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Abstract
We discuss the physical concept of the effective anisotropy in magnetic nanoparticles with
surface anisotropy. A recently developed constrained Monte Carlo method allows evaluation
of the temperature dependence of the energy surface in the whole temperature range, from
which the effective anisotropy is determined. We consider nanoparticles of different shapes
with cubic or uniaxial core anisotropy and Néel surface anisotropy. We demonstrate that at low
temperatures surface effects can be dominant, leading to an overall cubic effective anisotropy
even in spherical nanoparticles with uniaxial core anisotropy. This cubic anisotropy
contribution decreases more rapidly with increasing temperature than the uniaxial core
anisotropy, leading to a temperature-induced reorientation transition. We discuss the scaling
behaviour of the effective anisotropy with magnetization in nanoparticles with surface
anisotropy contribution. The scaling exponent deviates from that expected from Callen–Callen
theory due to increased fluctuations of the surface spins.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The surface functionalization of nanoparticles is one of the
most important challenges in their synthesis. Different
chemical surface engineering techniques can be used to
develop a wide range of functional properties, including
magnetic [1, 2].

In general terms, the magnetic behaviour of nanoparticles
is strongly influenced by their surface properties due to
a high surface-to-volume ratio [3]. Specific magnetic
properties required for technological applications generally
depend on the magnetic thermal stability, i.e. on the blocking
temperature, defined by the relevant magnetic energy barrier
between stable magnetic states. The magnetic energy barrier
is proportional to the nanoparticle size and the magnetic
anisotropy value. Magnetic nanoparticles with different
shapes also show different magnetic properties (including
energy barriers) due to a shape anisotropy arising from the
magnetostatic field [4, 5]. Additionally, it is also possible
to control the energy barrier by modification of the surface,
for example, oxidation of the nanoparticle may increase the

energy barrier via the exchange-bias effect [6, 7]. Magnetic
nanoparticles embedded in non-magnetic matrices, such as
Co in Au, Ag, or Cu, have also been reported to exhibit an
increased blocking temperature [8–10]. The engineering of
the energy barrier of magnetic nanoparticles is important for
their possible applications in magnetic recording [6, 11]. The
combination of materials with different magnetic properties
(as in the core-shell nanoparticles) also allows the control
of energy barriers almost independently of the coercive field
[7, 12, 13].

Magnetic surface effects manifest themselves in multiple
ways including, but not limited to, the lack of crystallographic
symmetry on the surface [14], expansion or contraction
of the lattice structure [15, 16], reduction in coordination
number, roughness, spin–orbit interaction and charge transfer
phenomena [10, 17]. In practice, it is impossible to separate
these effects and consequently, all of them are normally
embedded in a phenomenological concept of the ‘surface
anisotropy’. Experimentally, it is customary to characterize
the surface anisotropy via size-dependent measurements of
the relevant energy barrier. The surface anisotropy is then
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calculated from a formula [18], which has become a central
feature in the study of magnetic nanoparticles [1, 3, 8, 9, 19,
20]. The phenomenological formula reads

Keff = �E/V = KV +
KSurf

D
, (1)

where D is the nanoparticle diameter and KSurf is the
(‘effective’) surface anisotropy. �E is the relevant energy
barrier, determined, for example, using ac-susceptibility
measurements, and KV is the effective bulk anisotropy. The
relationship to the energy barrier depends on the anisotropy
type, specifically, for uniaxial anisotropy KV = KC and
for cubic anisotropy KV = KC/4 if KC > 0 or KV =
|KC |/12 if KC < 0, where KC is the core magnetocrystalline
anisotropy. The value of KSurf is normally extracted
experimentally via the linear plot of Keff as a function
of 1/D. Clearly the understanding of the meaning of
the term ‘effective’ anisotropy in some model situations is
important.

A detailed theoretical description of the real experimental
situation is almost impossible due to competition between
many effects and large dispersion of individual nanoparticle
properties. Additionally, the full quantum mechanical
treatment of a 10 nm nanoparticle is still not feasible. From the
theoretical point of view, the quantum mechanical description
is limited to small clusters only [21, 22] and cannot fully take
into account the effects of spin non-collinearity, spin dynamics
and temperature.

