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Temperature-dependent exchange stiffness and domain wall width in Co
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The micromagnetic exchange stiffness is a critical parameter in numerical modeling of magnetization dynamics
and reversal processes, yet the current literature reports a wide range of values even for such simple and widely
used material as cobalt. Using the ab initio estimated Heisenberg parameters we calculate the low temperature
micromagnetic exchange stiffness for hexagonal-close-packed (hcp) and face-centered-cubic cobalt. For hcp Co
they are slightly different in the directions parallel and perpendicular to the c axis. We establish the exchange
stiffness scaling relation with magnetization A(m) ∼ m1.8 valid for a wide range of temperatures. For hcp Co
we find an anisotropic domain wall width in the range 24–29 nm which increases with temperature. The results
form a critical input for large-scale temperature-dependent micromagnetics simulations and demonstrate the
importance of correct parametrization for accurate simulation of magnetization dynamics.
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I. INTRODUCTION

Many recent applications with appealing technological
perspectives are based on the magnetization dynamics at high
temperatures. These include magnetization dynamics under
thermal gradients (spin-Seebeck effect) [1], ultrafast laser-
induced magnetization dynamics [2], or heat-assisted magnetic
recording [3]. The usual way to model magnetization dynamics
in nanostructures is numerical micromagnetics for which
publicly released codes are widely used. Strictly speaking
the standard micromagnetics is a zero or low temperature ap-
proximation although the temperature-dependent macroscopic
parameters can be used far from the Curie temperature TC.
Recently high-temperature micromagnetics based on the use of
the Landau-Lifshitz-Bloch equation [4–6] has been developed,
removing the constraint of the fixed magnetization magnitude.
For correct modeling the zero temperature micromagnetic
parameters and their temperature dependence are required.

The temperature dependence of micromagnetic parameters
can be in principle measured experimentally. This is straight-
forward for the saturation magnetization, but more challenging
for the correct macroscopic anisotropy and the exchange stiff-
ness constants. A limitation of the experimental approach is
that extrinsic (dependence on defects) and intrinsic (the proper
temperature dependence) effects cannot be distinguished, nor
can different contributions to the macroscopic parameters be
determined, for example, coming from interfacial as compared
to the bulk anisotropy. In this respect modeling provides a
unique method to assess the correct values of these parameters.

For the correct use of micromagnetics the exchange stiff-
ness A is one of the most important parameters since it defines
the exchange correlation length measuring the Bloch domain
wall thickness δDW = π

√
(A/K), where K is the macroscopic

anisotropy constant. However the literature reveals a large
discrepancy in the value of this parameter for cobalt.

Hexagonal-close-packed (hcp) cobalt is the classic high
anisotropy magnetic material widely used due to its high
Curie temperature and large magnetocrystalline anisotropy in
the bulk. Additives such as Pt and Sm enable hcp Co-based
magnets to be used in current magnetic recording media and
permanent magnets, respectively. Yet, Co is not so simple.

According to the measurements, hcp Co undergoes transition
to the face-centered-cubic (fcc) phase [7] at temperatures
around T = 695 K and at around the same temperature the
magnetization easy axis turns perpendicular to the c-axis
direction [8].

Micromagnetic simulations frequently assume values of the
exchange stiffness in Co in two different ranges: (1.3–1.5) ×
10−11 J/m (e.g., [9,10]) or (2.2–3.3) × 10−11 J/m (e.g.,
[11–13]). The experimental measurements on the exchange
stiffness using Brillouin light scattering report values between
2.5 × 10−11 [14] and 3.6 × 10−11 J/m [15]. At the same
time old and forgotten neutron scattering data show higher
values of 4.2 × 10−11 J/m [16]. The differences are normally
attributed to nonhomogeneous pinned spin structures due to
grain boundaries in nonperfect samples [15].

