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We present atomistic calculations of the magnetic phase transition behavior in an L10 FePt system

to study the effect of grain size distribution on the Curie temperature (Tc) dispersion with relevance

to heat assisted magnetic recording. Identifying the relation between the size and Tc of a grain by

means of finite size scaling analysis of the differentiated magnetization versus T data allows to

show that a lognormal size distribution transforms into a lognormal Tc distribution with moments

dependent on the critical exponents. We also address the question of the universality class of FePt.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4740075]

Heat assisted magnetic recording (HAMR)1–4 is the

most likely candidate technology to achieve recording den-

sities significantly beyond those accessible to conventional

perpendicular magnetic recording. The recently announced

demonstration of a density of 1 TBit/in2 brings a transition to

HAMR technology a step closer. An advantage of HAMR,

noted in Ref. 1, is the fact that requirements of increasing

head field gradients, which limit achievable areal densities in

conventional perpendicular recording, are reduced by the

large temperature gradients produced by the laser heating.

However, in order to maximize the effect the rate of change

of magnetization with temperature, dM/dT, must also be

high, suggesting recording close to the Curie temperature Tc.

This implies the necessity to understand static and dynamic

magnetic behavior near Tc such as, for example, the recently

predicted linear reversal mechanism5,6 or the influence of

grain size distribution fDðDÞ on the Tc dispersion fTðTcÞ—the

understanding of which will be the main subject of the pres-

ent work. Indeed, uncontrolled fTðTcÞ may result in smeared

M(T) dependence and thus reduced dM/dT near Tc, and as

such is a crucial factor with a potentially detrimental effect

on HAMR.

The approach undertaken here to relate fDðDÞ and fTðTcÞ
relies on exploring the critical behavior in magnetic grains of

variable size D. The task is to quantify the size dependence

of the Curie temperature, TcðDÞ, extracted from M(T) data

computed from an atomistic model of ordered ferromagnetic

FePt (Fig. 1(a)), which is, with its low bulk Curie tempera-

ture T1c and large anisotropy constant K,7,8 currently

regarded as the best candidate material for HAMR media.

The TcðDÞ dependence is expected to follow the finite size

scaling law:

�cðDÞ ¼
T1c � TcðDÞ

T1c
¼ d0

D

� �k

; (1)

where k is the so-called phenomenological shift exponent and

d0 is the microscopic length scale close to the dimension of a

single unit cell in the lattice structure of the material, see, e.g.,

Refs. 9–11. The exponent k is related to the correlation length

universal critical exponent � to be defined below and it is

expected that k � ��1 depending on the nature of the experi-

ment;12,13 k ¼ ��1 in the absence of higher order system size

effects, which will be shown to be the case also here.

Given only limited studies of size dependent critical

behavior of FePt,11,14 available critical parameters are insuf-

ficient for careful comparison with our study. Therefore, we

consider two different models: an FePt effective Hamiltonian

with a long-range exchange (LE) term derived from density

functional theory (DFT) calculations,8 and a "test" model

with the nearest neighbor exchange (NE), which is expected

to closely resemble the critical behavior of the well studied

Heisenberg model15 and thus allows validation of the present

approach. Thereby we demonstrate that because of LE inter-

action, FePt may not belong to the universality class of the

NE Heisenberg model, giving rise to a weaker variation of

Tc with D according to Eq. (1). Equation (1) also allows

relating fTðTcÞ to fDðDÞ, and we show analytically that the re-

alistic choice of lognormal distribution fDðDÞ leads precisely

to the lognormal form of fTðT1c � TcÞ.
The LE atomistic model used in the present study uti-

lises an effective Hamiltonian of FePt parametrized based on

DFT calculations,8 which is of the form

H ¼ �
X
i 6¼j

ðJijSi � Sj þ KijS
z
i S

z
j Þ �

X
i

KiðSz
i Þ

2; (2)

where Jij is effective exchange (considered long-ranged as

its range extends beyond five lattice spacings), and Ki and

Kij are, respectively, the effective uniaxial single-ion and

two-ion anisotropy contributions defined in more detail in

Ref. 8. The NE Hamiltonian is obtained from Eq. (2) by

specifying a nearest neighbor only exchange Jij ¼ 3:0�21

J/link and by setting Kij ¼ 0. The anisotropy term Ki remains

included. In both NE and LE Hamiltonians, the spin

moments are expressed as unit vectors Si ¼ li=jlij. The sys-

tem is integrated using the Landau-Lifshitz-Gilbert equation

with the Langevin Dynamics formalism.16,17 The system is

integrated using the Heun numerical scheme and a timestepa)Electronic mail: ondrej.hovorka@york.ac.uk.

