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Atomistic modeling of magnetization reversal modes in L10 FePt nanodots
with magnetically soft edges
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Nanopatterned FePt nanodots often exhibit low coercivity and a broad switching field distribution, which could
arise due to edge damage during the patterning process causing a reduction in the L10 ordering required for a high
magnetocrystalline anisotropy. Using an atomistic spin model, we study the magnetization reversal behavior of
L10 FePt nanodots with soft magnetic edges. We show that reversal is initiated by nucleation for the whole range
of edge widths studied. For narrow soft edges the individual nucleation events dominate reversal; for wider edges,
multiple nucleation at the edge creates a circular domain wall at the interface which precedes complete reversal.
Our simulations compare well with available analytical theories. The increased edge width further reduces and
saturates the required nucleation field. The nucleation field and the activation volume manipulate the thermally
induced switching field distribution. By control of the properties of dot edges using proper patterning methods,
it should be possible to realize exchange spring bit-patterned media without additional soft layers.
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I. INTRODUCTION

Continuing requirements for greater digital data storage
capacity has led to continued growth in data storage density in
magnetic recording media. Future improvements are limited
by the magnetic recording trilemma, caused by competing
requirements of reduced signal to noise ratio, thermal stability
of written information, and writability [1]. Two solutions for
the magnetic recording trilemma have been proposed: first
heat assisted magnetic recording (HAMR) [2,3], where laser
heating during recording is used to lower the anisotropy
sufficiently to achieve writing; the second solution is bit-
patterned media (BPM), where each bit is defined by a single
dot in a lithographically defined array [4] and the larger
magnetic volume reduces the requirement for high anisotropy
required for long-term thermal stability.

Bit-patterned media can be made using a variety of methods
including patterning [5–11] and self-assembly of magnetic
nanoparticles [12]. Controlling the microstructural properties
of magnetic nanoparticles is quite challenging, however,
lithographic patterning techniques allow a continuous L10

FePt film to be patterned into an array of isolated magnetic
islands or “dots” [5–11]. However, during lithography ions
near the dot edge can reduce the L10 ordering, resulting in
magnetically soft edges [6,7,9–11]. The presence of damaged
edges in the dots could reduce both the coercivity [6,10,11]
and the thermal stability [9].

In addition to decreasing the coercivity, a broad switching
field distribution (SFD) can also lead to write errors in
neighboring bits during the writing process. The SFD (the
variation of switching fields between dots) includes both
extrinsic and intrinsic components [13–17]. The extrinsic SFD
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may be caused by dipolar interaction between dots, and the
intrinsic SFD arises from variations of intrinsic magnetic
properties of dots, including anisotropy K , volume V , and the
easy axis alignment [14]. Furthermore, thermal fluctuations
also broaden the intrinsic SFD, known as the thermal SFD
[15–17]. Within the simple Stoner-Wohlfarth approximation
(monodomain), the thermal SFD is mainly related to the
anisotropy energy barrier KV , and the measurement time
scale. This makes the thermal SFD pronounced at high field
sweep rates associated with the recording process [16,17].

Reversal behavior in relatively large dots with magnetically
soft edges of fixed width, associated with ion damage from
the etching process, has been studied previously [18], where
the presence of soft edges was shown to change the reversal
mode. In addition, small-sized dots with ring-shaped soft edges
of varied width have been investigated by macrospin analytic
models without including the thermal fluctuations [19]. The
increased width of edge is found to reduce the coercivity
of dots [19], suggesting a strong relationship between the
edge width and the reversal mode. Further control of the
magnetic properties of edges with fixed width in large sized
dots can also be done via soft He+ irradiation [20]. The
experimental observations can only be explained by the model
including the thermal fluctuations [20]. All the reported
works indicate that either the edge width [19] or the thermal
fluctuations [20] affect the reversal mode and could result
in different switching field distributions of patterned dots.
However, the edge-width dependence of the reversal mode
including thermal fluctuations is still not understood.