The so-called ‘atomistic’ description [23–26] is based
on the Heisenberg-type Hamiltonian and can include spin
dynamics and temperature. As a disadvantage, these
calculations use phenomenological surface anisotropy models,
such as the transverse anisotropy [27]. One of the most
justified models for the surface anisotropy is the widely used
Néel surface anisotropy model [23, 28, 14] which will be also
used in this paper. It should be noted that the Néel surface
anisotropy model comes from the magnetostriction effect
due to the lack of crystallographic symmetry on the surface
[28, 14]. An attempt to justify the model from a quantum
mechanical approach currently exists only for thin films [29].
Nevertheless, it is the most reasonable phenomenological
model which takes into account the different strengths
of the anisotropy for surface atoms with differing local
environments.

Recent theoretical works [23, 24, 30] using the Néel
surface anisotropy model (with the surface anisotropy
parameter Ks) have shown that strong surface anisotropy
generally leads to spin non-collinearities. The main effect
is the change of the effective magnetic energy landscape of
a nanoparticle, leading to the appearance of an additional
cubic anisotropy (∼K2

s ) in nanoparticles with uniaxial core
anisotropy [23]. Among other effects, this destroys the
applicability of the formula (equation (1)) in nanoparticles with
symmetric shapes such as spherical or truncated octahedral
nanoparticles [24].

In elongated nanoparticles, such as ellipsoidal or
elongated truncated octahedra [23, 24, 31], an additional
uniaxial anisotropy (∼Ks) appears. Then there are two cases

when the additional anisotropy due to the surface effect has
the same nature as the core anisotropy and is additive in
the spirit of formula (1): (i) elongated nanoparticles with
uniaxial core anisotropy and negative surface anisotropy, (ii)
spherical nanoparticles with cubic core anisotropy and positive
surface anisotropy. However, even in these cases, the effective
anisotropy KSurf does not coincide with the Néel surface
anisotropy value Ks since the averaging of the magnetization
over the surface spins should be taken into account [24, 31].
Since formula (1) is not valid, one cannot separate the surface
contribution from the bulk one and only the notion of the
total ‘effective’ anisotropy remains [24, 31]. The fit of the
experimental data avoiding the use of this formula (1) shows
very large values of the surface anisotropy Ks up to values
of the order of the exchange parameter for Co nanoparticles
capped with Au [31].

The appearance of an additional cubic anisotropy
contribution due to surface effects is an important
manifestation of the surface anisotropy concept. Unfortunately
it is difficult to demonstrate it in measurements on an
ensemble of magnetic nanoparticles where different internal
structures could coexist. It has been suggested that the
additional cubic anisotropy contribution could potentially be
traced in measurements on individual nanoparticles using
micro-SQUID as well as in ensemble of nanoparticles using
ferromagnetic resonance (FMR) [33]. It should be noted
that for complex energy landscapes, the use of the energy
barrier as the definition of the ‘effective anisotropy’ adds an
additional complexity [23, 24], since in the presence of the
two contributions, the energy barriers cannot be evaluated as a
simple expression KeffV . In this case, more complex studies
such as the angular dependence of the switching fields are more
useful [14, 32].

The above mentioned effects show the necessity to
understand different contributions to the ‘effective’ anisotropy
in nanoparticles as multi-spin systems. Up to now the
concept of the additional cubic anisotropy due to surface
effects in magnetic nanoparticles has been demonstrated at
zero-temperature only, but rigorously taking into account
the spin non-collinearities. In this paper we introduce
temperature effects in the evaluation of the effective anisotropy
in individual nanoparticles. It is reasonable to ask the
question; what happens to these effective anisotropies with
additional spin non-collinearities due to thermal disordering.
A recently developed constrained Monte Carlo (CMC)
method [34] allows the evaluation of effective anisotropies in
nanoparticles as multi-spin systems for arbitrary temperature.
In this paper we apply the CMC method to evaluate
the temperature dependence of both uniaxial and cubic
anisotropy contributions in nanoparticles of different shapes,
core anisotropy and cut from different crystal lattices. We
show that interesting phenomena can occur in magnetic
nanoparticles due to the surface anisotropy contribution, such
as a magnetization reorientation transition, an effect similar
to that occurring in thin films. We also show that the
surface, being more sensitive to temperature fluctuations,
influences the scaling behaviour of the effective anisotropy
with magnetization.
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2. Model

In this paper we consider truncated octahedra and spherical Co
nanoparticles cut from simple cubic (sc) or face-centred cubic
(fcc) crystal structure. We also consider nanoparticles of two
sizes which for Co parameters would correspond to diameters
D ≈ 3 nm (approximately 1200–1500 atoms, depending
on the underlying lattice and the shape) and D ≈ 7.8 nm
(approximately 6300 atoms for a spherical nanoparticle with sc
lattice). To model the magnetic behaviour we use a classical
atomistic spin model with Heisenberg exchange. The total
magnetic energy is written as