0003-6951/2012/101(5)/052406/4/$30.00 VC 2012 American Institute of Physics101, 052406-1

APPLIED PHYSICS LETTERS 101, 052406 (2012)

Downloaded 10 Aug 2012 to 144.32.128.73. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4740075
http://dx.doi.org/10.1063/1.4740075
http://dx.doi.org/10.1063/1.4740075


of 1:0� 10�15 s. Since we are interested only in equilibrium

properties we set the precessional damping constant a ¼ 1:0
for computational efficiency. Simulated samples were cut

from a bulk crystal in the shape of a cylinder with diameter

D and height D varying in the range 2 nm to 9 nm in 1 nm

increments. The system for every D was equilibrated at each

temperature for 20 000 time steps and then a thermodynamic

average magnetization calculated over further 20 000 time

steps. Examples of M(T) data computed in this way for

D¼ 2, 9 nm for LE FePt and NE models are shown Figs.

1(a) and 1(b), respectively.

In general terms, the behavior of a bulk system near its

Curie temperature T1c is described by divergent tendencies

of some of its thermodynamic variables.15 For example, the

correlation length n which quantifies the extent of magnetic

ordering in a system is expected to follow a power law diver-

gence n � d0j�j�� where the reduced temperature is defined

as � ¼ ðT1c � TÞ=T1c similarly to the critical �c introduced in

Eq. (1), and � is the correlation length universal critical

exponent. Other characteristics approach a finite value as

T ! T1c . For example, the magnetization M approaches zero

following a power law with the “magnetization” universal

critical exponent b : M � j�jb. Strictly speaking, such non-

analytic behaviors exist only in the thermodynamic limit.

Thermodynamic quantities for systems with some character-

istic dimensions D finite are always rounded, shifted, and

smeared out, and as a result, the critical region becomes hard

to access. These difficulties appear as soon as the correlation

length n becomes comparable with the smallest characteristic

dimension D, i.e., n � D or equivalently d0j�j�� � D, which

directly implies a shift of the size-dependent TcðDÞ away

from the bulk value T1c , thus motivating the phenomenologi-

cal Eq. (1).

This behavior is demonstrated in Figs. 1(a) and 1(b)

where in both cases of LE FePt and NE models, the

reduction of the finite size TcðDÞ from the bulk T1c becomes

more pronounced for small 2 nm grains. Figure 2 further con-

firms this systematic trend for grains of diameters in the

range 2;…; 9 nm. As conventional in experiments, e.g., Refs.

10 and 11, we determined the finite size TcðDÞ as corre-

sponding to the minimum of derivative DMðTÞ=DT as illus-

trated in the inset for a 3 nm grain. Figure 2 shows that the

variation of TcðDÞ is slightly weaker for the LE FePt model

than for the NE model, which suggests a difference between

the shift exponents k. This issue will be addressed below. To

apply Eq. (1) to the data in Fig. 2, it is first necessary to iden-

tify the bulk T1c which, although often readily accessible in

experiments, is hard to access in computations.

To extrapolate the finite size computational data to the

thermodynamic limit to identify the bulk T1c , we utilize the

finite system size scaling (FSS) analysis.18,19 The FSS

method allows, in addition to T1c , a direct extraction of criti-

cal exponents � and b. It is based on the concept of univer-

sality,19 which in the context of the present study implies (1)

independence of universal critical exponents on D and (2)

data similarity near the critical point, i.e., that after rescaling

the M(T) data for all different D by the same appropriate

combinations of critical exponents and non-universal param-

eters, they will all collapse onto a universal curve which we

denote as y ¼ ~MðxÞ. Specifically, the FSS scaling theory for

the one-dimensional scaling relevant to the present study

gives the following FSS scaling ansatz when expressed in

terms of the reduced temperature �:19

Mð�Þ � D�b=� ~MðD1=�j�jÞ: (3)