Here we develop a computational model to study magneti-
zation reversal modes in L10 FePt dots with magnetically soft
edges. We employ an atomistic spin model formalism, which
provides detailed information on reversal modes unreachable
by standard micromagnetic simulations [21,22]. In particular,
soft edges of only a few nanometers are tractable, and we can
further study the effect of the reduced exchange coupling at
the interface, possibly resulting from the core/edge interface
roughness. Moreover, thermal effects are consistently taken
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into account within our model using the Langevin dynamics
formalism that allows us to study the relationship between
the coercivity, the thermal SFD, and reversal modes. We
further compare the atomistic spin modeled results with
available analytic approaches, which were originally presented
for hard/soft nanowires [23–28], to examine the validity
of these approaches for the core/shell nanostructure. These
simpler approaches are capable of highlighting the key physics.
Additionally, since the atomistic resolution in the simulation
makes this method computationally intensive restricting the
size of the calculated system to nanometer length scales, these
validated analytic approaches could be potentially utilized to
investigate properties of large sized systems, e.g., a dot array.

II. ATOMISTIC SPIN MODEL

The studied nanodots are composed of a magnetically
hard core and a magnetically soft edge, as illustrated in
Fig. 1. In the case of patterned dots, we hypothesize that the
edge region loses its L10 atomic order due to the patterning
process, making it magnetically soft. We focus exclusively on
the width of the edge Wedge, with the fixed core size, rcore,
on the magnetization reversal. We therefore fix the diameter of
the core 2rcore = 25 nm and the dot thickness, td = 4 nm, while
the edge width is varied systematically from Wedge = 0–18 nm.
We note that in this approach the different Wedge varies the total
volume of dot and therefore affects the corresponding thermal
stability, which is beyond the scope of the present work. The
system is constructed from a single face-centered cubic crystal
and cut into the shape of a nanodot with the desired geometry.

The nanodots are modeled using an atomistic spin model
approach [29] with the VAMPIRE software package [30]. The
energetics of the system are described by the spin Hamiltonian
with the Heisenberg exchange, given by

H = Hcore + Hedge, (1)

Hcore = −
∑
i,j

JcoreSi · Sj −
∑
i,ν

JceSi · Sν

− kcore

∑
i

(
Sz

i

)2 − μcore

∑
i

Happ · Si , (2)

Hedge = −
∑
ν,δ

JedgeSν · Sδ −
∑
ν,j

JceSν · Sj

− kedge

∑
ν

(
Sz

ν

)2 − μedge

∑
ν

Happ · Sν, (3)

where S = μ/μ are spin unit vectors, i,j label core sites
with moment μcore, and ν,δ label edge sites with moment
μedge. Here we assume the same moment for both core and
edge such that μcore = μedge = 1.5 μB, which compares well
to the saturation magnetization of L10 FePt as obtained in
experiment [31]. Jcore and Jedge are the exchange interactions
between moments of the same type in the core and the edge,
respectively. We consider only nearest neighbor interactions
between the moments. We select values of the exchange
energy to give a Curie temperature around 700 K comparable
with experiment, namely Jcore = Jedge = 3×10−21 J/link. Jce

represents the interfacial exchange interaction between the
core and the edge and is varied as a parameter between 0

Wedge 2rcore

0 - 18 nm

Wedge

0 - 18 nm

td
4 nm

25 nm

FIG. 1. Schematic diagram of the atomistic modeled dot. Dark
and white gray regions represent the core and the edge atoms,
respectively.

and Jcore. kcore = 4.9×10−23 J/atom is the uniaxial anisotropy
constant of the core spins (with easy axis perpendicular to
the film plane) and kedge = 1×10−24 J/atom is the uniaxial
anisotropy of the edge spins. Happ is the external applied field.

The hysteresis loops are calculated dynamically using
the stochastic Landau-Lifshitz-Gilbert (LLG) equation at the
atomic level, given by

∂Si

∂t
= − γ

(1 + λ2)
Si × [Hi,eff + λ(Si × Hi,eff)], (4)

where λ is the intrinsic damping parameter, γ = 1.76×1011

T−1s−1 is the absolute value of the gyromagnetic ratio, and
Hi,eff is the effective magnetic field in each spin. The field is
derived from the spin Hamiltonian and is given by

Hi,eff = − 1

μi

∂H

∂Si

+ Hdemag,i + Hi,th, (5)

where Hdemag,i and Hi,th are the demagnetization and the
thermal fields, respectively. Since the calculation of the
demagnetization field at the atomic level is computationally ex-
pensive, we have instead calculated the demagnetization field
by applying the approach developed by Boerner et al. [32].
Within this approach, the dot is divided into regular macrocells
with the volume Vk = (1.77)3 nm3 which contains 250 atomic
spins. The value of spin’s moments within each macrocell
are then summed to obtain the macrocell magnetic moment,
μk = ∑

