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Magnetic nanoparticles with Néel surface anisotropy, different internal structures, surface arrangements, and
elongation are modeled as many-spin systems. The results suggest that the energy of many-spin nanoparticles
cut from cubic lattices can be represented by an effective one-spin potential containing uniaxial and cubic
anisotropies. It is shown that the values and signs of the corresponding constants depend strongly on the
particle’s surface arrangement, internal structure, and shape. Particles cut from a simple cubic lattice have the
opposite sign of the effective cubic term, as compared to particles cut from the face-centered cubic lattice.
Furthermore, other remarkable phenomena are observed in nanoparticles with relatively strong surface effects.
�i� In elongated particles surface effects can change the sign of the uniaxial anisotropy. �ii� In symmetric
particles �spherical and truncated octahedral� with cubic core anisotropy surface effects can change the sing of
the latter. We also show that the competition between the core and surface anisotropies leads to a new energy
that contributes to both the second- and fourth-order effective anisotropies. We evaluate energy barriers �E as
functions of the strength of the surface anisotropy and the particle size. The results are analyzed with the help
of the effective one-spin potential, which allows us to assess the consistency of the widely used formula
�E /V=K�+6Ks /D, where K� is the core anisotropy constant, Ks is a phenomenological constant related to
surface anisotropy, and D is the particle’s diameter. We show that the energy barriers are consistent with this
formula only for elongated particles for which the surface contribution to the effective uniaxial anisotropy
scales with the surface and is linear in the constant of the Néel surface anisotropy.
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I. INTRODUCTION

Understanding the thermally-activated switching of mag-
netic nanoparticles is crucial to many technological applica-
tions and is challenging from the point of view of basic
research. Surface effects have a strong bearing on the behav-
ior of magnetic nanoparticles. They exist almost inevitably
due to many physical and chemical effects including crystal-
lographic arrangement on the surface, oxidation, broken sur-
face bonds, existence of surfactants, etc. Magnetic particles
are often embedded in nonmagnetic matrices which alter the
magnetic properties of the surface in many ways such as
additional surface tension and possible charge transfer.

Consequently, the properties of magnetic particles are not
the same as those of the bulk material, and many experi-
ments have shown an increase in the effective magnetic an-
isotropy due to surface effects.1–4 Quantum ab initio studies
have revealed different anisotropy and magnetic moment at
the surface of magnetic clusters embedded in matrices.5 Syn-
chrotron radiation studies have confirmed that both spin and
orbital moments at the surface differ significantly from their

bulk counterparts.6 Recent �-SQUID experiments on iso-
lated clusters1,2 produced more reliable estimations of sur-
face anisotropy.

Thermal measurements have become an important part of
the characterization of systems of magnetic nanoparticles.
Often, these measurements include a complex influence of
interparticle interactions. However, in other cases, measure-
ments on dilute systems can provide information on indi-
vidual particles. The results show that even in these cases the
extracted information is not always consistent with the ap-
proximation picturing the particle as a macroscopic magnetic
moment, and this is usually attributed to surface effects.

Experimentally, the enhancement of the anisotropy at the
surface often leads to an increase in the blocking temperature
of single-domain particles from which the values of the en-
ergy barriers �E may be extracted. The influence of the sur-
face manifests itself in the fact that the values �E /V are
different from that of the bulk, i.e., there is an effective an-
isotropy Keff that is not exactly proportional to the particle’s
volume V.
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One can expect that the effect of the surface reduces when
the particle size increases. In Ref. 3 it was suggested that the
effective anisotropy scales as the inverse of the particle’s
diameter D according to

�E/V = Keff = K� +
6Ks

D
. �1�

Here K� is the anisotropy constant for D→�, presumably
equal to the bulk anisotropy, and Ks is the “effective” surface
anisotropy. We would like to emphasize that this formula has
been introduced in an ad hoc manner, and it is far from
evident that the surface should contribute into an effective
uniaxial anisotropy �related to the barrier �E� in a simple
additive manner. Actually one cannot expect Ks to coincide
with the atomistic single-site anisotropy, especially when
strong deviations from non-collinearities leading to
“hedgehog-like” structures appear.7 The effective anisotropy
Keff appears in the literature in relation to the measurements
of energy barriers, extracted from the magnetic viscosity or
dynamic susceptibility measurements. The surface aniso-
tropy should affect both the minima and the saddle point of
the energy landscape in this case. The origin of Keff may be
expected to be different from that obtained from, e.g., mag-
netic resonance measurements. In the latter case the magne-
tization dynamics depends on the stiffness of the energy
minima modified by the surface effects. Despite its ad hoc
character, Eq. �1� has become the basis of many experimental
studies with the aim to extract the surface anisotropy from
thermal magnetization measurements �see, e.g., Refs. 4, 8,
and 9� because of its mere simplicity. Up to now there were
no attempts to assess the validity of Eq. �1� starting from an
atomistic surface anisotropy model such as the Néel model
for surface anisotropy.

The aim of the present paper is to understand the influ-
ence of the surface anisotropy on the behavior of magnetic
particles with different surface arrangements, shapes, and
sizes. Although various crystal structures have been investi-
gated, the overall particle properties were kept close to Co.
With the help of numerical modeling of magnetic particles as
many-spin systems, we show that the energy of the many-
spin particle can be effectively represented by that of an
effective one-spin particle with both uniaxial and cubic an-
isotropy terms. The effective anisotropy constants depend on
the surface arrangement of the particle, crystal structure, and
shape. We numerically evaluate the energy barriers of many-
spin particles and show that they can also be understood in
terms of the effective one-spin approximation. Incidentally,
this allows us to establish the conditions for the validity of
Eq. �1� which turns out to correctly describe the magnetic
behavior of elongated particles only.

II. FROM THE ATOMISTIC TO THE EFFECTIVE
ENERGY

A. Atomistic model

We consider the atomistic model of a magnetic nanopar-
ticle consisting of N classical spins si �with �si�=1� taking
account of its lattice structure, shape, and size.7,10–18 The

magnetic properties of the particle can be described by the
anisotropic Heisenberg model

H = −
1

2
J�

ij

si · s j + Hanis, �2�

where J is the nearest-neighbor exchange interaction and
Hanis contains core and surface anisotropies. In the present
work, the exchange coupling is assumed to be the same ev-
erywhere in the particle, i.e., J is taken to be the same for the
intracore, intrasurface, and core-surface coupling �see further
discussion at the end of this section�.