Typically the Bloch domain wall width in hcp Co is assumed
to be between 10 and 15 nm, following classical books in
magnetism (e.g., Refs. [17,18]). We note here that the use
of different exchange stiffness values may completely alter
the result of a micromagnetic simulation since it defines
the occurrence of different reversal modes, associated with
different coercivities, as well as it may change the type of the
reversal mode, for example from transverse to the vortexlike
domain wall in hcp Co nanowires [19].

It is well known that both the anisotropy and the exchange
stiffness in magnetic materials decrease with temperature.
Since typically anisotropy decreases faster than the exchange
stiffness, the domain wall width increases with temperature,
which is widely observed experimentally (see, for example,
Ref. [20]). The correct temperature dependence of the ex-
change stiffness is important for applications since it may
define the transition from incoherent to coherent reversal
modes as well as change the domain wall velocity. Also,
the change in the domain wall width with temperature has
been determined as the key factor in its motion under thermal
gradients [21] as well as for the ultrafast magnetization
dynamics response [22]. Thus accurately determining the rate
of change of the domain wall width with temperature is very
important from both fundamental and applied points of view.

In the present article starting with parametrizations of the
Heisenberg Hamiltonian with ab initio electronic structure
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calculations, we evaluate the exchange stiffness parameter
and the domain wall width as a function of temperature.
We determine the domain wall width at low temperatures
as large as 24–29 nm, depending on the Heisenberg model
parametrization. This value is larger than frequently assumed,
and it increases with temperature. We also determine the
scaling relation with magnetization of both the exchange
stiffness parameter and the domain wall width.

II. MODELING RESULTS

A. The Heisenberg exchange parametrization

To evaluate the domain wall width and the exchange
stiffness in Co, we use a hierarchical multiscale approach,
proposed for FePt by Kazantseva et al. [5,23]. We define the
atomic exchange parameters for Co for the Heisenberg spin
Hamiltonian

H = −1

2

∑
i �=j

Jij Si · Sj −
∑

i

kuS
2
z , (1)

where Si are classical unit vectors describing the magnetic
moment directions on site i, Jij is the interatomic exchange
interaction, and ku is the local uniaxial anisotropy constant per
atom.

The long-range pairwise exchange parameters can be
evaluated on the basis of ab initio methods by mapping the
electronic structure calculation onto the Heisenberg model.
The first set of these parameters for hcp Co at T = 0 K was
evaluated by Turek et al. [24] and for fcc Co by Pajda et al. [25]
with experimental lattice parameters. Very recently a new set
of data has been published by Kvashnin et al. [26]. Since the
calculated exchange parameters in these works are different,
we have performed our own calculations of the Heisenberg
exchange parameters (see Table I).

Our first-principles calculation is based on the lo-
cal spin-density approximation and bulk Korringa-Kohn-
Rostokker (KKR) method in the atomic sphere approximation
(ASA) [27,28]. The partial waves in the KKR-ASA calcula-

TABLE I. Calculated exchange parameters for hcp and fcc cobalt
up to the first six shells. R0j is the shell position in units of lattice
constant and Ns is the number of equivalent sites in the shell.

Co (hcp) Co (fcc)

R0j Ns J0j (mRy) R0j Ns J0j (mRy)

(100) 6 1.77 ( 1
2

1
2 0) 12 1.87

( 1
2

1
2
√

3

√
2
3 ) 6 2.08

(1 −1√
3

√
2
3 ) 6 0.28 (100) 6 0.16

(00
√

8
3 ) 2 0.49 (1 1

2
1
2 ) 24 0.21

(0
√

30) 6 0.21 (110) 12 −0.23

(1 2√
3

√
2
3 ) 12 0.18

(10
√

8
3 ) 12 −0.06 ( 3

2
1
2 0) 24 0.06

(200) 6 −0.15 (111) 8 0.09

TABLE II. Results for different Co hcp parametrizations.