δ∈�k
μδSδ , where k labels macrocell sites, and δ

labels spin sites in each macrocell, �k . We then calculate
the demagnetization field of each macrocell, Hdemag,k , by
using the corresponding magnetic moment and treat it as the
demagnetization field of each spin in the macrocell, Hdemag,i .
Hdemag,k is calculated by direct pairwise summation including
the macrocell self-demagnetization [29],

Hdemag,k = μ0

4π

∑
k �=l

3(μl · r̂kl)r̂kl − μl

|rkl|3 − μ0

3

μk

Vk

, (6)

where μ0 = 4π×10−7 T2J−1m3 is the vacuum permeability,
rkl is the vector between k and l macrocell sites, and r̂kl =
rkl/|rkl| is the corresponding unit vector. This is a computa-
tionally efficient approach since the number of macrocells is
relatively small and moreover, since the magnetostatic field
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varies rather slowly with time it needs updating only on a time
scale of around 1000 time steps [29]. The thermal fluctuations
are represented using Langevin dynamics [33,34], where the
thermal field Hi,th is given by

Hi,th = �(t)

√
2λkBT

γμi�t
, (7)

where kB is the Boltzmann constant, T is the heat bath tempera-
ture, λ is the Gilbert damping parameter, γ is the absolute value
of the gyromagnetic ratio, and �t is the integration time step.
The thermal fluctuations are represented by a vector Gaussian
distribution in space �(t) with a mean of zero and generated
from a pseudorandom number generator. The simulations in
this work are carried out at a heat-bath temperature of T =
300 K. We set the damping parameter λ = 1.0 to reduce the
computational time required for reaching an equilibrium state.
The LLG equation is integrated using the Heun integration
scheme [34] with an integration time step �t = 1 fs.

III. RESULTS

In order to study reversal modes we simulate hysteresis
loops as a function of the width of edges, Wedge. To calculate
the hysteresis loops we apply an external field in a range from
−5 to +5 T, which lies above the anisotropy field in the core,
at intervals of 5 mT. The field sweep rate is 5 T/ns. Initially we
consider that the interfacial core and edge spins are strongly
coupled by setting Jce = Jcore = Jedge = 3.0×10−21 J/link.

Figure 2(a) shows representative out-of-plane hysteresis
loops for a range of edge widths. One can observe that
by increasing edge width, both the nucleation and coercive
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(b) 0 nm 1 nm 2 nm 3 nm 7 nm

FIG. 2. (Color online) (a) Simulated out-of-plane hysteresis
loops for dots with different edge widths. Magnetization is normalized
to the saturation magnetization at 0 K. Snapshots of domain
configurations during reversal, observed along the dot plane normal
direction, are shown in (b). Symbols in (a) and on the left in (b)
indicate the position of snapshots during the reversal process. The
color scale (blue to red) represents the magnetization component
along the easy axis direction. Black dotted circles denote the position
of the core/edge interface.
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FIG. 3. (Color online) Whole hysteresis loop of the dot with
Wedge = 12 nm and two individual loops of its core and its edge,
decomposing the whole loop.

fields decrease. Furthermore, the squarelike hysteresis loop
for narrow edges turns into a two-step reversal as the edge
width increases, indicating a change in the reversal process.
Figure 2(b) illustrates the corresponding snapshots of spin
configurations during reversal for various Wedge. The reversal
mode strongly depends on the edge width, which will be
discussed in more detail in the following sections. To obtain
detailed information on the observed reversal behavior, we also
calculate hysteresis loops for each edge width for 30 different
realizations of the random number generator. Therefore, we
average over 60 statistically independent values to obtain
the mean coercivity and standard deviation. Since we are
considering dots with the same magnetic properties in our
simulations, the deviation from the mean arises completely
from the thermal fluctuations. Thus the standard deviation is
a manifestation of the intrinsic SFD resulting from thermal
fluctuations [17]. This is an important parameter since it
increases with increasing field sweep rate and is significant
at time scales associated with data transfer in information
storage. Additionally, we separately calculate the coercivity
fields of both the core, H core

c , and the edge, H
edge
c , shown

in Fig. 3. To do so, we calculate the individual reduced
magnetization of the core and edge as follows,

μcore = |μcore|
Ncore

∑
i∈core

Si , μedge = |μedge|
Nedge

∑
i∈edge

Si , (8)

where Ncore(edge) denotes the number of atoms in the core
(edge).