The surface anisotropy is often thought to favor the spin
orientation normal to the surface. This is the so-called trans-
verse anisotropy model �TSA�. However, a more solid basis
for understanding surface effects is provided by the Néel
surface anisotropy �NSA�,1,15,19,20 which takes into account
the symmetry of local crystal environment at the surface. The
simplest expression for the NSA that will be used below is,
as the exchange energy, a double lattice sum over nearest
neighbors i and j,

Hanis
NSA =

Ks

2 �
ij

�si · uij�2, �3�

where uij are unit vectors connecting neigboring sites. One
can see that for perfect lattices the contributions of the bulk
spins to Hanis

NSA yield an irrelevant constant, and the anisotropy
arising for surface spins only because of the local symmetry
breaking is, in general, biaxial. For the simple cubic �sc�
lattice and the surface parallel to any of crystallographic
planes, an effective transverse surface anisotropy arises for
Ks�0. In all other cases NSA cannot be reduced to TSA. In
fact, Eq. �3� can be generalized so that it describes both
surface and bulk anisotropy. It is sufficient to use different
constants Ks for different bond directions uij to obtain a
second-order volume anisotropy as well. However, to obtain
a cubic volume anisotropy that is fourth order in spin com-
ponents, a more serious modification of Eq. �3� is required.
Thus, for simplicity, we will simply use Eq. �3� to describe
the surface anisotropy and add different kinds of anisotropy
in the core.

For the core spins, i.e., those spins with full coordination,
the anisotropy energy Hanis is taken either as uniaxial with
easy axis along z and a constant Kc �per atom�, that is

Hanis
uni = − Kc�

i

si,z
2 �4�

or cubic

Hanis
cub =

1

2
Kc�

i

�si,x
4 + si,y

4 + si,z
4 � . �5�

Dipolar interactions are known to produce an additional
“shape” anisotropy. However, in the atomistic description,
their role in describing the spin noncollinearities is negligible
as compared to that of all other contributions. In order to
compare particles with the same strength of anisotropy in the
core, we assume that the shape anisotropy is included in the
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core uniaxial anisotropy contribution. We also assume that in
the ellipsoidal particles the magnetocrystalline easy axis is
parallel to the elongation direction.

In magnetic nanoparticles or nanoclusters, the number of
surface spins Ns is comparable to or even larger than the
number of core spins Nc. In addition, the surface anisotropy
has a much greater strength than the core anisotropy because
of the local symmetry breaking. We use the core anisotropy
value typical for cobalt, Kc�3.2�10−24 J/atom. Numerous
experimental results4,8,9,21 show that the value of the surface
anisotropy in Co particles embedded in different matrices
such as alumina, Ag or Au, as well as in thin films and
multilayers, could vary from Ks�10−4J to Ks�J. In the
present study we will consider the surface anisotropy con-
stant Ks as a variable parameter. For illustration we will
choose values of Ks 10–50 times larger than that of the core
anisotropy, in accordance with those reported in Ref. 4 for
Co particles embedded into alumina matrices. Such values of
Ks are also compatible with those reported in Refs. 22–24.
All physical constants will be measured with respect to the
exchange coupling J, so we define the following reduced
anisotropy constants

kc � Kc/J, ks � Ks/J . �6�

The core anisotropy constant will be taken as kc�0.01 and
kc�0.0025. On the other hand, the surface anisotropy con-
stant ks will be varied. Note that we are using atomistic
temperature-independent constants for anisotropies that
should not be confused with temperature-dependent micro-
magnetic anisotropy constants K�T�. The relation between
atomistic and micromagnetic uniaxial and cubic anisotropy
constants within the mean-field approximation can be found
in Ref. 25.

B. Effective energy

Investigation of the magnetization switching of a particle
consisting of many atomic spins is challenging because of
the multidimensionality of the underlying potential that can
have a lot of minima of different topologies, connected by
sophisticated paths. Examples are the “hedgehog” structures
realized in the case of a strong enough surface anisotropy
that causes strong noncollinearity of the spins. Obviously in
this case Eq. �1�, relevant in the one-spin description of the
problem, cannot be a good approximation. Thus an important
question that arises here is whether it is possible to map the
behavior of a many-spin particle onto that of a simpler model
system such as one effective magnetic moment. Analysis of
the energy potential is unavoidable since it is a crucial step in
calculating relaxation rates and thereby in the study of the
magnetization stability against thermally-activated reversal.

In the practically important case of dominating exchange
interaction, or equivalently, only a small noncollinearity of
the spins, the problem dramatically simplifies, so that the
initial many-spin problem can be reduced to an effective
one-spin problem �EOSP�. In the first approximation, one
can consider spins as collinear and calculate the contribution
of the surface anisotropy to the energy of the system depend-
ing on the orientation of its global magnetization m ��m�

=1�. The resulting energy scales as the number of surface
spins, is linear in Ks and depends on the crystal structure and
shape. This we refer to as the first-order surface-anisotropy
energy E1. Together with the core anisotropy energy �per
spin�

Ec =
Nc

N
Kc� − mz

2, uniaxial,

1

2
�mx

4 + my
4 + mz

4� , cubic, � �7�

E1 can lead to Eq. �1�. However, for crystal shapes such as
spheres or cubes E1 vanishes by symmetry. In Ref. 15 it was
shown that for an ellipsoid of revolution with axes a and b
=a�1+��, ��1, cut out of an sc lattice so that the ellipsoid’s
axes are parallel to the crystallographic directions, the first-
order anisotropy is given by

E1 = − Kuamz
2, Kua 	 −

Ns

N
Ks� , �8�

where the z axis is assumed to be parallel to the crystallo-
graphic axis b. That is, E1 scales with the particle size as
	1/N1/3	1/D. One can see that, for the uniaxial core an-
isotropy along the elongation direction of the ellipsoid, Ks
	0 and ��0, Eq. �1� follows. On the contrary, in other
cases, as for example, ��0, Ks�0 Eq. �1� does not apply.