Turek Kvashnin
et al. [24] et al. [26] This work

Exchange stiffness
Plane xy (10−11 J/m) 4.38 2.95 3.33
c axis (10−11 J/m) 4.73 3.02 3.62
Domain wall width T = 0 K
Plane xy (nm) 28.49 23.42 24.88
c axis (nm) 29.60 23.70 25.96
CSDM
ε 0.186 0.208 0.207

A ∼ m1.81 A ∼ m1.79 A ∼ m1.79

TC (K) 1480 1100 1250

tions have been expanded up to the orbital lmax = 3 (spdf

basis) inside the atomic spheres, for all nonequivalent atomic
sites. The exchange parameters have been calculated using the
magnetic force theorem [29]. The exchange constants were es-
timated in ferromagnetic ground state at T = 0 K, which give a
reasonable estimation also at nonzero temperatures for both fcc
and hcp Co. Our method of the exchange constants calculation
is essentially the same as that of Pajda et al. [25], however,
we used a more extended basis for partial wave expansion
(lmax = 3) than Pajda et al. who used lmax = 2. Because of that
our exchange constants are closer to Kvashnin et al. [26], who
used a full potential methodology. Previously, the application
of our approach has allowed a successful description of
magnetism in various transition metal systems [30,31].

The exchange parameters show dominant ferromagnetic
interactions up to the third nearest neighbors and the typical
RKKY oscillating asymptote. In what follows we include the
exchange interactions up to six nearest neighbors. To evaluate
temperature-dependent properties we use classical Langevin
dynamics simulations based on the integration of a set of
stochastic Landau-Lifshitz-Gilbert (LLG) equations [32] with
internal fields defined by the Hamiltonian (1). The resulting
Curie temperatures are summarized in Tables II (hcp Co)
and III (fcc Co) for the different sets of parameters. The
TC = 1480 K value, which we calculate here by the Langevin
dynamics approach with the parameters of Turek et al. is close
to the most frequently cited experimental value for Co TC =
1385 K (e.g., the book [18] measured in [33,34]). Because of
that agreement, this parametrization gives a suitable for mag-
netization dynamics modeling curve M(T ) and we therefore
use values from Turek et al. [24] in the dynamical simulation
of the domain wall width. The Curie temperatures for both
hcp (TC = 1250 K) and fcc (TC = 1300 K) phases calculated
with our parameters are also close to the experimental one

TABLE III. Results for different Co fcc parametrizations.

Pajda et al. [25] This work

Exchange stiffness (10−11 J/m) 4.41 3.62
CSDM ε ∼ 0.177 ε ∼ 0.180

A ∼ m1.82 A ∼ m1.82

TC (K) 1550 1300
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(see Table I) although they are below it. At the same time the
calculations with parameters by Kvashnin et al. [26]) give a
smaller Curie temperature TC = 1100 K but in agreement with
the value of 1131 K cited in the book by Cullity [35].

We note that our estimations of TC do not include the
effects of longitudinal spin fluctuations at high temperatures
and renormalization of the exchange constants due to the spin
disorder in a paramagnetic state [28]. Thus the obtained TC

values cannot be considered as a test of the exchange con-
stants quality which are calculated from the low temperature
ferromagnetic reference state. Besides, namely the exchange
constants calculated in the ferromagnetic ground state should
be used at the temperatures much lower than experimental
magnetic ordering temperature. Note that within the disordered
local moment approach the temperature dependence of the
Heisenberg exchange coupling constants for hcp Co has been
found to be very weak [36] in the considered here range of
temperatures.

Finally, experimentally hcp Co has been reported to un-
dergo a transition to the fcc structure [7] at temperatures around
T = 695 K. Since the dependence of the Curie temperature on
the structure is found here to be small, this transition could be
disregarded in relation to the exchange stiffness evaluation.

