
Crash Course in C++
R F L Evans

www-users.york.ac.uk/~rfle500/

Course overview

• Lecture 1 - Introduction to C++

• Lecture 2 - Functions and Data

• Lecture 3 - Namespaces and Files

• Lecture 4 - Code Organization and Git

• Lecture 5 - Object Oriented Programming

Lecture 4
Code organisation and Git

• Multi-file projects

• Makefiles

• Git version control

Code spaghetti

• Imagine having a large project with 100,000
lines of code in a single file

• Each change to the source code requires
recompiling everything

• Say you have a typo on line 45908 - you have
to scroll through all those lines to get to it

• Then there is a related function on line
75652 so you have to scroll there to check
the function arguments

• There is obviously a better way...

Multi-file Projects

• Projects with more than a handful of
functions are often split between multiple
files

• Typically one large or a few related functions
per file

• Changing one file only requires that file to
be recompiled

• Functions are easier to find and text editors
often support several open files at once

Simple example

#include <iostream>

int three(); // function declared here

int main(){

 int a = 4;

 std::cout << a+three() << std::endl;

 return 0;

}

// function defined here
int three(){
 return 3;
}

main.cpp

three.cpp

Compiling multifile projects

 g++ main.cpp three.cpp -o exe

• Include all files in the same compilation
command

• Actually two processes together - compiling
and linking

• Declaration of functions is needed for
compilation

• Definition of function needed for linking

Large projects

• For programs with hundreds of functions,
declaring all functions in every file tedious

• What if we need to change the argument
list? Have to search for all occurrences of
the function declaration

• Solution is to use a header file, which
contains the function definition

Example header file

#include <iostream>
#include “three.hpp” // load header file
 //(use “” for user defined headers)
int main(){
 int a = 4;
 std::cout << a+three() << std::endl;
 return 0;
}

// function defined here
int three(){
 return 3;
}

main.cpp

three.cpp

#ifndef FUNC_H_ // header guards prevent recursive inclusion
#define FUNC_H_
int three(); // function declaration
#endif

three.hpp

Large projects

• Modifications to function declaration only
require changes in the header and source
files, and wherever the function is called

• Compiler looks in same directory as source
code by default

• Can also store header files in a different
directory using -Idir compiler option

Variable sharing via header files

• Sometimes want to share a namespace
between files

• Use the “extern” keyword to tell the
compiler that this object is declared
elsewhere

• Functions are always extern by default

Example namespace sharing

#include <iostream>
#include “ns.hpp” // load header file

int main(){
 std::cout << ns::a << std::endl;
 return 0;
}

// function defined here
namespace ns{
 int a=3;
}

main.cpp

ns.cpp

#ifndef NS_H_ // header guards prevent recursive inclusion
#define NS_H_
namespace ns{
 extern int a; // namespace variable
}

ns.hpp

Makefiles

• Projects with large number of files are
cumbersome to recompile by hand

• Ideally want to separate compiling and
linking so only modified files are recompiled

• Unchanged files are just re-linked - a much
faster process

• Example - CASTEP takes over an hour for a
full re-compilation

• Makefiles automate this process

Basic makefile
CC=g++ # Compiler
LIBS=-lstdc++ # Libraries
CC_CFLAGS=-O3 -mtune=native -I./hdr # Compilation flags
CC_LDFLAGS= -lstdc++ -I./hdr # Link flags

OBJECTS= obj/main.o obj/three.o # Object (source) files

EXECUTABLE=exe # Executable name

all: $(OBJECTS) serial

serial: $(OBJECTS)
 $(CC) $(CC_LDFLAGS) $(LIBS) $(OBJECTS) -o $(EXECUTABLE)

$(OBJECTS): obj/%.o: src/%.cpp
 $(CC) -c -o $@ $(CC_CFLAGS) $<

clean:
 @rm -f obj/*.o

Using make

make

• Need to include separate directories src, hdr
and obj for source, header and object files

• Compile your project

• Clean all existing object files

• Force recompilation

• Compile using multiple CPUs (e.g. 4)

make clean

make -B

make -j 4

Introduction to Git

Development Process

• Want to add a major new feature to your
code

• Others still use the existing version at the
same time

• How do you merge the changes after the
development?

• If you find a bug, how do you make sure both
version are up to date?

• Use version control to manage the
development process

What is git?

• Software to keep track of changes to files
and manage them

• Specifically git is distributed; complete
repository is kept on your local machine

• Essential in any modern software
development

• Allows multiple ‘branches’ of a code to
coexist peacefully

Getting started

• http://schacon.github.com/git/gittutorial.html

• Identify yourself to git:

• Each project must be kept in its own folder

git config --global user.name "Joe Bloggs”
git config --global user.email ab@york.ac.uk

http://schacon.github.com/git/gittutorial.html
http://schacon.github.com/git/gittutorial.html
mailto:abc1@york.ac.uk
mailto:abc1@york.ac.uk

Creating a new project

mkdir myproject
cd myproject
git init [Initialise git repository]
nano hello.cpp [Create source file]

RepositoryStaging
Area

Working
files

Adding files to the repository

git status

• Stage file to staging area

• Commit (save) file to repository

• Check status of repository

• Check history of commits (q to finish)

• Check working directory is clean before
adding and committing files

git add hello.cpp

git commit –m “My first source file”

git log

Modifying files

git diff
git diff hello.cpp

• After changing file, add to staging area

• Commit (save) file to repository

• If you have a modified file you can see the
changes (before staging)

git add hello.cpp

git commit –m “modified source file”

Git ignore

• Certain files should not be added to a
source code repository - executables,
scratch files, object files, result files

• Use .gitignore file to tell git which files to
ignore

*.o
myexe
*.txt
temporary files
*~

Git example

• Oops...

• Normally an unrecoverable situation

• Recovers last committed version of the file

• Always make lots of small commits,
preferably that compile

rm hello.cpp

git checkout hello.cpp

Git branches

• Git handles multipe simultaneous versions of
your code, called branches (of a tree)

• Can see which branches there are using:

• Typical output:

• *indicates which branch you are working on,
and master is the master branch where all
commits are stored initially

• Recovers last committed version of the file

• Always make lots of small commits,
preferably that compile

git branch -a

*master

Git branches

• Can add your own branches by creating
them from the current branch

• Makes a complete copy of your code and
moves you to the new branch

• Development on this branch does not affect
the master branch

git checkout -b mybranch

branch -a
master

*mybranch

Git branches

• Can switch between branches using:

• Git will warn about uncommitted changes

• Always try to commit changes to files before
switching branches

• Best way to develop new features

• Branching is easy and space efficient

git checkout master
git checkout mybranch

Git merge

• Once your new feature is ready need to
combine the old and new versions of the
code

• Merging does this automagically (usually)

• Always ‘pull’ changes when merging

• Sometimes a file is modified in both
branches - need to manually resolve conflicts
- messy

git checkout master
git merge mybranch

Git workflow

• For small projects using branches is easy

• Larger projects generally require a more
detailed structure - called a workflow

• Git is also well designed for distributed
development - used in many open source
projects

• Github.com is free for public repositories -
great for storing code and managing projects

• Private repo’s are available at cost

http://nvie.com/posts/a-successful-git-branching-model/

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

Practical time...