If one takes into account the noncollinearity of the spins
that results from the competition of the exchange interaction
and surface anisotropy and is described by the angles of or-
der 
�	N1/3Ks /J, a contribution of second order in Ks
arises in the particle effective energy.15 The spin noncol-
linearity depends on the orientation of m and results in the
effective cubic anisotropy

E2 = Kca�mx
4 + my

4 + mz
4�, Kca 	 �

Ks
2

zJ
, �9�

where z is the number of nearest neighbors and for the sc
lattice one has ��0.53466. This equation was obtained ana-
lytically for Ks�J in the range of particle sizes large enough
�N1� but small enough so that 
� remains small. Numeri-
cal calculations yield Kca slightly dependent on the size since
the applicability conditions for Eq. �9� are usually not fully
satisfied. The ratio of the second-to first-order surface con-
tributions is

E2

E1
	

Ks

J

N1/3

�
. �10�

It can be significant even for Ks�J due to the combined
influence of the large particle size and small deviation from
symmetry, ��1. Since Kca is nearly size independent �i.e.,
the whole energy of the particle scales with the volume�, it is
difficult to experimentally distinguish between the core cubic
anisotropy and that due to the second-order surface contribu-
tion �see discussion later on�. The reason for the size inde-
pendence of Kca is the deep penetration of spin noncollineari-
ties into the core of the particle. This means that the angular
dependence of the noncollinear state also contributes to the
effective anisotropy. Interestingly this implies that the influ-
ence of the surface anisotropy on the overall effective aniso-
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tropy is not an isolated surface phenomena and is dependent
on the magnetic state of the particle. We note that this effect
is quenched by the presence of the core anisotropy which
could screen the effect at a distance of the order of domain
wall width from the surface.

Taking into account the core anisotropy analytically to
describe corrections to Eq. �9� due to the screening of spin
noncollinearities in the general case is difficult. However,
one can consider this effect perturbatively, at least to clarify
the validity limits of Eq. �9�. One obtains26 an additional
mixed contribution that is second order in Ks and first order
in Kc

E21 = Kcsmg�m�, Kcsm 	 �̃Ns

KcKs
2

J2 , �11�

where g�m� is a function of m� which comprises, among
other contributions, both the second- and fourth-order contri-
butions in spin components.26 For example, for an sc lattice,
g�� ,�=0�=−cos2 �+3 cos4 �−2 cos6 �, which is shown later
to give agreement with numerical simulations. This mixed
contribution, called here the core-surface mixing �CSM� con-
tribution, should satisfy Kcsm�Kca which requires

NsKc/J � 1. �12�

This is exactly the condition that the screening length �i.e.,
the domain-wall width� is still much greater than the linear
size of the particle, 
	
J /Kc�D	N1/3. For too large sizes
the perturbative treatment becomes invalid.

Thus we have seen that in most cases the effective aniso-
tropy of a magnetic particle, considered as a single magnetic
moment, can be approximately described as a combination of
uniaxial and cubic anisotropies.15,18,26 Consequently, collect-
ing all these contributions and defining the EOSP energy as

EEOSP =
1

J
�Ec + E1 + E2 + E21� , �13�

one can model the energy of a many-spin particle as

EEOSP = − kua
effmz

2 −
1

2
kca

eff �
�=x,y,z

m�
4 . �14�

The subscripts ua and ca stand for uniaxial and cubic aniso-
tropy, respectively. The effective anisotropy constants are
normalized to the exchange constant J, according to the defi-
nition Eq. �6�. Note that we have changed the sign of the
cubic anisotropy constant to be consistent with more custom-
ary notations.

We would like to remark here that the effective energy
potential �14� is an approximation to the full energy of a
many-spin particle, especially with respect to CSM contribu-
tion �11�. More precisely, the function g�m� in Eq. �11� con-
tains terms of various orders �see the expression in the text
et seq.�, and thus fitting the many-spin particle’s energy to
the effective potential �14� amounts to truncating the func-
tion g�m� to a fourth-order polynomial. As such, when the
orders of the anisotropy contributions of the initial many-
particle match those of the effective potential �14�, they get
renormalized by the corresponding contributions from Eq.

�11�. Indeed, in Ref. 18, where the energy of a many-spin
spherical particle with uniaxial anisotropy in the core and
TSA on the surface was computed using the Lagrange-
multiplier technique �see below�, it turned out that the core
anisotropy is modified. However, when there is no uniaxial
anisotropy in the initial many-spin particle, i.e., when the
core anisotropy is cubic and the particle is perfectly sym-
metrical �no elongation�, truncating the function g�m� to the
fourth-order generates an artificial uniaxial anisotropy,
though very small. On the other hand, even if the core an-
isotropy is not uniaxial but the particle presents some elon-
gation, the effective energy does exhibit a relatively large
uniaxial contribution induced by the surface due to the term
in Eq. �8�. Therefore, the second-order term with the coeffi-
cient kua

eff in Eq. �14� stems, in general, from the two contri-
butions �8� and �11�. Similarly, the fourth-order term with the
coefficient kca

eff comprises the contribution �9� from the sur-
face, and part of the CSM contribution in Eq. �11�, and also
a contribution from the core if the latter has a cubic aniso-
tropy.

A further remark could be made about exchange coupling
within our model. In Eq. �2� the coupling J is assumed to be
the same in the whole particle. However, in general, it is very
likely that the pairwise exchange interaction varies with the
local environment inside of the particle due to expansion or
compression of the lattice parameter.27 In Refs. 27 and 28
different values of the pairwise exchange interactions inside
a particle with atomic positions, obtained through the mo-
lecular dynamics simulations, were taken from the RKKY
model for the bulk Co. The effect of varying exchange
strengths in the surface with respect to the core moments has
been investigated, e.g., in Refs. 7 and 29, with the conclusion
that this only leads to a quantitative change of the results, as
long as the sign of J remains the same. In the present work,
we assume that the exchange coupling is dominant in com-
parison with anisotropy, and this is one of the validity con-
ditions of the effective model presented above. Nevertheless,
on account of our previous investigations, we believe that
varying for instance the ratio of surface-to-core exchange
coupling should induce a shift in the physical parameters
ranges discussed after Eq. �9� and in Eq. �12�.

We now are going to numerically calculate the effective
energy of spherical, ellipsoidal and truncated octahedral
magnetic particles cut from a lattice with sc, fcc, and hcp
structures. We will plot this energy as a function of the polar
angles of the net magnetic moment m of the particle and fit
it to Eq. �14�. From these fits we extract the effective aniso-
tropy constants kua

eff and kca
eff and compare their behavior with

those predicted by the analytical formulas discussed above in
the case of the sc lattice. We will investigate the differences
between the results for different lattice structures and particle
shapes.