B. Exchange stiffness: Analytical approach

The calculated ab initio Heisenberg exchange parameters
allow the evaluation of the exchange stiffness at zero temper-
ature via the formula

Aν(0) = [1/(4Vat)]
∑

j

J ν
0j

(
rν

0 − rν
j

)2
, (2)

which can be obtained assuming the continuous
long-wavelength function for the spin distribution in
the Heisenberg Hamiltonian. This formula is a generalization
of the one found in the classical books (see, for example, [37]).
Here Vat is the atomic volume (we assume the experimental
value Vat = 1.1 × 10−29 m3), rj are the atomic positions from
the origin, and ν = x,y,z stands for Cartesian coordinates.
Assuming that the c axis of hcp Co coincides with the z axis,
we obtain slightly different exchange stiffness parameters,
parallel and perpendicular to it, summarized for different sets
of parameters in Table II.

For the fcc Co the obtained exchange stiffness value is
isotropic and similar to the hcp value. The obtained values
are similar to the upper bound or larger than typically used in
micromagnetic simulations, frequently by a factor of 2. They
are also close to the upper bound measured by the Brillouin
scattering [15].

To determine the theoretical exchange stiffness scaling with
magnetization (i.e., temperature), we employ the classical
spectral density method (CSDM) for spinwaves [38,39],
previously shown to have a good agreement with the Langevin
dynamics simulations in simple cubic lattice materials and
FePt [39,40]. The method is based on the use of Green’s
functions in reciprocal space which first leads to an infinite set
of coupled equations for thermally averaged moments of all
orders. The spectral density is assumed to be a delta function.
The following decoupling scheme which leaves the equations
for the first two moments only (found to be sufficient for the

exchange interactions [38,39]) is then assumed:〈
Sz

kS
z
−k

〉 ∼= 〈
Sz

k

〉〈Sz
−k〉 − 1

2 (1 − m2)〈S+
k S−

−k〉, (3)

where m is the average magnetization, S±
k is the Fourier

transform of S±
i = Sx

i ± S
y

i variables, and Sz
k of Sz

i variable.
The Fourier transform of the exchange parameters is defined
in terms of the variable

γq = J (q)

J (0)
=

∑
j

J0j

J (0)
e−iq·(r0−rj ), (4)

where J (0) is the is the zero wave-vector component J (0) =
z1J01 + z2J02 + · · · , z0j is the number of neighbors with the
same J0j interaction, and �r0 and �rj are position vectors of the
atoms 0 and j , respectively. The decoupled equations give the
following dispersion relation [39]:

ωq = J0mQ(m)(1 − γq), (5)

where at low temperatures the function Q(m) scales with
magnetization m as Q(m) ∝ m−ε and the scaling parameter
ε is defined by the ratio of the sums ε = G/W :

W =
∑

q

1

1 − γq
, G =

∑
q

γq

1 − γq
. (6)

These sums were numerically evaluated over the first Brillouin
zone giving ε ≈ 0.19 for parameters of Turek et al. [24] and
ε ≈ 0.21 for the other two sets. The spinwave dispersion
relation (5) is directly related to the exchange stiffness
parameter leading to the scaling relation A(T ) = A(0)m2−ε ∝
m1.8 for all cases (see Tables II and III for more precise values).
The difference with the mean-field exponent ε = 2 comes
from spin-spin correlations [39]. This result is compared
in Fig. 3 with direct estimations of the exchange stiffness
parameter via the temperature-dependent domain wall width
simulations (see below), showing good agreement up to
very high temperatures. To reconcile different approaches we
have presented normalized values A(T )/A(0) as a function
of normalized temperature T/TC. A very similar scaling
exponent ensures that for normalized values the results are
almost the same for all models.

C. Modeling of the temperature-dependent domain wall width

The domain wall width depends on the anisotropy value.
The ab initio estimation of this value is difficult and
not very reliable. To be more specific, we simply use
an experimental realistic value for hcp Co ku = 5.83 ×
10−24 J/atom, corresponding to the macroscopic constant K =
0.53 × 106 J/m3 [41]. Note that a constant atomic anisotropy
value gives a temperature-dependent macroscopic anisotropy.
There may be an additional temperature dependence of the
on-site anisotropy which is difficult to estimate. Specifically,
the intrinsic change of anisotropy happens via the temperature-
induced transformation from hcp to fcc structure. However,
we note that a different anisotropy value changes the domain
wall width but is not important for the determination of the
temperature dependence of the exchange stiffness parameter.