Figure 4(a) shows the variation of the mean coercivity
H

core(edge)
c as a function of Wedge, and the corresponding

standard deviation, σcore(edge), is shown in Fig. 4(b). The
coercivities and the standard deviation are strongly dependent
on the edge width, which will be discussed in the following
sections. Furthermore, to understand the reversal mode, we
will compare coercive fields obtained from atomistic spin
model simulations with those obtained from different theo-
retical approaches [23–28], given by the lines in Fig. 4. The
additional models, to be discussed later, are all based on a
conventional micromagnetic approach. In such models the
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FIG. 4. (Color online) (a) Mean coercivity of both the core and
the edge as a function of the width of edges. The gray dashed line
represents the effective anisotropy field calculated by the linear chain
model. Purple solid and black dashed lines indicate the nucleation
and pinning fields, respectively. (b) Standard deviation of coercivity of
both the core and the edge as a function of the width of edges giving an
estimate of the thermal switching field distribution. The gray dashed
line represents the deviation approached by the effective anisotropy
field. Purple solid and black dashed lines are the deviation calculated
by the nucleation and the pinning fields. The vertical dashed line
denotes the domain-wall length in the edge.

temperature dependence of magnetic properties is not intrinsic
to the formalism, as it is in the atomistic approach, and must
be introduced explicitly. Consequently, in the micromagnetic-
based models we will introduce the effect of temperature
(T = 300 K) by normalizing the micromagnetic parameters
in the theoretical calculations. For the anisotropy constants,
Kcore(edge), we use the Callen-Callen law [35],

Kcore(edge)(T = 300 K) ≈ Kcore(edge)(T = 0 K)m3
e, (9)

where me = Ms(T = 300 K)/Ms(T = 0 K) = 0.82 is ob-
tained directly from our computational atomistic spin cal-
culations. Ms is the saturation magnetization of the core
(edge). We note that experimentally the exponent value for the
decrease in anisotropy constant of L10 FePt is close to 2.1 [31],
which can be reproduced using the multiscale atomistic spin
model simulations [36]. However, this multiscale simulation
is computationally expensive for the calculation of dots with
the diameter of 25 nm (Fig. 1). Therefore, we have used a
simplified atomistic spin model, where Kcore(edge)(T ) follows
the Callen-Callen law. In fact at room temperature the 2.1
scaling law and the Callen-Callen law give similar length
scales, e.g., the exchange length or the domain-wall length,
which can be estimated by the ratio m

2.1/2
e /m

3/2
e ∼ 0.93. We

also note that both surface and interface effects can slightly
vary the Callen-Callen law for Kedge(T ) [37]. The exchange
stiffness of the core (edge), Acore(edge)(T ), has been shown to
scale with me as [38,39]

Acore(edge)(T = 300 K) ≈ Acore(edge)(T = 0 K)m1.745
e . (10)

A. Narrow soft edge: individual nucleation

The magnetization reversal in the absence of soft edges, as
shown in the spin configuration snapshot for Wedge = 0 nm
in Fig. 2(b), starts by the nucleation of a small region (red
area in the snapshot) in the boundary and proceeds with the
subsequent expansion to the entire dot. At this point it is worth-
while considering the physical origin of the nucleated reversal.
The origin of the incoherent nucleated reversal process lies in
the combination of high magnetocrystalline anisotropy and
thermal fluctuations. At applied fields in the vicinity of the
coercivity thermal fluctuations break the symmetry of the dot
and cause a nucleation event. The narrow domain wall width,
arising from the high magnetocrystalline anisotropy in the
core, stabilizes the nucleated domain. Following the nucleation
the lowest energy barrier for switching is then propagation of
the domain wall, leading to an incoherent reversal mechanism.
The combination of short time scales, high anisotropy, and
system size greater than the domain wall width gives the
fundamental physical origin of the thermal switching field
distribution. For longer time scales more nucleation attempts
are made reducing the effective thermal SFD since the material
switches at the same field, while for lower anisotropy materials
the nucleated domain is unstable and so the effect of thermal
fluctuations is also lower.