III. NUMERICAL METHOD AND RESULTS

A. Computing method

As mentioned above, the problem of studying the multi-
dimensional energy landscape of the multispin particle is, in
general, very difficult. However, if the exchange J is domi-
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nant over the anisotropy and the spin noncollinearity is
small, one can, to a good approximation, describe the par-
ticle by its net or global magnetization m ��m�=1� as a slow
master variable. All other variables such as spin noncol-
linearities quickly adjust themselves to the instantaneous di-
rection of m. Thus one can treat the energy of the particle as
a function of m only. Technically this can be done with the
help of the Lagrange multiplier technique15 by considering
the augmented energy F=H−N� · ��−m�, where �
��isi / ��isi� and H is the atomistic energy of the particle,
Eq. �2�. The Lagrange-multiplier term produces an additional
torque on the atomic spins that forces the microscopic net
magnetization � to coincide with m. The equilibrium state of
the spin system is determined by solving the Landau-Lifshitz
equation �without the precession term and with the damping
coefficient �=1� and an additional equation for �

dsi

dt
= − �si � �si � Fi��,

d�

dt
= − N�� − m� , �15�

where the effective field Fi=−�F /�si depends on �. It is
worth noting that the stationary points of F found with this
method are also stationary points of the actual Hamiltonian
H. Indeed, for these orientations of m no additional torque is
needed to support this state, thus the solution of our equa-
tions yields ���m�=0. For all other directions, the unphysi-
cal Lagrange-multiplier field introduces distortions of the mi-
croscopic spin configuration. Nevertheless, if the exchange is
dominant, these distortions remain small. A further advan-
tage of this technique is that it can produce highly noncol-
linear multidimensional stationary points15,18,30 in the case of
strong surface anisotropy. Here, again, these stationary points
are true points because of the condition ���m�=0. In order
to check the correct loci of the saddle points, we computed
the eigenvalues and gradients of the Hessian matrix associ-
ated with the Hamiltonian of Eq. �2�, with the results that are
exactly the same as those obtained by the much simpler
Lagrange-multiplier method.

In this work, we show that the magnetic behavior of small
particles is very sensitive to the surface arrangement, shape
of the particles, and underlying crystallographic structure. To
investigate the various tendencies, we have considered par-
ticles cut from lattices with the simple cubic �sc�, body-
centered cubic �bcc�, face-centered cubic �fcc�, hexagon
closed-packed �hcp�. Although experimental studies provid-
ing transmission electron microscopy images show particles
resembling truncated octahedra,1,2 making realistic particle
shapes and surface arrangements proves to be rather com-
plex. Truncated octahedra have been included in our studies
as an ideal case for fcc crystals. The reality is somewhat
more complicated, though. In Ref. 2, in order to interpret the
experimental results of the 3D switching field curve, the so-
called Stoner-Wohlfarth astroid, it was assumed that a few
outer layers in the truncated octahedral particle were mag-
netically “dead,” leading to an effective elongation and
thereby to a non-perfect octahedron. Producing such a fac-
eted elongated particle by somehow cutting the latter is an
arbitrary procedure. In order to minimize the changes in the
surface structure caused by elongation, we assumed a spheri-

cal particle or introduced elliptical elongation along the easy
axis. This kind of structure has been the basis of many the-
oretical studies using the Heisenberg Hamiltonian �see, e.g.,
Refs. 7, 11, 14–18, and 31�.

Regarding the arrangement at the particle surface, an ap-
propriate approach would be to use molecular-dynamic
techniques27,32,33 based on the empirical potentials for spe-
cific materials. This would produce more realistic non-
perfect surface structures, more representative of what it is
hinted at by experiments. However, these potentials exist
only for some specific materials and do not fully include the
complex character of the surface. Moreover, the particles
thus obtained �see, e.g., Ref. 34�, may have nonsymmetric
structures, and may present some dislocations. All these phe-
nomena lead to a different behavior of differently prepared
particles which will be studied in a separate publication.

In the present work, in order to illustrate the general ten-
dency of the magnetic behavior, we mostly present results
for particles with “pure” nonmodified surfaces, namely
spheres, ellipsoids and truncated octahedra cut from regular
lattices. Even in this case, the surface arrangement may ap-
pear to be very different �see Fig. 1� leading to a rich mag-
netic behavior.

B. Spherical particles

We compute the 3D energy potential as a function of the
spherical coordinates �� ,�� of the net magnetization m of a
many-spin particle. We do this for a spherical particle with
uniaxial anisotropy in the core and NSA, cut from sc, fcc and
hcp lattices, and for different values of the surface anisotropy
constant, ks. Figure 2 shows energy landscapes for spherical
particles cut from an sc lattice. One can see that as ks in-
creases the global minima move away from those defined by
the core uniaxial anisotropy, i.e., at �=0,� and any �, and
become maxima, while new minima and saddle points de-
velop which are reminiscent of cubic anisotropy. Now, in
Fig. 3 we present the corresponding 2D energy potential ��
=0�. From this graph, we see that the energy of the many-
spin particle is well reproduceed by Eq. �14� when ks is
small, which shows that such a many-spin particle can be
treated as an EOSP with an energy that contains uniaxial and
cubic anisotropies. However, as was shown in Ref. 18, when
the surface anisotropy increases to larger values this mapping
of the many-spin particle onto an effective one-spin particle
fails.

Repeating this fitting procedure for other values of ks we
obtain the plots of kua

eff and kca
eff in Fig. 4. We first see that

these effective constants are quadratic in ks, in accordance

FIG. 1. Two particles cut from fcc structure: Spherical �left� and
truncated octahedron �right�.
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with Eqs. �9� and �11�. In addition, the plot on the right
shows an agreement between the constant kua

eff, excluding the
core uniaxial contribution in Eq. �7�. These results confirm
those of Refs. 18, 26, and 35 that the core anisotropy is

modified by the surface anisotropy, though only slightly in
the present case.

Comparing the energy potential in Fig. 2 for the sc lattice
and that in Fig. 5 for the fcc lattice one realizes that, because
of the fact that different underlying structure produces differ-
ent surface spin arrangements, the corresponding energy po-
tentials exhibit different topologies. For instance, it can be
seen that the point �=� /2 ,�=� /4 is a saddle in particles cut
from an sc lattice and a maximum in those cut from the fcc
lattice. Spherical particles cut from the sc lattice exhibit an
effective fourfold anisotropy with kca

eff	0 �see Fig. 4 and Eq.
�14��. As such, the contribution of the latter to the effective
energy is positive, and this is compatible with the sign of Kca
in Eq. �9�. In Figs. 6 and 7, we plot the 2D energy potential
and the effective anisotropy constants, respectively, for a
spherical particle with fcc structure. For a spherical fcc par-
ticle, the effective cubic constant kca

eff is positive �see Fig. 7�,
and as for the sc lattice, it is quadratic in ks. As mentioned
earlier, the coefficient � in Eq. �9� depends on the lattice
structure and for fcc it may become negative. To check this
one first has to find an analytical expression for the spin
density on the fcc lattice, in the same way the sc lattice
density was obtained in Ref. 15 �see Eq. �6� therein�. The
corresponding developments are somewhat cumbersome and

FIG. 2. Energy potentials of a spherical many-spin particle of
N=1736 spins on an sc lattice with uniaxial anisotropy in the core
�kc=0.0025� and NSA with constant �a� ks=0.005, �b� ks=0.112, �c�
ks=0.2, and �d� ks=0.5.