The evaluated hcp exchange stiffness parameter and the
anisotropy value ku = 5.83 × 10−24 J/atom via the formula
δDW = π

√
A/K gives the zero-temperature domain wall
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FIG. 1. Simulated domain wall profiles (crosses) for temperatures
T = 3 K and T = 500 K, using the exchange values of Turek
et al. [24] showing a reduction in the equilibrium magnetization at
elevated temperature and an increase in the domain wall width from
29.6 to 32.3 nm. The lines shows the fitting to the domain wall profile,
Eq. (7).

widths summarized in Table II . The widths are slightly
different parallel and perpendicular to the c-axis direction. For
values from Turek et al. [24] they are as large as 29 nm, while
the two other sets of parameters give smaller values around
24–25 nm. In any case these values are significantly larger
than the range 10–15 nm cited in classical books [17,18].

The domain wall width at any temperature can be mod-
eled directly by Langevin dynamics simulations using the
parametrized Heisenberg Hamiltonian (1). For this purpose we
have used two codes for atomistic simulations: our homemade
one as well as the publicly available VAMPIRE code [32,42].
We used a system size of up to 80 nm in length and with a
cross-sectional area of 250 nm2 in order to fully contain the
domain wall. The domain wall is constrained in the system
by applying antiperiodic boundary conditions. The resulting
domain wall profile for two temperatures is presented in Fig. 1,
based on the parameters of Turek et al. [24]. The results clearly
show an increase in the domain wall width with temperature.

To determine the domain wall width from the simulations,
we fit the magnetization profile to

mz(x) = me tanh[π (x − x0)/δDW], (7)

where me is the equilibrium magnetization. The results are
in excellent agreement with analytical estimations presented
in Table II. For example, using the parameters of Turek
et al. [24] we obtain for low temperatures δx

DW = 28.50 nm,
δz

DW = 29.59 nm with our program and δx
DW = 28.50 nm,

δz
DW = 29.57 nm with the VAMPIRE code in a very good

agreement with our direct estimation of δx
DW = 28.49 nm and

δz
DW = 29.60 nm.

Next, the domain wall profile was evaluated at all tem-
peratures up to the Curie temperature, see Fig. 2, showing a
clear increase of the domain wall width with temperature.
The logarithm of the low-temperature part of the domain
wall width can be fitted to a power law as a function of
magnetization. This way we obtained low-temperature scaling
behavior δDW ∼ m−0.59 in both x and z directions. The
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44

δz(T)

δz(T) ∼m-0.59

δ z(n
m

)

T(K)

FIG. 2. Temperature dependence of the domain wall width
(normalized to T = 0 K value). The symbols indicate the data
extracted from direct simulations, while the solid line line shows
a low temperature scaling law with magnetization δDW ∼ m−0.59. The
dashed line is the guideline corresponding to the smoothed data.

comparison of this scaling law with the domain wall width
extracted from the direct simulations, shows that it correctly
describes the behavior up to temperatures around 800 K, see
Fig. 2. We stress again that we have not taken into account
here the transition to fcc structure which would result in strong
anisotropy decrease and further increase the domain wall width
with temperature.