H = − 1
2J

N∑
i,j

�si�sj + Eani, (2)

where J is the nearest-neighbour exchange energy (for Co we
use J = 1.0×10−13 erg for sc and J = 5.6×10−14 erg for fcc
lattices), �si is the localized spin moment (|�si | = 1) , N is the
number of spins in the particle andEani is the anisotropy energy.
For core spins, we use the magnetocrystalline anisotropy in the
uniaxial form:

Euni
ani = −Kc

Nc∑
i

s2
i,z, (3)

or in the cubic form

Ecub
ani = − 1

2Kc

Nc∑
i

(s4
i,x + s4

i,y + s4
i,z), (4)

where Kc is the core anisotropy value (Kc = 4.16 ×
106 erg cm−3) and Nc is the number of core spins. In the
uniaxial case the anisotropy is assumed to be directed parallel
to the z direction while in the cubic case the three anisotropy
axes are directed along the coordinate axes x, y, z. For surface
spins (with less than the full coordination number) we use the
Néel surface anisotropy model [28, 14]:

ENSA
ani = Ks

2

Ns∑
i

zi∑
j

(�si �uij )
2. (5)

Here Ks is the Néel surface anisotropy magnitude, Ns is the
number of surface spins, zi is the coordination number of spin
i and �uij is the unit vector connecting the spin i with its nearest
neighbour j .

To evaluate the effective energy landscapes at T = 0 K in
a multi-spin particle, we use the Lagrangian multiplier method
[5, 23, 24, 30]. Briefly, in the case of nanoparticles with surface
anisotropy dominated by the exchange interactions [23, 24,
14], one can expect the global behaviour corresponding to
the rotation of the particle macro-spin as a whole. The
numerical procedure then considers the multidimensional
space projected into one unit magnetization vector �m0(θ, ϕ).
This is done by adding an additional term −N�λ( �m − �m0)

to the total energy, where �λ is the Lagrangian multiplier,
�m = ∑ �si/|

∑ �si | is the particle magnetization direction and �si

are the individual local magnetic spins. This term produces an
additional constraint field forcing the net magnetization along

the direction �m0(θ, ϕ), while fully allowing local deviations
from the collinear magnetization state. To find the conditional
minimum, the Landau–Lifshitz–Gilbert equation of motion
without the precessional term is solved.

d�si

dt
= −α[�si × [�si × �hi]], (6)

where α is the formal damping parameter, �hi = −∂E/∂�si is
the local field and E = H − N�λ( �m − �m0) is the total system
magnetic energy augmented with the Lagrangian multiplier
term. To these equations one should also add three equations

for the Lagrangian multiplier components: �̇λ = ∂E/∂�λ. The
stationary points found in this approach are also the stationary
points of the original Hamiltonian. The method can evaluate
non-collinear multidimensional stationary points in the multi-
spin space.

The method allows the calculation of effective energy
landscapes for a nanoparticle in terms of the constraint
direction �m = �m0(θ, ϕ). Using perturbation theory in
the parameters Ks/J [23, 24, 30], it is possible to calculate
effective anisotropy of multi-spin nanoparticles with Néel
surface anisotropy term as effective macro-spins. It has
been shown that in symmetric nanoparticles such as spheres
the uniaxial contribution to the anisotropy vanishes and the
next order cubic contribution becomes the dominant one. In
agreement with theoretical predictions the landscapes can be
fitted to the effective macro-spin energy:

EEOSP = −Keff
ua m2

z − 1
2Keff

ca (m4
x + m4

y + m4
z), (7)

where Keff
ua and Keff

ca are the effective uniaxial and cubic
anisotropy constants. Note that these should not be confused
with Keff(K

eff
ua , Keff

ca ) = �E/V . The relevant energy barrier
separating well-defined minima can therefore be calculated
from the effective energy landscape.

