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1. Introduction

In recent years, atomistic models of magnetic materials have 
allowed the study of new magnetic phenomena, especially 
in nanomaterials. These models are ideal to study complex 
magn etic behaviors such as exchange bias and surface aniso-
tropy because they take into account finite size effects and 
changes in the magnetization at atomic scale [1]. The clas-
sical 3D Heisenberg model is the most common prototype 
of an atomistic model of magnetic materials with continuous 
degrees of freedom. It has been successfully employed to 

accurately describe the magnetic behavior of many physically 
interesting magnetic systems [2].

In systems represented by classical spin models, such as 
the classical 3D Heisenberg model, numerical simulations are 
usually used because of the difficulty to solve by analytical 
approaches their partition function. The thermal averages of 
a system can be estimated employing Markov chain Monte 
Carlo methods. For the generation of new states of the systems 
in the Markov chain, local and cluster spin update algorithms 
have been proposed. Cluster update algorithms, such as the 
Wolff [3] and the Swendsen–Wang [4] algorithms, are useful 
to reduce the critical slowing down generated close to the 
critical temperature (Tc). However, the applicability of these 
algorithms is limited according to the terms considered in the 
Hamiltonian. In its basic form, the Wolff and the Swendsen–
Wang cluster algorithms are only applicable to Hamiltonians 
that just include exchange interaction contributions. If other 
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contributions (e.g. magnetic anisotropy and/or externally 
applied magnetic field) are considered, the cluster algorithms 
must be modified correspondingly, increasing the complexity 
of the algorithms and its implementation. Furthermore, the 
efficiency of cluster algorithms can be even lower than that 
of local update algorithms for small systems [2]. On the other 
hand, local update algorithms have shown high flexibility 
which allows its application to a great variety of systems. 
Therefore, much effort have been made to enhance the perfor-
mance of these algorithms, which relies on their efficiency to 
sample the phase space and avoid long correlation times that 
slow the convergence of the thermal averages to equilibrium.

In the Monte Carlo Metropolis algorithm new states of 
the system are generated from a previous state by randomly 
selecting a single spin and updating it to a new trial position 
(trial move). Then, a transition probability, which depends on 
the energy difference between the initial and final state, is used 
to accept or reject the new state. Because the choice of the trial 
move has a direct influence on the efficiency of the algorithm 
and its physical interpretation, different types of trial moves 
have been proposed. Common choices include the spin flip, the 
random and the small step moves [5]. In the spin flip move, the 
direction of the spin is reversed. This trial move is the same 
employed for Ising spin systems. However, for classical spin 
systems it does not satisfy the condition of ergodicity because 
it can not sample the whole phase space. In the random move 
a new spin direction is chosen at random independently of the 
spin initial direction, sampling the whole phase space. In the 
small step move, the new spin direction is generated from a uni-
form probability distribution within a cone with a given opening 
angle around the initial spin direction, hence each spin can only 
move by small angular changes limited by the opening angle.

Hinzke and Nowak [5] evaluated the efficiency of these 
trial moves by running simulations of the thermally activated 
reversal of the magnetization of a ferromagnetic particle. 
Their results showed that for high anisotropy systems, where 
the reversal mechanism is nucleation, the least efficient trial 
move is the small step move while the most efficient is the 
spin flip move. For low anisotropy systems, where the reversal 
mechanism is coherent rotation, the least efficient trial move 
is the random move while the most efficient is the small step 
move. Independently of the anisotropy value of the system, 
the small step move is the least efficient move at high temper-
atures. They also showed that a trial move which combines the 
three types of trial moves has good efficiency independently 
of the anisotropy and the temperature values of the system.

In particular, the small step move is not efficient for high 
anisotropy systems because it can not produce large angular 
changes in the spins required to overcome the anisotropy energy 
barrier. Therefore, the acceptance rate of the new states is low. 
At high temperatures, although the acceptance rate is high, 
the sampling of the phase space is made by very small steps. 
A golden rule when using the Metropolis algorithm states that 
an acceptance rate of 50% is ideal to efficiently sample the 
phase space of the system [6, 7]. High or low acceptance rates 
generate a sampling of the phase space by very small steps or 
a rejection of almost every new state, respectively. A varia-
tion of the small step move known as the Gaussian move [1] 

generates the new spin direction in the vicinity of the initial 
spin direction employing a Gaussian distribution and guaran-
teeing that all possible states are accessible. Unlike the other 
trial moves, the Gaussian move straightforwardly allows to 
control the acceptance rate by adjusting the value of the cone 
width, while allowing the new spin state to point to any direc-
tion on the unit sphere with non-zero probability.