Thus, it is expected that for the optimum set of parameters

T1c ; b, and �, the M(T) data for all different particle sizes

D ¼ 2;…; 9 will collapse onto ~MðxÞ after rescaling the

M-axis by the factor Db=� and T-axis by D1=�j�j. This is indeed

confirmed in Figs. 1(c) and 1(d), which show excellent quality

of data scaling for both LE FePt and NE models assuming

scaling parameters summarized in Table I. The optimization

FIG. 2. Dependence of the Curie temperature Tc on the particle diameter D
for NE and LE FePt systems. Tc for every D corresponds to a minimum of

the differentiated M vs T dependence, as illustrated in the inset for 3 nm LE

FePt grain. Solid lines through the triangular points are fits of Eq. (1) with

d0 being the only fit parameter and the bulk T1c (dashed lines) and �
obtained from the FSS analysis and listed in Table I.

FIG. 1. (a) Computed M vs T data for LE FePt model and (b) nearest NE

model, for 2 nm and 9 nm grains. Vertical arrows indicate finite size Curie

temperatures TcðDÞ determined as minima of DM=DT vs T for every grain

size D (also in Fig. 2). The vertical line corresponds to the bulk T1c listed in

Table I. (c) A scaling collapse according to Eq. (3) for LE and (d) NE mod-

els, including grain sizes 2; 3;…; 9 nm and critical parameters T1c ; �, and

b summarised in Table I.
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procedure for finding the parameters T1c ; b; � in Table I

leading to the best scaling shown in Figs. 1(c) and 1(d) was

based on minimizing, in the least-squares sense, the differen-

ces between the vertical coordinates of all data points for

every D using the interpolation approach reviewed in Ref. 20.

According to the summary given in Table I, the T1c
� 677:4610:7 K obtained from the FSS analysis of the LE

FePt model data is somewhat smaller than the expected

value of 750 K for bulk FePt.11 However, given that there

are no adjustable parameters (all parameters for the FePt

Hamiltonian are determined from DFT calculations8), the

agreement is reasonable. Moreover, according to Ref. 7,

the size dependent structural ordering effect not included

in the present modeling can result in the increase of T1c of

the bulk FePt, which might account for the difference. For

the NE model, critical exponents agree within the confi-

dence interval with b ¼ 0:36 and � ¼ 0:71 for the isotropic

Heisenberg model15 which validates the present approach.

This also suggests that in the NE case the value of the ani-

sotropy constant Ki in Eq. (2) is insufficient to induce a

crossover to the universality class of the 3D Ising model

for which b ¼ 0:325 and � ¼ 0:630.15 For the LE FePt

model, the value of the exponent � is slightly higher than

in the NE case suggesting that the FePt system might

belong to a universality class different from that of the iso-

tropic Heisenberg model. However, more extensive analy-

sis which would allow extraction of a complete spectrum

of critical exponents is required to quantify the university

class of FePt system. Such analysis is beyond the scope of

the present work.

Having obtained the bulk T1c , we now mimic the experi-

mental procedure and fit Eq. (1) to the TcðDÞ data in Fig. 2

with d0 being the only fit parameter. We fix the phenomeno-

logical shift exponent to k ¼ ��1 with the values of � as

obtained from the FSS analysis in Table I. Fig. 2 shows an

excellent agreement between the one-parameter fits of Eq.

(1) and the data, with the values of fitted d0 listed in Table I.

The parameter d0 obtained for LE FePt agrees closely with

the experimentally reported value,11 validating the approach

further. We note that in experiments the exponent k is often

considered as a fit parameter as well because � is often

unknown and, moreover, k does not always agree with ��1

due to the importance of higher order corrections to finite

size scaling which are not included in Eq. (1).9,12,13 We

found that such two-parameters fits of Eq. (1) to our data

yield � ¼ 0:9460:03 and d0 ¼ 0:5660:03 for the NE model,

and � ¼ 0:8560:04 and d0 ¼ 0:7260:04 for the LE FePt

model. While the values for the NE model are unrealistically

off the expected range for the Heisenberg model probably

due to high sensitivity to parameter correlation during the fit-

ting, for the LE FePt model the agreement is remarkable.

Hence, the approach based on fixing k to the bulk value of

��1 obtained from the FSS is preferred here.