Figure 1 shows a typical plot of the energy surface for
a spherical nanoparticle with uniaxial anisotropy cut from
a sc crystal. The energy is plotted as a function of the
constraint angle θ for two values of the constraint angle
ϕ = 0, π/4 and the strength of the surface anisotropy Ks =
10Kc, 50Kc, 100Kc (for typical Co parameters and a spherical
nanoparticle with a diameter of 7.8 nm the value Ks = 10Kc

would correspond to approximately 0.63 erg cm−2. The onset
of an additional cubic anisotropy is clearly seen as a change
in the value of the local maximum energy at ϕ = π/4
(the saddle point) and ϕ = 0 (the absolute maximum). For the
largest value of the surface anisotropy Ks = 100 Kc, the
energy landscape has predominantly cubic form, characterized
by a four-fold anisotropy. The effective uniaxial and cubic
anisotropy constants can be extracted from these figures by
fitting the curves to equation (7). The surface introduces
an additional cubic anisotropy with Keff

ca < 0 for spherical
particles cut from a sc crystal lattice and Keff

ca > 0 for those
with an fcc crystal structure. The same is true for the truncated
octahedron, although depending on the orientation of the facets
[31], an additional cubic constant Keff

2,ca may be required for the
fitting.
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Figure 1. Internal energy for T = 0 K for ϕ = 0 and ϕ = π/4 as a
function of the constraint angle θ in a spherical nanoparticle with
uniaxial anisotropy in the core, sc internal structure (N = 6272,
NC = 4968 and NS = 1304) for three values of the Néel surface
anisotropy Ks = 10Kc, 50Kc, 100Kc (from top to the bottom
graphs).

The recently developed CMC method [34] is a Monte
Carlo (MC) algorithm which allows the inclusion of both
thermodynamic fluctuations and entropy into the evaluation
of macroscopic quantities, such as temperature-dependent
magnetic anisotropy. The MC moves are constructed so that
the direction of the average magnetization �m0(θ, ϕ) is fixed
while allowing its absolute value to change fully according to

the Boltzmann distribution. Specifically the method acts on
two spins for each move, forcing the motion of a second spin
to correct for the motion of the first, such that the direction
of the average magnetization is conserved. The moves are
constructed in such a way that both reversibility and ergodicity
are naturally preserved.

When dealing with temperature dependent effects one
is concerned with the Helmholtz free energy of the system,
F = H − T S, rather than just the internal energy, H. This
presents a significant problem since in general free energies
are difficult to calculate and the Hamiltonian only gives the
internal energy explicitly. However, it has been shown [34]
that the free energy can be recovered (by integration) from the
thermodynamic average of the torque, given by

T =
〈
−

∑
i

[�si × ∂H/∂�si]
〉
. (8)

For the case where the only anisotropic contribution to the
Hamiltonian comes from the magnetocrystalline anisotropy
(as opposed to anisotropic exchange, for example), and the
functional form of the torque is known analytically, it is
possible to calculate the free energy simply by calculation of
the derivative (i.e. the torque). In our case, it is known that the
system will possess only cubic or uniaxial components, and
so by calculating the torque on the system the free energy
is also known. By variation of the constraint angles the
anisotropic free energy can be recovered. For the case of
ϕ = 0, the simulated angular dependence of the y-component
of the torque is then fitted to

Ty(θ) = −Keff
ua (T ) sin(2θ) − 1

2Keff
ca (T ) sin(4θ). (9)

Figure 2 presents the results for the Y -component of the
average restoring torque for the nanoparticles whose energy
zero-temperature landscapes are presented in figure 1. The
shapes of the torque curves are well described by expression
(9) for all temperatures with the effective anisotropy constants
decreasing with temperature. For relatively small strength of
the surface anisotropy Ks = 10Kc, only uniaxial anisotropy
is present. For the larger value of the anisotropy constant
Ks = 100Kc we observe the competition of two anisotropies:
uniaxial and additional cubic due to surface effects. At
high temperatures, however, the cubic anisotropy contribution
disappears.

3. Results

We have carried out a systematic investigation of the effects
of surface anisotropy on the energy surface and effective
anisotropy of the model nanoparticles using the CMC
method.

The torque curves, such as those presented in figure 2,
allow the investigation of the temperature dependence of
the effective anisotropies in nanoparticles. Specifically, the
torque curves are analysed at each temperature to determine
the uniaxial and cubic contributions, whose individual
temperature dependence can be calculated. Figure 3 presents
the corresponding temperature dependence of uniaxial and
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Figure 2. The Y-component of the torque for ϕ = 0 as a function of
the constrained angle θ for various temperatures in a spherical
nanoparticle with uniaxial anisotropy in the core, sc crystal structure
(N = 6272, NC = 4968 and NS = 1304) and two values of the Néel
surface anisotropy (a) Ks = 10Kc and (b) Ks = 100Kc. The line is
a fitting curve to equation (9).

