
often support several open files at once

Simple example

#include <iostream>

int three(); // function declared here

int main(){
int a = 4; main.cpp
std::cout << a+three() << std::endl;

return 0;

// function defined here
int three(){
return 3;

three.cpp
}

Compiling multifile projects

g++ main.cpp three.cpp -0 exe

* [nclude all files in the same compilation
command

* Actually two processes together - compiling
and linking

e Declaration of functions is needed for
compilation

* Definition of function needed for linking

Large projects

* For programs with hundreds of functions,
declaring all functions in every file tedious

* What if we need to change the argument
list? Have to search for all occurrences of
the function declaration

e Solution is to use a header file, which
contains the function definition

Example header file

#ifndef FUNC_H_ // header guards prevent recursive inclusion
#define FUNC_H_

int three(); // function declaration thr’ee.hpp

#tendif

#include <iostream>
#include “three.hpp” // load header file

// (use “” for user defined headers)
int main(){
int a = 4; .
std::cout << a+three() << std::endl; main.cpp

return 0;

}

// function defined here

int three(){
return 3; three.cpp

}

Large projects

* Modifications to function declaration only
require changes in the header and source
files,and wherever the function is called

* Compiler looks in same directory as source
code by default

e (an also store header files in a different
directory using -ldir compiler option

Variable sharing via header files

* Sometimes want to share a namespace
between files

* Use the “extern” keyword to tell the
compiler that this object is declared
elsewhere

* Functions are always extern by default

Example namespace sharing

#ifndef NS_H_ // header guards prevent recursive inclusion
#define NS_H_
namespace ns{ ns.hpp
extern int a; // namespace variable
}

#include <iostream>
#include “ns.hpp” // load header file

int main(){
std::cout << ns::a << std::endl;
return 0;

}

main.cpp

// function defined here
namespace ns{

int a=3; NS.Cpp
}

Makefiles

Projects with large number of files are
cumbersome to recompile by hand

|deally want to separate compiling and
linking so only modified files are recompiled

Unchanged files are just re-linked - a much
faster process

Example - CASTEP takes over an hour for a
full re-compilation

Makefiles automate this process

Basic makefile

CC=g++ # Compiler

LIBS=-1stdc++ # Libraries

CC_CFLAGS=-03 -mtune=native -I./hdr # Compilation flags
CC_LDFLAGS= -lstdc++ -I./hdr # Link flags

OBJECTS= obj/main.o obj/three.o # Object (source) files
EXECUTABLE=exe # Executable name

all: S(OBJECTS) serial

serial: $(OBJECTS)
$(CC) $(CC_LDFLAGS) $(LIBS) $(OBJECTS) -o $(EXECUTABLE)

S(OBJECTS): obj/%.0: src/%.cpp
$(CC) -c -0 $@ $S(CC_CFLAGS) $<

clean:
@rm -f obj/*.0

Using make

* Need to include separate directories src, hdr
and obj for source, header and object files

* Compile your project

make

* Clean all existing object files

make clean

* Force recompilation

make -B

* Compile using multiple CPUs (e.g. 4)

make -7 4

Introduction to Git

Development Process

Want to add a major new feature to your
code

Others still use the existing version at the
same time

How do you merge the changes after the
development!?

If you find a bug, how do you make sure both
version are up to date!

Use version control to manage the
development process

What is git!

Software to keep track of changes to files
and manage them

Specifically git is distributed; complete
repository is kept on your local machine

Essential in any modern software
development

Allows multiple ‘branches’ of a code to
coexist peacefully

Getting started

* http://schacon.github.com/git/gittutorial.html

* |dentify yourself to git:

git config --global user.name "Joe Bloggs”

git config --global user.email ab@york.ac.uk

* Each project must be kept in its own folder

http://schacon.github.com/git/gittutorial.html
http://schacon.github.com/git/gittutorial.html
mailto:abc1@york.ac.uk
mailto:abc1@york.ac.uk

Creating a new project

mkdir myproject

cd myproject

git 1nit [Initialise git repository]
nano hello.cpp [Create source file]

Adding files to the repository

* Stage file to staging area

git add hello.cpp

e Commit (save) file to repository

git commit -m “My first source file”

* Check status of repository

git status

* Check history of commits (q to finish)

* Check working directory is clean before
adding and committing files

Modifying files

* After changing file, add to staging area

git add hello.cpp

e Commit (save) file to repository

git commit -m “modified source file”

* |f you have a modified file you can see the
changes (before staging)

git diff

git diff hello.cpp

Git ignore

* Certain files should not be added to a
source code repository - executables,
scratch files, object files, result files

e Use .gitignore file to tell git which files to
ignore

*.0
myexe
* L txt

temporary files
*

Git example

rm hello.cpp

e Oops...