(a)

(b)

FIG. 3. �Shifted� 2D energy potentials of a spherical many-spin
particle of N=1736 spins on an sc lattice with uniaxial anisotropy
in the core �kc=0.01� and NSA with constant �a� ks=0.1, �b� 0.5.
The solid lines are plots of Eq. �14�.

(a)

(b)

FIG. 4. Effective anisotropy constants against ks for a spherical
many-spin particle of N=1736 spins cut from an sc lattice. �b� the
CSM contribution obtained numerically as kua

eff, excluding the core
uniaxial contribution from Eq. �7�. The thick solid lines are plots of
Eqs. �9� and �11� with �=0.
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are now in progress. Likewise, the coefficient �̃ in Eq. �11�
should change on the fcc lattice, thus changing the uniaxial
and cubic contributions as well.

Finally, in particles with the hcp lattice and large surface
anisotropy, we have found that the effective energy potential

is sixfold, owing to the sixfold symmetry inherent to the hcp
crystal structure. The global magnetization minimum is also
shifted away from the core easy direction.

C. Ellipsoidal particles and effect of elongation

Now we investigate the effect of elongation. As discussed
earlier, due to the contribution in Eq. �8�, even a small elon-
gation may have a strong effect on the energy barrier of the
many-spin particle, and in particular on the effective uniaxial
constant kua

eff, as will be seen below. Figure 8 shows the en-
ergy potential of an ellipsoidal many-spin particle with as-
pect ratio 2:3, cut from an fcc lattice. Unlike the energy
potentials of spherical particles, the result here shows that for
large surface anisotropy the energy minimum corresponds to
�=� /2. Indeed, due to a large number of local easy axes on
the surface pointing perpendicular to the core easy axis, the
total effect is to change this point from a saddle for small ks
to a minimum when ks assumes large values. The effective

FIG. 5. Energy potentials of a spherical many-spin particle with
uniaxial anisotropy in the core �kc=0.0025� and NSA with constant
�a� ks=0.005, �b� ks=0.1, �c� ks=0.175, and �d� ks=0.375. The par-
ticle contains N=1264 spins on an fcc lattice.

(a)

(b)

FIG. 6. The same as in Fig. 3 but here for the fcc lattice and
ks=0.025 and 0.375.

FIG. 7. Effective anisotropy constants against ks for a spherical
particle of N=1264 spins cut from an fcc lattice with uniaxial core
anisotropy kc=0.0025. The lines are guides for the eyes.

FIG. 8. Energy potentials of an ellipsoidal particle cut from an
fcc lattice and with uniaxial anisotropy in the core �kc=0.0025� and
NSA with constant �a� ks=0.0125, �b� ks=0.075, �c� ks=0.1, and �d�
ks=0.175.
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uniaxial and cubic anisotropy constants are shown in Fig. 9.
As expected the effective uniaxial constant shows a strong
linear variation and even changes sign at some value of ks, as
opposed to the case of a spherical many-spin particle. On the
other hand, as for the latter case, the constant kca

eff retains its
behavior as a quadratic function of ks. Again, in the case of
an sc lattice kca

eff	0 and on an fcc lattice kca
eff�0.

D. Truncated octahedral particles

Here we consider the so-called truncated octahedral par-
ticles as an example of a minimum close-packed cluster
structure. Real particles are often reported as having this
structure with fcc or bcc underlying lattice �see, e.g., Co or
Co/Ag particles in Refs. 1, 2, and 4�.

Regular truncated octahedrons having six squares and
eight hexagons on the surface have been constructed cutting
an ideal fcc lattice in an octahedral �two equal mutually per-
pendicular pyramids with square bases parallel to the XY
plane� and subsequent truncation. Equal surface densities in
all hexagons and squares can be obtained if the fcc lattice is
initially rotated by 45° in the XY plane �the X axis is taken
parallel to the �1,1,0� direction and the Z axis to the �0,0,1�
direction�. We perform the same calculations as before for a
many-spin particle cut from an fcc lattice, but now with cu-
bic single-site anisotropy in the core and NSA. The results
presented in Fig. 10 show vanishing uniaxial contribution
and the modification of the cubic anisotropy by surface ef-
fects. It can be seen that, similarly to the results discussed
above, the effective cubic constant is again proportional to ks

2

for small ks. This is mainly due to the two contributions, one
coming from the initial core cubic anisotropy and the other
from the surface contribution as in Eq. �9�. It is interesting to
note that the surface contribution can change the sign of the
initially negative cubic core anisotropy constant. We can also
observe an asymmetric behavior of the effective anisotropy
constants with respect to the change of sign of the surface
anisotropy which we found, in general, in all particles with
fcc underlying lattice.

If the fcc lattice is initially oriented with crystallographic
lattice axes parallel to those of the system of coordinates,

then different atomic densities are created on different sur-
faces. This way the surface density along the XY circumfer-
ence is different from that along the XZ one. In Fig. 11 we
plot the dependence of the effective cubic constant kca

eff as a
function of ks for kc�0 and kc	0. The surface contribution
can again change the sign of the initially negative cubic core
anisotropy constant. Besides, we clearly see that the many-
spin particle develops a negative uniaxial anisotropy contri-
bution, induced by the surface in the presence of core aniso-
tropy. This constitutes a clear example of importance of the
surface arrangement for global magnetic properties of indi-
vidual particles.

IV. ENERGY BARRIERS

A. Dependence of the energy barrier on ks

Now we evaluate the energy barriers of many-spin par-
ticles by numerically computing the difference between the
energy at the saddle point and at the minimum, using the

FIG. 9. Effective anisotropy constants against ks for an ellipsoi-
dal particle of N=2044 spins on sc and fcc lattices, with uniaxial
core anisotropy kc=0.0025. The lines are guides for the eyes.

FIG. 10. Effective anisotropy constants against ks for a regular
truncated octahedral particle of N=1289 spins, fcc structure, and
cubic anisotropy in the core with kc�0 and kc	0.