additional cubic anisotropy for the two values of the surface
anisotropy constant. The uniaxial anisotropy is independent
of the surface anisotropy value, as expected. The cubic
anisotropy, coming from the surface anisotropy, is practically
zero for small strength of the surface anisotropy Ks = 10Kc.
In the case of strong surface anisotropy Ks = 100Kc this
additional cubic anisotropy is negative and its absolute value
decreases with temperature. As is the case with bulk cubic
anisotropy, the surface-induced cubic anisotropy has a stronger
temperature dependence compared with the uniaxial core
contribution. Consequently, at high temperatures the cubic
counterpart disappears leaving the uniaxial core anisotropy as
the dominant factor. A transition in the magnetic behaviour
then can take place. A similar phenomenon is observed in
thin films with strong surface effects: at low temperatures
the surface effects predominate and the magnetization of
the film is perpendicular to the thin film plane, while at
higher temperatures the surface anisotropy vanishes and
the magnetization re-orientates in-plane. In the case of
nanoparticles a similar effect occurs: at low temperatures the
surface effects dominate giving rise to cubic behaviour, while

Figure 3. Temperature dependence of anisotropies in a spherical
nanoparticle with uniaxial anisotropy in the core, sc internal
structure (N = 6272, NC = 4968 and NS = 1304) and two values
of the Néel surface anisotropy Ks = 10Kc and Ks = 100Kc. The
values are normalized by the core anisotropy Kc. The value of
KEFF

UA /KC < 1 at T = 0 due to the fact that the surface atoms have
surface anisotropy only.

at high temperatures the surface contribution vanishes and the
nanoparticle exhibits a uniaxial anisotropy.

In the case of nanoparticles with cubic core anisotropy, the
surface anisotropy induces an additional contribution which is
also cubic in nature, with the sign of the anisotropy dependent
on the crystal symmetry. Specifically, the cubic surface
anisotropy constant is positive for nanoparticles cut from an
fcc lattice and negative for those cut from a sc lattice. The
contribution of the surface-induced anisotropy is additive to
the bulk value, although one should note [23, 24, 31] that it is
proportional to K2

s , rather than to Ks. Examples of the average
torque curve are plotted in figure 4 for various temperatures.
The shape of the curves remains consistent with the free energy
surface expected for cubic anisotropy for all temperatures and
surface anisotropy values. Thus, the cubic anisotropy arising
from the surface contribution is apparently indistinguishable
from the bulk. However, there is an important distinction in
terms of the scaling behaviour of the two contributions, as will
be discussed later.

In figure 5 we present the effective cubic anisotropy
constant in a truncated octahedral nanoparticle cut from an
fcc crystal structure for various values of the Néel surface
anisotropy constant. The appearance of an additional positive
cubic anisotropy contribution coming from the surface is seen
for values of Ks � 20Kc. The low-temperature values of
the effective anisotropy coincide with those obtained through
the Lagrange multiplier technique at T = 0 K. In figure 6
we present the temperature dependence of the total cubic
anisotropy in spherical and truncated octahedral nanoparticles
with fcc internal structures and for various values of the Néel
surface anisotropy Ks. These values are normalized by the
value of the effective anisotropy at T = 0 K (Keff

ca ) which is
different for each case. A universal temperature dependence
of the overall cubic anisotropy, independent on its value at
T = 0 K, is observed.
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Figure 4. Angular dependence of the Y -component of the total
system torque in a truncated octahedral nanoparticle with fcc crystal
structure (N = 1289, NC = 482 and NS = 807), Néel surface
anisotropy Ks = 20Kc and various values of the temperature.

Figure 5. Temperature dependence of the effective cubic
anisotropy, normalized to the core anisotropy value in truncated
octahedra nanoparticles with cubic anisotropy in the core, fcc crystal
structure (N = 1289, NC = 482 and NS = 807) and various values
of the Néel surface anisotropy.

Figure 7 presents the dependence of the effective
anisotropy on the value of the surface anisotropy Ks for various
temperatures for truncated octahedra cut from an fcc lattice
with cubic anisotropy in the core. As for a previous case, the
surface anisotropy contribution is of the same cubic nature as
the core one, and the additional surface contribution is expected
to be proportional to K2

s , see [23, 24]. Consequently, all the
data were fitted to this theoretically predicted dependence. The
extracted values Keff

c (T ) are consistent with those calculated
independently. The corresponding formula Keff(T ) =
Keff

c (T ) + AKSurf(T ) (KSurf(T ) ∼ K2
s ) may be viewed as

a substitution for the original formula (1). Unfortunately,
the system size dependence of the A parameter is not trivial
[23, 24], since it depends on the surface density of spins. The
latter is not a smooth function of the nanoparticle diameter,
due to the fact that small nanoparticles do not have uniform
spin density on their surfaces.