Now that Eq. (1) has been fully quantified in terms of

the parameters T1c ; k, and d0, we proceed to analyze the

relationship between the distribution functions fTðTcÞ and

fDðDÞ, assuming the realistic scenario of a lognormal distri-

bution of diameter fDðDÞ ¼ ðD~rD

ffiffiffiffiffiffi
2p
p
Þ�1

expð�ðlnD� ~DÞ2=
2~r2

DÞ with ~D and ~r2
D being, respectively, the mean and var-

iance of the random variable lnðDÞ.21 Given that the depend-

ence TcðDÞ as defined by Eq. (1) is monotonic and that

distribution functions fT and fD are univariate, the transfor-

mation law reads fTðTcÞ ¼ jD0ðTcÞjfDðDðTcÞÞ,22 where DðTcÞ
is the inverse of Eq. (1) and the prime denotes the derivative

d=dTc. Thus, rearranging Eq. (1) gives DðTcÞ ¼ d0�
�1=k
c and

D0ðTcÞ ¼ k�1d0=ðT1c �1þ1=k
c Þ, which after algebraic manipu-

lations and using the substitution �c ¼ ðT1c � TcÞ=T1c leads

to the expression

fTðDTcÞ ¼
1ffiffiffiffiffiffi

2p
p

DTc~rT

exp �ðlnDTc � ~TÞ2

2~r2
T

 !
; (4)

with DTc ¼ T1c � Tc. Equation (4) is a lognormal distribu-

tion function with logarithmic mean ~T ¼ kðlnðd0ðT1c Þ
1=kÞ

� ~DÞ and variance ~r2
T ¼ k2~r2

D. Examples of the distribution

functions for both NE and LE FePt models are shown in Fig.

3. It can be seen that the characteristic tail of the lognormal

distribution is to low values of Tc, essentially because of the

cut-off imposed by the parameter T1c .

In addition to ~T ; ~r2
T , and ~D; ~r2

D from the practical

point of view, it is also useful to identify the relationship

between the arithmetic mean values and variances: hTci; r2
T ,

and hDi; r2
D. Straightforward manipulation of standard

expressions relevant to the lognormal distribution21 gives

hTci
T1c
¼ 1� d0

hDi

� �k

1þ r2
D

hDi2

 !ðk2þkÞ=2

; (5a)

r2
T

hDTci2
¼ �1þ 1þ r2

D

hDi2

 !k2

: (5b)

Equation (5a) reduces to Eq. (1) in the absence of random-

ness rD ! 0, in which case also rT ! 0 in Eq. (5b), as

expected. Moreover, given the k values found here, increas-

ing rD results in increase of hTci and rT .

In conclusion, we have performed a finite size scaling

analysis based on the calculated M(T) data sets for grains of

different size D and extracted the bulk value of Curie tem-

perature and critical exponents. This allows the quantifica-

tion of the TcðDÞ dependence based on the scaling relation

Eq. (1) and identification of the relationship between the Tc

distribution fTðTcÞ and grain size distribution fDðDÞ as Eq.

(4). Equation (4) demonstrates that a lognormal form of the

distribution function is preserved under the critical scaling

TABLE I. Critical exponents b and �, and the bulk T1c obtained from the

FSS analysis according to Eq. (3) for the NE and the LE FePt Hamiltonians.

The microscopic length d0 was obtained by fitting Eq. (1) to the Tc vs D de-

pendence obtained by differentiating the M vs T data for different sizes D

(Fig. 2). For comparison the experimental data of Ref. 11 and the values for

the Heisenberg Hamiltonian15 are also given.

NEH LE-FePtH Experimental11

Heisenberg

Hamiltonian15

b 0:3860:03 0:3360:10 — 0.36

� 0:7960:11 0:8560:10 0:9160:10 0.71

T1c (K) 746:565:45 677:4610:66 775610 —

d0 (nm) 0:7160:02 0:7260:02 0:8460:05 —
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Eq. (1). Importantly, we show analytically that standard

deviations of fTðTcÞ and fDðDÞ are related through the shift

exponent k as ~rT ¼ k~rD or, equivalently, rT and rD through

Eq. (5). Consequently, k is potentially an important physical

quantity in relation to HAMR, and one which is expected to

be material dependent through the physical concept of uni-

versality, as demonstrated here by comparing the long range

exchange FePt model with a Heisenberg-like system with

short range interaction.
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