FIG. 11. Effective anisotropy constants against ks for a truncated
octahedral particle with different atomic densities on surfaces. The
particle has N=1080 spins, fcc structure, and cubic anisotropy in
the core with kc�0 and kc	0.
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Lagrangian multiplier technique described earlier. On the
other hand, the EOSP energy potential �14� can be used to
analytically evaluate such energy barriers and to compare
them with their numerical counterparts. Namely, we have
investigated minima, maxima and saddle points of the effec-
tive potential �14� for different values and signs of the pa-
rameters kua

eff and kca
eff and calculated analytically the energy

barrier in each case. The results are presented in Table I. The
energy barriers for the case kua

eff�0 are plotted in Fig. 12. We
remark that for large surface anisotropy ���1, where �
�kca

eff /kua
eff, all energy barriers are simple linear combinations

of the two effective anisotropy constants.
Note that in a wide range of the parameters several energy

barriers �corresponding to different paths of magnetization
rotation� coexist in the system in accordance with the com-
plex character of the effective potential with two competing
anisotropies �see Figs. 2�c� and 8�c��. Because of this com-
petition the symmetry of the anisotropy can be changed lead-
ing to relevant energy barriers in the � or � direction, the
former case is illustrated in Figs. 8�a�–8�c� where switching
occurs between global minima at �=0 and �=� and the lat-
ter is shown in Fig. 8�d� where the large surface anisotropy
has given rise to an easy plane with the stable states corre-
sponding to ��=� /2 ,�=n�� /2� where n is an integer. In
some cases there are multiple energy barriers, but here we
consider only the relevant energy barrier for switching, cor-
responding to the lowest energy path between global
minima.

We have seen that in the case of a spherical particle cut
from an sc lattice, and in accordance with the EOSP energy
potential �14�, kua

eff�0 and kca
eff	0 �see Fig. 4�. For a spheri-

cal particle with an fcc lattice, kua
eff�0,kca

eff�0, as can be seen
in Fig. 7. Finally, for ellipsoidal and truncated octahedral
many-spin particles, the results in Figs. 9 and 11 show that
kua

eff may become negative at some value of ks, since then the
contributions similar to Eqs. �8� and �11� become important.

Figure 13 shows the energy barrier of a spherical particle
cut from an sc lattice as a function of ks. The nonmonotonic
behavior of the energy barrier with ks follows quantitatively

TABLE I. Energy barriers for the effective one-spin particle. The critical angle �c��� is defined by
cos��c����2= �kua

eff+kua
eff�sin���4+cos���4�� / �kca

eff�1+sin���4+cos���4��

kua
eff�0

�=kca
eff /kua

eff Minima �� ,�� Saddle points �� ,�� Energy barriers, �EEOSP

−�	�	−1 �c�� /4� ;� /4 � /2 ;� /4 kua
eff /3−kca

eff /12− �kua
eff�2 /3kca

eff �1.1�
�c�� /4� ;� /4 �c�� /2� ;� /2 −kua

eff /6−kca
eff /12− �kua

eff�2 /12kca
eff �1.2�

−1	�	0 0;0 � /2 ;0 kua
eff+kca

eff /4 �2�
0	�	1 0;� /2 � /2 ;� /2 kua

eff �3�
1	�	2 �c�0� ;� /2 �c�� /2� ;� /2 kua

eff /2+kca
eff /4+ �kua

eff�2 /4kca
eff �4.1�

� /2 ;� /2 �c�� /2� ;� /2 −kua
eff /2+kca

eff /4+ �kua
eff�2 /4kca

eff �4.2�
2	�	� 0;� /2 �c�� /2� ;� /2 kua

eff /2+kca
eff /4+ �kua

eff�2 /4kca
eff �5.1�

� /2 ;� /2 � /2 ;� /4 kca
eff /4 �5.2�

� /2 ;� /2 �c�� /2� ;� /2 −kua
eff /2+kca

eff /4+ �kua
eff�2 /4kca

eff �5.3�

kua
eff	0

−�	�	−1 � /2 ;� /2 �c�� /2� ;� /2 −kua
eff /2+kca

eff /4+ �kua
eff�2 /4kca

eff �6.1�
� /2 ;0 � /2 ;� /4 kca

eff /4 �6.2�
0;� /2 �c�� /2� ;� /4 kua

eff /2+kca
eff /4+ �kua

eff�2 /4kca
eff �6.3�

−1	�	0 � /2 ;0 � /2 ;� /4 kca
eff /4 �7�

0	�	1 � /2 ;� /4 � /2 ;� /2 kca
eff /4 �8�

1	�	2 � /2 ;� /4 �c�� /2� ;� /2 −kua
eff /2+ �kua

eff�2 /4kca
eff �9�

2	�	� �c�� /4� ;� /4 � /2 ;� /4 −kua
eff /6−kca

eff /12− �kua
eff�2 /3kca

eff �10.1�
�c�� /4� ;� /4 �c�� /2� ;� /2 kua

eff /3−kca
eff /12− �kua

eff�2 /12kca
eff �10.2�

FIG. 12. Analytical energy barriers of the EOSP with the poten-
tial �14� as functions of kca

eff /kua
eff=� with kua

eff�0. Analytical formulas
in Table I are labeled.
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that of the EOSP potential �14�. Indeed, the solid line in this
plot is the analytical results �2� and �1.1� from Table I, using
analytical expressions of Eq. �9� together with the pure core
anisotropy contribution �7�. The discrepancy at the relatively
large ks is due to the fact that the analytical expressions are
valid only if the condition �12� is fulfilled; the CSM contri-
bution has not been taken into account.

Figure 14 represents the energy barriers against ks for par-
ticles with different shapes and internal structures. First of
all, one can see a different dependence on ks as compared to
particles with the sc lattice. In the present case, i.e., kua

eff�0,
kca

eff�0, the energy barriers are given by �3� and �4.1� in
Table I. Consequently, for small values of ks with ���	1 and
neglecting the CSM term, the energy barrier is independent
of ks. Accordingly, the nearly constant value of the energy
barrier, coinciding with that of the core, is observed for par-
ticles in a large range of ks. For larger ks, the energy barrier
increases, since kua

eff�0 for particles cut from an fcc lattice.
At very large values of ks, i.e., ks�100kc the energy barriers
strongly increase with ks and reach values larger than that
inferred from the pure core anisotropy.