D. Modeling of the temperature-dependent exchange stiffness

The simulated temperature dependence of the domain wall
width allows the temperature dependence of the exchange
stiffness parameter A to be calculated via the formula δDW =
π

√
A/K . For this purpose we first evaluate the temperature

dependence of the macroscopic anisotropy K using the
constrained Monte Carlo method [43], implemented in the
VAMPIRE code. The evaluation shows that the macroscopic
anisotropy closely follows the Callen-Callen law K(m) ∼ m3

practically up to 1200 K. Using the temperature-dependent
values of the anisotropy and the domain wall width resulting
from our simulations we calculate the exchange stiffness for
the whole temperature range, as shown in Fig. 3. The simulated
data are compared with the CSDM prediction of the scaling
behavior A(T ) ∼ m1.81 showing a good agreement up to very
high temperatures.

Finally, we recall that the classical Heisenberg model leads
to a temperature-dependent magnetization m(T ) described
by the Langevin function. This functional form typically
is not in agreement with the experimentally measured one,
particularly for hcp Co [44], which is known to be better
described by the Brillouin function with S = 1/2 [35]. Thus
the low and high temperature experimental and our asymptotes
for m(T ) are significantly different. For example, at low
temperatures the Langevin function gives a linear dependence
on temperature, while the Brillouin function gives the well-
known 1 − const(T/TC)3/2 Bloch law. Note that in terms of
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FIG. 3. Temperature dependence of the exchange stiffness pa-
rameter from atomistic simulations and theory. The symbols indicate
the data extracted from direct evaluation of the domain wall profile.
The line plots the scaling relation A(T ) = A(0)m1.8. (a) The data
obtained via the direct estimation in the classical Heisenberg model
while (b) represents the rescaled data according to Eq. (8).

the magnetization (and not temperature) the classical and
quantum cases give similar behavior [40]. To overcome the
problem of the incorrect temperature dependence of the
magnetization in the simulation and to make our results
more useful for comparison with experiments, we assume
that the experimentally measured magnetization obeys the
Curie-Bloch relation m(T ) = [1 − (T/TC)α]β with β = 0.34
and α = 2.369 for Co [45]. We then apply temperature
rescaling as suggested in Ref. [45] with the function

T

TC
=

(
Tres

TC

)α

, (8)

where Tres is a new (experimental) temperature. The resulting
temperature dependence of the stiffness parameter is shown
in Fig. 3(b) taking into account the correct temperature
dependence of the magnetization fluctuations.

III. CONCLUSIONS

In conclusion, using a multiscale approach we have es-
timated the temperature-dependent domain wall width and
the exchange stiffness parameter in Co. We have used two
parametrizations of the Heisenberg Hamiltonian available in
the literature as well as our own.

The low temperature values for the exchange stiffness
parameter appear to be frequently larger than the widely
used ones and more consistent with upper estimation by the
Brillouin scattering method [15] and even with old neutron
measurements [16]. The values appear to be very similar for fcc
and hcp Co. The domain wall width for hcp Co at low tempera-
tures was found to be in the interval 24–29 nm. By means of the
theoretical CSDM and direct Langevin dynamics simulations
we have found the magnetization scaling exponents for both
domain wall width (δDW ∼ m−0.6, hcp Co) and the exchange
stiffness (A ∼ m1.8) parameters. Note that in the fitting of
numerical data, the differences between the approximate
scaling exponents 0.6 for the domain wall width and 1.8 for
the exchange stiffness and the ones with more digits obtained
from the theory are not distinguishable. Consequently, we may
say that these exponents are almost the same for different
parametrizations. The exchange stiffness scaling exponent is
also the same for fcc and hcp Co. The agreement between
direct estimations from the domain wall width and the classical
spectral density method gives us confidence in our results.

Our findings are important for both zero and high-
temperature micromagnetics, as they may change the bound-
aries between the occurrence of different reversal modes.
They could lead to markedly different results for simulations
of the spin-Seebeck effect or high temperature domain wall
dynamics. We stress that the multiscale approach is essentially
parameter free since all input parameters to the atomistic
spin model are determined from ab initio calculations. We
suggest that, although our estimates of exchange stiffness are
at the upper end of the spectrum of experimental values, our
model calculations provide an important benchmark for the
fundamental magnetic properties of Co.
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