For dots with a narrow soft edge, Wedge = 1 or 2 nm, the
reversal mechanism is the same as for dots with no soft edges,
although due to the low coercivity of the edge the nucleation
field is reduced significantly. The thermal SFD also reduces
rapidly with narrow soft edges due to the reduced stability of
the nucleated domain owing to the lower effective anisotropy.
In an attempt to quantify the reduction in the coercivity as a
function of the edge width we have developed an atomistic
one-dimensional (1D) linear chain model, details of which
are given in Appendix. By estimating the coercive field as an
effective anisotropy field of the nucleated area, H eff

K , the linear
chain model predicts a linear decrease in the coercivity given
by

H core(edge)
c = H eff

K = H core
K (1 − bWedge). (11)

In Fig. 4(a) we can see that for Wedge � 2 nm, both the
coercivity of the core and the edge are equal and linearly
decrease as a function of the edge width. It can be seen that
Eq. (11) gives reasonable agreement with the numerical results.

B. Wide soft edge: an incomplete to a complete
circular domain wall

With a further increase in the edge width we observe the re-
versed region with a negative curvature, shown by Fig. 2(b) for
Wedge = 3 nm with nucleated areas denoted by red regions. The
negative curvature could suggest that more than one reversed
region nucleates during the reversal. The deviation between
Hcore(edge) and H eff

K [Eq. (11)] reflects the reversal dominated
by multireversed regions. These multiple nucleation events
also mark an increasing difference between H

edge
c and H core

c
values with further increases in the edge width [Fig. 4(a)].
From the spin configuration snapshots in Fig. 2(b) we observe
this behavior corresponds to an incomplete circular domain
wall formed at the core/edge interface. In this region we cannot
approach Hcore(edge) using Eq. (11) because this is only valid
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for the reversal dominated by a single reversed region. Instead,
we find that H edge

c approaches the domain wall nucleation field
Hn, obtained from the analytical expression derived for the
limit of strong hard/soft coupling with a soft layer thicker
than the domain-wall width (≈5 nm in this study) in the hard
layer [23–25] given by

Hn = H
edge
K +

(
π

2

)2(
l
edge
EX

Wedge

)2

Medge, (12)

where H
edge
K = 2Kedge/Medge is the anisotropy field of the

edge, and Medge is the saturation magnetization of the edge
and l

edge
EX = √

Aedge/Kedge is the exchange length in the edge.
For applied fields larger than Hn but less than the domain-

wall pinning field at the edge/core interface Hp, the increased
field compresses the domain wall in the edge and therefore
reduces the corresponding domain-wall width l

edge
DW . At even

wider edge widths [for example, see Fig. 2(b) at Wedge =
7 nm], the nucleation occurs in the entire edge, but the domain
wall is then pinned at the core/edge interface, showing a
circular domain wall. As the reversal continues, the domain
wall propagates inwards until collapse and full magnetization
reversal. In addition, the propagated domain wall shows a
noncircular symmetry [Fig. 2(b) at Wedge = 7 nm], in contrast
to the circular symmetry of the domain wall pinned at the
core/edge interface. The suggests the depinning of part of
the circular domain wall during the reversal of spins in the
core. However, in contrast to the analytical model of the
single nucleation region proposed in Ref. [20], the reversed
region in the core shows a negative curvature [Fig. 2(b) at
Wedge = 7 nm], indicating that the reversal could be dominated
by the multinucleation events. On the other hand, H core

c

saturates at Hp when Wedge � l
edge
DW , which reads [26–28]

l
edge
DW = π

√
2Aedge

Kcore + Kedge
. (13)

Hp is given by [26–28]

Hp = 1

4

2[Kcore − Kedge]

Medge
. (14)

Figure 4(a) shows that our simulation results fit perfectly to
the Hp (black dashed line). Thus it confirms that for soft edges
wider than l

edge
DW at Hp, the reversal mechanism is through

depinning of part of a circular domain wall at the edge/core
interface driven by the multiple nucleation events in the core
with H core

c = Hp.