The energy barriers for ellipsoidal particles are shown in
Fig. 15. Note that in this case the effective uniaxial aniso-

tropy constant kua
eff is a linear function of ks, according to the

analytical result �8� and the numerical results presented in
Fig. 9. Here, the energy barriers are not symmetric with re-
spect to the change of sign of ks. This is due to the fact that
for ks	0 the effective uniaxial constant is a sum of the core
anisotropy and the first-order contribution owing to elonga-
tion. On the contrary, when ks�0, the “effective core aniso-
tropy” kua

eff is smaller than the pure core anisotropy Ec in Eq.
�7�. This means that at some ks kua

eff may change sign. At the
same time the effective cubic anisotropy kca

eff remains positive
and is proportional to ks

2. Accordingly, at the vicinity of the
point at which kua

eff0 �see Fig. 9�, rapid changes of the
character of the energy landscape occur. The analysis, based
on the EOSP potential shows that when kua

eff�0 the energy
barriers of ellipsoidal particles with sc lattice are defined by
�2� and �1.1� in Table I and for negative kua

eff	0 these are
given by �7� and �6.1� in Table I. Note that a regime of linear
behavior in ks exists for both ks	0 and ks�0 �see Fig. 15�,
specially when ks�0.1���1�. In some region of the effec-
tive anisotropy constants, e.g., kua

eff�0, ���	1, the energy
barrier �EEOSPkua

eff, i.e., it is independent of the cubic con-
tribution �ignoring the CSM term�. The interval of these pa-
rameters is especially large in fcc particles with ks	0, for
which kua

eff does not change sign and the energy barriers are
exactly defined by �3� in Table I.

B. Dependence of the energy barrier on the system size

As N→�, the influence of the surface should become
weaker and the energy barriers should recover the full value
KcN. Figure 16 shows energy barriers against the total num-
ber of spins N in particles of spherical shape cut from an sc
lattice and with two values of ks�0. First of all, we note that
in this case the main contribution to the effective anisotropy
consists of two terms: The core anisotropy and the surface
second-order contribution �9�. In agreement with this all en-
ergy barriers of these particles are always smaller than KcN
since, as we showed previously for the sc lattice, kca

eff is nega-
tive and the energy barriers in this case are defined by �2� in
Table I.

Both uniaxial core anisotropy �7� and the main contribu-
tion to the effective cubic anisotropy �9� scale with N. As

FIG. 13. Energy barrier as a function of ks for a spherical par-
ticle cut from an sc lattice. The particle contains N=20 479 spins
and has the uniaxial core anisotropy kc=0.0025. The solid line is a
plot of the analytical expressions �1.1� and �2� from Table I, using
Eqs. �7� and �9�.

FIG. 14. Energy barriers against ks for truncated octahedral par-
ticles cut from an fcc lattice �N=1688� and spherical particles cut
from the fcc �N=1289� and hcp �N=1261� lattices. Uniaxial core
anisotropy with kc=0.0025 is assumed.

FIG. 15. Energy barriers vs ks of ellipsoidal particles with dif-
ferent aspect ratio a /c=0.6667, N=21121, and a /c=0.81, N
=21171, with uniaxial core anisotropy kc=0.0025. The solid lines
are linear fits.
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N→�, the core anisotropy contribution slowly recovers its
full value, i.e., Ec / �KcN�→1. However, from the analytical
expressions Eqs. �7� and �9�, even when N→�, when ne-
glecting the CSM contribution, �E / �KcN� should approach
the value 1−�ks

2 /12kc, which is independent of the system
size. Hence we may conclude that it is the CSM contribution
�11� that is responsible for the recovery of the full one-spin
uniaxial potential. Being very small, this contribution pro-
duces a very slow increase of the energy barrier with the
system size. In fact, we have estimated that even spherical
particles of diameter D=20 nm �an estimation based on the
atomic distance of 4 Å� would have an effective anisotropy
�E / �KcN� that is 13% smaller than that of the bulk.

Truncated octahedra �see Fig. 17� show a behavior similar
to that of the spherical particles. The energy barriers in this
case behave very irregularly due to the rough variation of the
number of atoms on the surface. The same effect was ob-

served in other particles of small sizes. For truncated octahe-
dra this effect arises as a consequence of nonmonotonic
variation of the number of spins on the surface for particles
cut from regular lattices. The effective anisotropy of trun-
cated octahedra particles with large ks�0 is larger than the
core anisotropy in accordance with the fact that kca

eff is posi-
tive for fcc structures and the energy barriers are defined by
�4.1� and �5.1� in Table I.

Finally, in Fig. 18 we present the energy barriers of ellip-
soidal particles with different values of ks and internal sc
structure. The energy barriers in this case are defined by
formulas �1.1� and �2� in Table I. The main contribution
comes from the effective uniaxial anisotropy. The correction
to it due to elongation is positive when ks	0 and negative in
the opposite case. Consequently, particles with ks	0 have
energy barriers larger than that inferred from the core aniso-
tropy, and for those with ks�0 the energy barriers are
smaller. In this case, the energy barrier approximately scales
with the number of surface spins Ns �see Fig. 19�, in agree-
ment with the first-order contribution from elongation �11�.

C. Applicability of the formula Keff=K�+6Ks /D

The results presented above show that in the most general
case, studied here, of a many-spin particle with NSA, this

FIG. 16. Energy barrier as a function of the total number of
spins N for two different values of the surface anisotropy, spherical
particles cut from the sc lattice with uniaxial anisotropy kc

=0.0025 in the core. The dotted and dashed lines correspond to
analytical expressions in Eqs. �7� and �9�. The inset shows a slow
dependence of the difference between these results and the uniaxial
one-particle energy barrier KcN in the logarithmic scale. The lines
in the inset are the analytical expressions in Eqs. �7� and �9�.

FIG. 17. Energy barriers vs N for truncated octahedra with in-
ternal fcc structure and uniaxial core anisotropy with kc=0.0025.

FIG. 18. Energy barriers as a function of the particle size for
ellipsoidal particles with internal sc structure, uniaxial anisotropy
kc=0.0025, and different values of ks.

FIG. 19. Linear fit of energy barriers, vs the surface-to-total
number of spins NS /N, of ellipsoidal particles with aspect ratio 2:3
with ks=−0.041 �circles� and ks=−0.1125 �squares�.
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formula is not applicable, for the following reasons. �i� It
assumes that the overall anisotropy of the particle remains
uniaxial. However, we have shown that the surface aniso-
tropy induces an additional cubic contribution. �ii� It assumes
that the surface anisotropy always enhances that in the core.
In the previous section we saw that both situations can arise.
�iii� It is implicitly based on the hypothesis that the core and
surface anisotropies are additive contributions. As we have
seen above for large ks �Table I� the energy barrier indeed
can be represented as a sum of the effective cubic and
uniaxial anisotropies. However, the cubic anisotropy term is
proportional to ks

2, which is inconsistent with formula �1�.
�iv� It assumes a linear dependence of energy barriers on the
parameter 1 /D, or equivalently Ns /N.