In this work, we present a new adaptive algorithm for the 
Gaussian move (adaptive move) in 3D Heisenberg Monte Carlo 
simulations. The adaptive move keeps the acceptance rate close 
to 50%, enhancing the efficiency of the phase space sampling 
and generating low correlation times. We have made several 
tests to assess the performance of the algorithm, showing that 
it works efficiently at all temperatures and in systems with 
high and low anisotropy values. Our algorithm significantly 
improves the computational efficiency of Monte Carlo spin 
simulations allowing faster or higher quality statistical results 
for the same number of Monte Carlo steps. We have imple-
mented our algorithm in two open source software packages, 
VAMPIRE [1] and VEGAS [8], to provide sample code and 
easy access to the community for use in magnetic simulations.

2. Model, methods and adaptive move

2.1. Heisenberg Hamiltonian and the Monte Carlo method

We considered a system with ferromagnetic spin moments 
located on a cubic lattice with periodic boundary conditions. 
The size of the system is 10 × 10 × 10 for a total of N  =  1000 
spin moments. Each spin moment was modeled using the clas-
sical 3D Heisenberg model. The Hamiltonian, which includes 
nearest neighbor exchange interaction, uniaxial anisotropy 
and magnetic field interactions, is given by

H = −J
∑

i<j

Si · Sj − kv

∑

i

(Si · k)2 − B
∑

i

(Si · k) (1)

where 
∑

i<j means the sum over the nearest neighbors pairs, J is 
the exchange interaction constant, Si and Sj are the spins of the 
magnetic sites labeled i and j, respectively, kv is the aniso tropy 
constant, k is the canonical vector in the z direction and B is 
the magnetic field intensity. Both the uniaxial anisotropy and the 
magnetic field are directed along the z axis. The values for kv and 
B were normalized by J in order to perform generic simulations.

Some of the simulations were made for kv/J = 0.001 and 
1.0 to recreate low and high anisotropy systems, where the 
critical temperatures are kBT/J = 1.485 427 and 1.753 970, 
respectively.

The total magnetization (M) was computed according to

M =
1
N

|M| (2)

where N is the total number of spins and M =
∑N

i Si.

2.2. Trial moves

For comparison purposes, we implemented other common 
trial moves besides the presented adaptive move. Figure  1 
shows schematics of the different types of trial moves and the 
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visualization of their Monte Carlo sampling on the unit sphere. 
The spin flip move reverses the spin direction according to

S′
i = −Si (3)

where Si and S′
i are the initial and new spin directions, respec-

tively. In the random move the new spin direction is chosen at 
random, according to

S′
i =

Γ

|Γ| (4)

where Γ is a Gaussian distributed random vector. In the small 
step move, the new spin direction is also generated at random 
but within a cone with a given opening angle around the initial 
spin direction. And, in the Gaussian move the new spin direc-
tion is generated in the vicinity of the initial spin direction 
according to [1]

S′
i =

Si + σΓ

|Si + σΓ| (5)

where σ is proportional to the width of a cone around the 
initial spin direction. Unlike in the small step move, in the 
Gaussian move the sampling on the unit sphere is not limited 
by σ (see figure 1).

When using the Gaussian move, the acceptance rate can 
be adjusted by varying the value of σ. Figure 2(a) shows the 
acceptance rate (R) as a function of σ at low temperature for 
kv
J = 1.0. As indicated in the figure, there is an optimum cone 
width (σopt) at which the acceptance rate is 50%. Hence, if we 
want to keep an acceptance rate of 50% at all temperatures for 
a given system, σ should be a function of parameters such as 
the temperature, the exchange coupling, the anisotropy and the 
field intensity. Figure 2(b) shows the temperature dependence 

(a) (b) (c) (d)

Figure 1. Schematic and visualization of the sampling on the unit sphere for the (a) spin flip, (b) random, (c) small step and (d) Gaussian 
moves.

(a) (b)

Figure 2. (a) Acceptance rate as a function of the cone width at kBT/J = 0.05 for kv/J = 1.0 and (b) optimum cone width as a function of 
temperature for different anisotropy values. Dashed vertical lines represent the critical temperatures.
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of σopt for different anisotropy values. As expected, at higher 
temperatures it is necessary to use a higher cone width in 
order to keep an acceptance rate of 50%. However, above Tc, it 
is not possible to keep this acceptance rate because almost all 
the new states are accepted independently of the cone width 
value, then the acceptance rate is always higher than 50%.

As σ increases, the Gaussian move tends to a random 
move as shown in figure 3, where the distribution of the polar 
angle (θ), the azimuthal angle (φ) and the cosine of the polar 
angle (cos(θ)) of spins generated using the Gaussian move 
(see equation (5)) are shown. Such as in the case of a random 
move, the mean value of θ tends to 90◦ and the mean value of 
cos(θ) tends to 0, while the mean value of φ is always close 
to 180◦.