C. Thermally induced switching field distribution

The calculated thermal switching field distribution σcore(edge)

from the simulations for different edge widths is shown in
Fig. 4(b). Similarly to the coercive fields, our simulations
show that for Wedge � 2 nm, σcore � σedge, the thermal SFD
displays a linear decrease with the increasing Wedge. In
order to quantify the thermal fluctuations in the coercive
field within a micromagnetic framework it is necessary to
associate the magnetic moment μ in Eq. (7) with a volume
characteristic of magnetization reversal. For this we use the
activation volume Vact, which is an equilibrium quantity and

defined as the volume associated with the magnetization
change between positions of minimum and maximum static
energy [40]. Furthermore, we average the thermal fluctuation
field over a specific time equal to the inverse of an “attempt
frequency” used in phenomenological models of thermal
activation processes. The attempt frequency is generally taken
as the natural frequency of oscillation in the local minimum,
i.e., f0 = γHK with HK the anisotropy field. This leads to a
variance in the field components, which we take as the standard
deviation of coercivity, σcore(edge), given by

σcore(edge) =
√

2λkBT HK

MsVact
. (15)

For Wedge � 2 nm, the single nucleated region dominates the
reversal. However, the observed nucleation is a nonequilibrim
quantity [41]. For Vact one should estimate the volume of the
equilibrium domain change during reversal. Considering the
dot size is smaller than the domain size (∼26 nm in this study),
we can treat the dot as a single domain particle and therefore
approach Vact to the total volume of the dot, Vact ∼ π (rcore +
Wedge)2td. Taking HK = H eff

K [Eq. (11)], we arrive at

σcore(edge) = σK =
√

2λkBT H eff
K

Ms[π (rcore + Wedge)2td]
, (16)

where σK is σcore(edge) in this region. It can be seen that Eq. (16)
[indicated by the gray dashed line in Fig. 4(b)] gives results
reasonably close to the numerical results.

For Wedge � 3 nm, the common behavior of spins in the core
starts to deviate from that in the edge, as we show in Fig. 4(a).
Similarly we find that σcore deviates from σedge [Fig. 4(b)].
In this region, the different reversal mode of core spins with
that of edge spins suggests that Vact in the edge approaches to
the edge volume, Vact ∼ π [(rcore + Wedge)2 − (rcore)2]td. Using
Eq. (15) with HK ∼ H

edge
c = Hn [Eq. (12)] σedge in this region,

σn, is [purple solid line in Fig. 4(b)]

σn =
√

2λkBT Hn

Msπ [(rcore + Wedge)2 − (rcore)2]td
. (17)

For Wedge � l
edge
DW , H core

c saturates at Hp [Eq. (14)]. The
different reversal behavior of core spins to that of edge spins
brings us to the estimation of the activation volume in the core
as the core volume, Vact ∼ π [((rcore)2]td. Using Eq. (15) with
HK ∼ H core

c = Hp [Eq. (14)] we arrive at [black dashed line
in Fig. 4(b)]

σp =
√

2λkBT Hp

Msπr2
coretd

, (18)

where σp is σcore in this region. Equations (17) and (18) give
values of σcore(edge) roughly a factor of 2 different from the
numerical results [Fig. 4(b)]. Given the assumptions involved
the difference is reasonable agreement.

D. Effect of interfacial exchange coupling on the reversal modes

Finally we investigate the effect of core/edge exchange
coupling strength Jce on the reversal modes in the nanodot. To
do so we vary the normalized interfacial exchange coupling
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FIG. 5. (Color online) (a) Coercivity of the core as a function of
the normalized core/edge exchange coupling strength at varied width
of edges. The core/edge exchange coupling strength is normalized to
the exchange interaction between spins in the core (edge). Dashed
lines are guided by the eye. (b) Coercivity of the edge as a function of
the normalized core/edge exchange coupling strength. Dashed curves
represent a fitting to the Langevin function [Eq. (19)].

strength J̃ce = Jce/Jcore(edge) from 0 (no coupling) to 1 which
corresponds to the strong coupling studied in detail in
the previous section. Here, we also perform hysteresis-loop
calculations for varied edge width Wedge.

Figure 5(a) shows the coercivity of the core H core
c as a

function of J̃ce for Wedge = 1,3, and 7 nm to cover the three
well-separated regimes of reversal modes observed in our
system. We observe that for Wedge = 1 nm the core coercive
field H core

c presents a minimum at a relatively weak coupling
strength, similar to results observed in hard/soft structures,
where the observed minimum is related to the two-spin
behavior [42]. Considering that the local minimum of H core

c
happens when Jedge � Jce (J̃ce � 1/20) in narrowed edges
(Wedge � 2 nm), all spins in the edge might behave as a single
macrospin. During the reversal, the single-spin behavior in the
edge could provide a torque to spins in the core and yield the
local minimum of H core

c , which has been previously observed
in the two-spin model [42] as well as in the experiment [43].