Consequently, spherical or octahedral particles cannot be
described by formula �1�, since in this case �i� no term linear
in ks is obtained and �ii� no term scales as the ratio of the
surface-to-volume number of spins Ns /N. However, in the
case of elongated particles with a not too large surface an-
isotropy �i.e., ���	1 for fcc lattice or ����1 for sc lattice�,
the energy barriers are independent of the effective cubic
anisotropy. In this case, for weakly ellipsoidal particles, for
example, we may write

�EEOSP = kua
eff  kcNc/N + A�ks�/N1/3, �16�

where A is a parameter that depends on the particle elonga-
tion and surface arrangement, and which is positive for ks
	0 and negative in the opposite case. Hence the behavior is
as predicted by formula �1�. An approximately linear behav-
ior in Ns /N was also observed in the case of large surface
anisotropy �1 �see Fig. 12�. However, when N→�, the
“uniaxial anisotropy term” K� is modified by the effective
cubic anisotropy kca

eff	ks
2. In Fig. 19 we plot the energy bar-

riers of small ellipsoidal particles with sc structure, aspect
ratio 2:3, and ks	0 from Fig. 18. For such particles, formula
�1� should be modified as Keff=K�+ �Ks�Ns /N. Accordingly,
in Fig. 19 we plot the energy barrier against Ns /N. These
data are highly linear, especially when small particle sizes
are removed, as shown by the fit in Fig. 19. We note that in
the case of relatively small surface anisotropy ks=−0.041
�though 17 times larger than in the core�, the full core aniso-
tropy K�=Kc /v �v is the atomic volume� can be extracted.
However, for the larger surface anisotropy ks=−0.1125, K�

is renormalized by the surface contribution �9�. On the other
hand, it is not possible to extract the value of ks, since the
exact proportionality coefficient of Eq. �11� is dependent on
the particles surface arrangement and elongation. The effec-
tive anisotropy constant Ks obtained from this fit is much
smaller than the input value, namely, for ks /kc=45 we obtain
from the fit �ks /kc�eff=4.3.

V. CONCLUSIONS

We have studied in detail effective anisotropies and en-
ergy barriers of small magnetic particles within the Néel’s
surface anisotropy model. The present calculations have been
performed in a many-spin approach allowing deviations of
the spins from the collinear state. They show that the mag-
netic behavior of small particles is rich and strongly depen-

dent on the particle surface arrangement. The particular
structure of each particle and the strength of its surface an-
isotropy makes each particle unique and its magnetic prop-
erties different in each case.

Our calculations show that the magnetic behavior of
nanoparticles with Néel surface anisotropy and underlying
cubic lattices is consistent with the effective model of one-
spin particle with uniaxial and cubic anisotropies. The
strength of this additional cubic anisotropy is dependent on
many parameters, including the shape and elongation of the
particles, and the underlying crystal structure which pro-
duces a different surface arrangement. The analytical results
have made it possible to classify the various surface contri-
butions and their effects as follows: �i� First order contribu-
tion from elongation �8�, which produces an additional
uniaxial anisotropy, is proportional to ks and scales with the
number of surface atoms. �ii� Surface second-order contribu-
tion �9� which is cubic in the net magnetization components,
proportional to ks

2 and scales with the particle’s volume; �iii�
core-surface mixing contribution �11�, which is smaller than
the other two contributions and scales with both surface and
volume of the particle.

For particles with sc lattices we compared analytical and
numerical calculations for many-spin particles obtaining a
very good agreement. Numerical modeling of particles with
other structures has confirmed the general character of these
effects. The possibility to describe a variety of many-spin
particles by a macroscopic magnetic moment with effective
uniaxial and cubic anisotropies constant opens a unique pos-
sibility to model a collection of small particles in a multi-
scale manner, taking into account surface effects through the
effective potential �14�.

Several very interesting effects were observed in particles
with strong surface anisotropy. Particles with magnetocrys-
talline uniaxial anisotropy develop cubic anisotropy. At the
same time the uniaxial anisotropy is also modified by the
surface anisotropy. In ellipsoidal particles, surface anisotropy
can change the sign of the effective uniaxial anisotropy.
Some signatures of these behaviors can be found in the lit-
erature. For example, in Ref. 1, the magnetic behavior of Co
particles with fcc structure and, presumably, cubic magneto-
crystalline anisotropy have demonstrated the effect of
uniaxial anisotropy.

The energy barriers of many-spin particles have been
evaluated using the Lagrangian-multiplier technique. Their
behavior could be well understood with the help of the ef-
fective one-spin potential �14�. The energy barriers larger
than KcN have been obtained for all particles with very large
surface anisotropy, ks�100kc, or for elongated particles with
ks	0. This confirms a well-known fact that the surface an-
isotropy may contribute to the enhancement of the thermal
stability of the particle. However, in the case ks�0, the
strength of the surface anisotropy has to be very strong.

We have found that the effective anisotropy extrapolated
from the energy barriers measurements is consistent with for-
mula �1� only for elongated particles. In the case of relatively
weak surface anisotropy ks, the value of the core anisotropy
could be correctly recovered. However, for larger ks this ef-
fective uniaxial anisotropy K� is renormalized by the sur-
face. The applicability conditions of formula �1� are never
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fulfilled in spherical or truncated octahedral particles. The
control of the parameters governing effective anisotropies
does not seem to be possible in real experimental situations
and therefore, the extraction of the parameters based on for-
mula �1� in some cases may be unreliable.

On the other hand, we should note here that the conclu-
sions of our work have been drawn on the basis of the Néel
anisotropy model �see also Ref. 18 for the case of transverse
surface anisotropy�. We would like to emphasize that the
model itself has been based on microscopic considerations.
Although later there appeared some attempts to justify the
model �see, e.g., Ref. 20�, in most of cases it remains ad hoc
and not based on the real spin-orbit coupling considerations.
A more adequate approach to model magnetic properties of
nanoparticles should involve first principle calculations of
the magnetic moments and MAE with atomic resolution, like
in Co/Cu.5,36 However at the present state of the art this task
remains difficult. Moreover, it is not clear how such models

could be used to calculate, for example, thermal properties of
small particles. The multiscale hierarchical approach37 pro-
poses to incorporate the ab initio calculations into classical
spin models. We conclude that more work on theory is nec-
essary to understand surface magnetism, especially in rela-
tion with small particles.
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