Figure 6. Temperature dependence of the effective cubic
anisotropy, normalized to its value at T = 0 K in spherical
(N = 1505) and truncated octahedra (the same as in figure 5)
nanoparticles with cubic anisotropy in the core, fcc crystal structure
and various values of the Néel surface anisotropy.

Figure 7. The effective cubic anisotropy as a function of the Néel
surface anisotropy parameter in a truncated octahedral nanoparticle
(the same as in figure 5) with cubic anisotropy in the core, fcc
crystal structure and for various temperatures.

Finally, we discuss the scaling behaviour of the effective
anisotropy on the nanoparticle magnetization K ∝ Mγ . The
Callen–Callen theory [35] states that at low temperatures in the
bulkγ = 3 and 10 for uniaxial anisotropy and cubic anisotropy,
respectively. For nanoparticles, the surface magnetization has
a faster temperature dependence than the core, as shown in fig-
ure 8, sharing the same Curie temperature, Tc. This arises due
to a reduction in coordination number at the surface leading
to a reduced exchange and a strong surface anisotropy point-
ing perpendicularly to the surface. At the same time the fully
coordinated core effectively polarizes the surface layer, result-
ing in a shared value for Tc. The surface anisotropy value has
very little effect on the temperature dependence of the overall
anisotropy, as shown in figure 6. The total effect is that the
scaling exponents are always smaller than the corresponding
bulk value and decreases with the surface anisotropy value. For
example, in figure 9 we present the scaling of the uniaxial and

6
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Figure 8. Temperature dependence of core and surface
magnetization, normalized to T = 0 K values in a spherical
nanoparticle (N = 1505) with sc lattice.

Figure 9. Low-temperature scaling of the effective anisotropies
with magnetization in a spherical nanoparticle cut from a sc crystal
lattice, uniaxial anisotropy and Néel surface anisotropy parameter
Ks = 100Kc.

cubic anisotropy constants with the magnetization at low tem-
peratures up to 200 K in a spherical nanoparticle with uniaxial
core anisotropy. Note that no scaling behaviour is observed in
the whole temperature range.

A similar effect is observed in spherical and truncated
octahedral nanoparticles with cubic core anisotropy. In
figure 10 we present the scaling exponent as a function of Néel
surface anisotropy constant in nanoparticles with spherical and
octahedral shapes, fcc crystal structure and cubic anisotropy
in the core. As with the uniaxial core anisotropy, the scaling
exponents are also lower than the corresponding bulk values
and weakly depend on the surface anisotropy value. In fact,
the scaling exponent decreases as a function of the surface
anisotropy value due to a faster decrease in the magnetization
on the surface.

4. Conclusions

By means of the recently developed CMC method, we have
been able to evaluate the temperature dependence of magnetic

Figure 10. Scaling exponents as a function of Néel surface
anisotropy constant in spherical (N = 1505) and truncated
octahedra (N = 1289) nanoparticles with cubic anisotropy in the
core and fcc internal structure.

anisotropies in nanoparticles with different shapes and internal
structures. An additional cubic anisotropy, due to the spin
nonlinearities produced by the surface anisotropy, was reported
earlier in a series of works at T = 0 K [23, 24, 30]. This effect
is shown to persist when temperature is included.

We have calculated the temperature dependence of
uniaxial and cubic anisotropy contributions. The additional
cubic anisotropy shows a faster dependence on temperature
than the uniaxial core anisotropy. Therefore, the temperature-
induced transition from the cubic anisotropy to the bulk one can
be observed. This effect is similar to the reorientation transition
in thin films. It has a purely surface origin and it is independent
of the structural changes which may occur in nanoparticles with
temperature. In nanoparticles with cubic core anisotropy, the
surface contribution is additive and increases or decreases the
value of the overall anisotropy. The temperature dependence
of the total cubic anisotropy is universal and only weakly
dependent on the value of the surface anisotropy. The scaling
exponent of the anisotropy with magnetization depends on the
surface anisotropy value and is always lower than the bulk
scaling exponent due to strong magnetization fluctuations at
the surface.
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