As the coupling increases, the coercive field saturates to
some value which has been already discussed in previous
sections of the present work. For edge widths larger than
or equal to 3 nm, the minimum of the core coercive field
disappears and a monotonous decrease in H core

c to a saturation
value is observed. For Wedge � 7 nm [equal to l

edge
DW given by

Eq. (13)], this saturation value corresponds to the domain-wall
depinning field. Therefore, the interface coupling dependence
of the core coercive field for Wedge � 7 nm is similar.

On the other hand, the edge coercive field H
edge
c consistently

increases with increasing interfacial exchange coupling to a
saturation value [see Fig. 5(b)] following a Langevin law
representing the effective bias field created in the edge by
the coupling to the core, in direct analogy to a paramagnet
magnetization in the presence of an external field and thermal
fluctuations [44]. This effective bias field is comparable to the

external field applied in the calculation of hysteresis loops and
can be estimated by

H edge
c (J̃ce) = H

edge
c,1 L(βμedgeHex), (19)

where Hex estimates the average effective bias field in the edge
induced by the interfacial coupling, and μedge = MedgeVedge

is the saturation magnetization of the edge. The Langevin
function is L(x) = coth(x) − 1/x. H

edge
c,1 is a fitting constant

and coincides with H
edge
c at J̃ce = 1.0 (calculated in the

previous sections). We can assume that μedgeHex = VedgedJ̃ce

where d is a parameter that measures the energy transferred
from the core to the edge via the interfacial coupling. This
parameter is expected to depend on the volume of the edge,
Vedge ∼ W 2

edgetd, so that as the thickness is fixed for all Wedge,
we expect that d ∼ 1/W 2

edge similar to that in a soft/hard bilayer
structure, Hex ∝ 1/t2

soft [23]. In Fig. 5(b) we show that indeed
this relation fits very well to simulations.

IV. DISCUSSION AND CONCLUSIONS

To summarize, using atomistic spin model simulations, we
have investigated reversal modes in patterned L10 FePt dots
with damaged edges in the presence of thermal fluctuations.
Specifically, the calculated dot is composed of a hard magnetic
core, which represents the undamaged part of the dot, and
the damaged edge with soft magnetic properties. We have
investigated the effects of the extent of damage on the edge
by varying its width. We observe that the nucleation initiates
reversal for all width of edges. The increased edge width
linearly decreases and then saturates the required field for
nucleation, with the curvature of the initially nucleated region
reducing from positive to negative. Furthermore, the increased
edge width reduces the thermally induced switching field dis-
tribution, which is found related to both the nucleation field and
the activation volume. We have further studied reversal modes
in dots with varied core/edge interfacial coupling strength,
which could possibly result from the core/edge interfacial
roughness. For dots with narrow edges, the reversal behaves
in a similar way with that obtained in the two-spin model,
suggesting that we can treat all spins in the edge as a single
effective macrospin. In addition, we describe the coercivity
of the edge using the Langevin function, representing the
competition between the effective field generated from the
core/edge coupling strength and the thermal fluctuations.

While the numerical simulation by the atomistic spin
model is sufficient to explain the magnetization reversal, it is
insightful to digest these results by simpler analytic methods so
that the key physics can be highlighted. In some cases studied
here, the reversal dynamics of the minority spins is mainly
one dimensional. We are thus motivated to employ the linear
spin chain model to capture the one-dimensional dynamics.
Specifically at narrow edges the linear chain model is able to
estimate the required field for the nucleation. As the edge width
increases the nucleation field of core spins fits to the domain-
wall pinning field at the core/edge interface. Considering the
computationally intensive nature of the atomistic spin model
simulation, these analytic theories can provide a global sketch
for different parameters at minimal costs.
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Comparing to previous studies focused on the reversal
modes along the layer-growth direction in the typical exchange
spring media, here we present detailed two-dimensional
reversal behaviors on the patterned dot plane as well as the
corresponding thermally induced switching field distribution,
both of which in fact dominate properties of typical patterned
dots and cannot be investigated by standard micromagnetic
calculations. We also note that different magnetic properties
of the edge, which have been assumed constant values in
this study and have not been experimentally probed, only
vary the characteristic length of different reversal modes
and the corresponding coercivity fields without affecting
the validity of theories. According to our study here, the
presence of damaged edges with uniform magnetic properties
reduces the thermally induced switching field distribution,
and the width of the damaged edge significantly changes the
coercivity in patterned dots. Therefore, the experimentally
observed broadening of the switching field distribution in
patterned L10 FePt dots with damaged edges [11] should
be attributed to extrinsic properties of the nanodots created
by patterning processes, for example, the variation in either
the width or the magnetic properties of the damaged edges.
As long as we can precisely control properties of damaged
edges by applying a proper patterning technique, for example,
ion implantation [20], we could realize exchange spring
bit-patterned media without additional soft layers.
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APPENDIX: LINEAR CHAIN MODEL