* Normally an unrecoverable situation

git checkout hello.cpp

e Recovers last committed version of the file

* Always make lots of small commits,
preferably that compile

Git branches

* Git handles multipe simultaneous versions of
your code, called branches (of a tree)

* (Can see which branches there are using:

* Typical output:

*master

* “*indicates which branch you are working on,
and master is the master branch where all
commits are stored initially

Git branches

* Can add your own branches by creating
them from the current branch

git checkout -b mybranch

* Makes a complete copy of your code and
moves you to the new branch

branch -a

master
*mybranch

* Development on this branch does not affect
the master branch

Git branches

e Can switch between branches using:

git checkout master

git checkout mybranch

e Git will warn about uncommitted changes

* Always try to commit changes to files before
switching branches

* Best way to develop new features

* Branching is easy and space efficient

Git merge

* Once your new feature is ready need to
combine the old and new versions of the

code
* Merging does this automagically (usually)

* Always ‘pull’ changes when merging

git checkout master

git merge mybranch

* Sometimes a file is modified in both
branches - need to manually resolve conflicts

- messy

Git workflow

For small projects using branches is easy

Larger projects generally require a more
detailed structure - called a workflow

Git is also well designed for distributed
development - used in many open source
projects

Github.com is free for public repositories -
great for storing code and managing projects

Private repo’s are available at cost

eo0o

30 release-3.0

» ™ origin
TAGS

OTHIR

(L vampire (branch: develop)

(2] EN=)

' CXDOINt OUtpUt 10 ONnly InClude joCa el puy . OF Check)
Adcded better default seeds for rng with warm up 1o avoid initial correlations Richard Evans
Applied patch from Wu Hong-Ye correcting unnecessary declaration of valarray in MC moves Richard Evans
Adced definitions of stdint.h for some compilers Richard Evans
Modified compiler settings for compatibility with llvm compiler on mac Richard Evans
Adced functions and | /o variables to enable checkpointing of simulations. Changed opening of grain/output files in app... Richard Evans
Converted mtrand 10 use standard sized long int for checkpointing compatibility and added functions 10 load and save st... Richard Evans
Converted time variables 1o unsigned long long for extended simulation times and checkpointing capability Richard Evans
Bugfix: removed erroneous loop in grain output for single material Richard Evans
(EE=ES=)Added acknowledgement of ghull library Richard Evans
Modified terminal colouring for unix/OSX systems. Richard Evans
Added colour terminal output for errors etc Andreas Biternas
Incorporated qvoronol kbrary into source code Andreas Biternas
Changed comment style for compatibility with Doxygen Andreas Biternas
Merge upstream changes from branch ‘release-3.0' into develop Richard Evans
[masier [slease 3.0) orge/"EAD | srprimasier || crprvisiease 30 Jincremented version number Richard Evans
Bugfix: Fixed keyword definition for constraint direction Richard Evans
Implemented 6th order uniaxial anisotropy calculation Richard Evans
Merge upstream changes Into develop Richard Evans
Merge branch ‘release-3.0.2" Richard Evans

Bugfix: Fixed paraliel periodic boundary conditions by allowing self transfers of halo atoms Richard Evans
Bugfix: Changed random spin initialisation 10 be uniform on unit sphere and to be correct for parallel simulations, wi... Richard Evans
Removed superfluous normalisation of spin directions (now done at input stage) Richard Evans
Incremented version 1o 3.0.2 Richard Evans
Changed behaviour of interpolation initialsation of lattice anisotropy 10 be called only if lattice anisotropy constant is defined Richard Evans
Fixed segmentation fauit bug in lattice anisotropy interpolation calkculation, Richard Evans
Bugfix: Fixed compile error caused by typo Richard Evans
Merged changes from upstream Richard Evans
Removed superfluous lattice anisotropy variables from material class and ifo options Richard Evans
Bugfix: Corrected sign error in lattice anisotropy field calculation Richard Evans
Added simple wutility 10 calculate lattice anisotropy variation Richard Evans
Implemented died and energy calculation of tabulated lattice anisotropy Richard Evans
Imolemented class 1o handle lattice anisotroov book keeoing and initialisation and new oarameter to material inout... Richard Evans

A

\ .',.‘.‘4

29 Apeil 2014 21:1

29 Apevl 2014 13:00

29 Apedl 2014 12:13

18 April 2014 10:02

18 Aprvl 2014 09:59

18 Apeil 2014 09:54

18 Apeil 2014 09:52

21 March 2014 09:59
19 February 2014 14:37
19 February 2014 14:33
19 February 2014 13:06
19 February 2014 12:45
14 February 2014 19:55
S January 2014 15:39

$ January 2014 15:36

S January 2014 15:35

S January 2014 15:25

$ January 2014 08.08

2 January 2014 10:28

2 January 2014 10:18

2 January 2014 10:11

2 January 2014 10.06

2 January 2014 10:26
10 December 2013 12:38
10 December 2013 12:36
9 December 2013 15:29
9 December 2013 15:20
8 December 2013 21:41
8 December 2013 21:37
8 December 2013 20:59
8 December 2013 20:58
8 December 2013 20:14

http://nvie.com/posts/a-successful-git-branching-model/

feature release
branches develop branches hotfixes master

25D
E — | 0.1
b~

———
Major Severe bug

fixed for

production:

hotfix 0.2
Incorporate \
bugfixin
develop ‘

\O Tag

feature for
0.2

Feature
for future
release

next release

Start of
release
branch for

1.0

From this point on,
“next releasa”
means the release
after1.0

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

Practical time...