In order to quantify the variation of the coercivity for narrow
edge thicknesses we have developed a 1D atomistic linear
chain model, simplifying the whole dot into a one-dimensional
region started from the center of the core to the edge. Each
spin in the chain model represents the average spin within a
given atomic plane, and we can write down the following spin
Hamiltonian:

Hi ′ = −
∑
i ′,j ′

Ji ′Si ′ · Sj ′ − ki ′
(
Sz

i ′
)2 − μi ′Happ · Si ′ , (A1)

where i ′, j ′ label different spins with the identical moment
μ. J is the intralayer exchange coupling, S is the unit
vector representing the spin direction, k is the anisotropy
constant, and Happ is the external applied field. We set
μ = μcore = μedge = 1.5 μB, k = kcore = 4.9×10−23 J/link
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FIG. 6. (Color online) Effective value of anisotropy, calculated
by the linear chain model, as a function of the width of the edge. The
gray dashed line is the linear fitted function. Inset shows the calculated
layer-resolved magnetization prior to magnetization reversal in the
core in the linear chain model. The atomic plane is counted from
the center of the core toward the edge, and the vertical dashed line
denotes the core/edge interface. The blue area indicates the nucleated
region for the edge width of 2 nm.

for spins in the core and k = kedge = 1×10−24 J/link for
those in the edge. We allow reduced exchange coupling at the
core/edge interface by writing the exchange energy between
interface spins as

Hint = JintSi ′ · Sν ′ , (A2)

where Jint is the interface exchange coupling, and ν ′ labels
spins in separate regions (core or edge) from those labeled
by i ′.

The equilibrium state of the spin system is determined by
solving the Landau-Lifshitz equation, with no precession term,

∂Si ′

∂t
= − γ

(1 + λ2)
Si ′ × λ(Si ′ × Hi ′,eff), (A3)

where λ is the intrinsic damping parameter, γ is the absolute
value of the gyromagnetic ratio, and Hi ′,eff is the effective
magnetic field in each atomic plane, given by

Hi ′,eff = − 1

μi ′

∂(Hi ′ + Hint)

∂Si ′
. (A4)

In the inset of Fig. 6, we show the calculated layer-resolved
magnetization within the spin chain model with various
Wedge, after positively saturating all spins and then applying a
corresponding negative field prior to magnetization reversal in
the core. We number the atomic plane from the center of the
core to the edge, and the vertical dashed line in the inset of
Fig. 6 denotes the core/edge interface. Increasing Wedge gives
rise to increasing penetration of the domain wall into the core.
From the energy contributed to the reversal, we estimate a
normalized effective value of the anisotropy constant Knorm

eff
by integrating the anisotropy energy over the domain-wall
width from the edge to the core in the nucleated region (see
the blue region in the inset of Fig. 6 for Wedge = 2 nm) and
then normalizing to Kcore. This quantifies the reduction in the
energy barrier due to the exchange spring. Figure 6 illustrates
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the variation of Knorm
eff with Wedge. We observe a linear decrease

in Knorm
eff with the increase in Wedge, and we further describe

the linear decrease as (gray dashed line in Fig. 6)

Knorm
eff = 1 − bWedge, (A5)

where b = 0.324 (nm−1) obtained from fitting. Since a single
nucleated area dominates the reversal in the region of narrow

soft edges, we then estimate the coercive field as an effective
anisotropy field of the nucleated area H eff

K , indicated by the
gray dashed line in Fig. 4(a),

H core(edge)
c = H eff

K = H core
K (1 − bWedge). (A6)
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