2.3. Adaptive algorithm for the Gaussian move

Because σopt is characteristic of every system at a given 
temper ature and given Hamiltonian parameters, to find a gen-
eral equation  for σopt that works in any system would be a 
very complex task. Therefore, we have developed an adaptive 
algorithm for the Gaussian move that changes the cone width 
adaptively to keep an acceptance rate close to 50%.

The adaptive move is developed as follows: at each temper-
ature, the simulation starts using a high cone width (σ = 60) in 
the first Monte Carlo step (MCS). From then on, every MCS, 
the cone width is recalculated by multiplying the current cone 
width by a factor obtained according to the acceptance rate in 
the previous MCS. The selection of the factor is made such 
that the cone width approaches values close to the optimum 
cone width. From results as those shown in figure 2(a), it is 
possible to observe that a good approximation for the factor 

( f ) as a function of the acceptance rate at all temperatures is 
of the form

f =
0.5

1 − R
. (6)

Therefore, when the acceptance rate R = 50%, the cone 
width is multiplied by 1, and when the acceptance rate is high 
(low) the cone width is multiplied by a large (small) factor 
approaching the optimum cone width. Figure  4 shows the 
time dependence of the acceptance rate and the cone width 
using the adaptive move at different temperatures when the 
system is initially ordered (all the spin moments pointing in 
the z direction) and disordered (all the spin moments pointing 
in a random direction). Independently of the spin moments’ 
initial state, the acceptance rate converges to a specific value. 
At kBT/J = 0.1, because the simulation starts with a high 
cone width, the acceptance rate is initially very low when the 
system is initially ordered (see figure 4(a)). Then, the adaptive 
move keeps decreasing the cone width to a very low value, 
according to the equation (6), increasing the acceptance rate 
which stabilizes close to 50% within few MCS. On the other 
hand, when the system is initially disordered (see figure 4(d)), 
the acceptance rate is initially higher because large angular 
changes in the direction of the spin moments are taking 
place to order the system. Then, the acceptance rate starts to 
decrease because smaller angular changes are required as the 
system is being ordered. However, once the the cone width 
has decreased enough, the acceptance rate starts to increase 
approaching a value close to 50%. Figures 4(b) and (e) show the 
time dependence of the acceptance rate at a high temperature 
below Tc (kBT/J = 1.48). In these cases, the adaptive move 
requires more MCS to reach equilibrium and the cone width 

Figure 3. Distribution of the (a) polar angle, azimuthal angle and (b) cosine of the polar angle of spins generated using the Gaussian move. 
For cone width values between 0 and 100, 10 000 spins were generated and the mean of their polar angles, azimuthal angles and cosine of 
the polar angles was calculated. For cone width values higher than 60 (shaded region), it is reasonable to assume that the distributions are 
already stabilized.
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stabilizes at a higher value than the previous cases. Above 
Tc (kBT/J = 2.0), when the system is initially ordered (see 
figure 4(c)), the acceptance rate is low because the exchange 
energy prevents the acceptance of large angular changes in the 
direction of the spin moments. For this reason, the cone width 
initially decreases in order to increase the acceptance rate. As 
mentioned before, at temperatures above Tc, it is not possible 
to reach an acceptance rate of 50%. Then, the acceptance rate 
keeps increasing past 50% and, consequently, the adaptive 
move starts to increase the cone width, trying to decrease the 
acceptance rate. When the system is initially disordered (see 
figure 4(f)), the acceptance rate is initially high and stabilizes 
at a lower value. Independently of the spin moments initial 
state, the cone width keeps increasing indefinitely when the 
acceptance rate stabilizes above 50%. Therefore, we reset the 
cone width to 60 every time it reaches higher values because, 
at this value, the Gaussian move works as the random move 
(see figure 3) and employing a higher value would produce the 
same results. For this reason, it is expected that the adaptive 
move has the same efficiency as the random move at temper-
atures above Tc, where the cone width stabilizes at 60.

3. Results and discussion

In order to assess the performance of the adaptive move, we 
have made four tests comparing its efficiency with that of 
other common trial moves: the spin flip, random, small step 
and Gaussian moves. Also, we considered a combinational 
move which includes three of the aforementioned trial moves. 
As implemented by Hinzke and Nowak [5], we considered 

the small step move with a fixed opening angle of 30◦ and the 
combinational move as a combination of the spin flip, small 
step and random moves. In the combinational move, one of 
the three trial moves is selected from a set, composed by three 
random, one small step and one spin flip moves, at each MCS. 
All the tests were carried out in systems with low and high 
anisotropy values.

Before making any of the tests, it is important to guarantee 
that the computed thermal averages are the same indepen-
dently of the trial move employed. Figure 5 shows the thermal 
dependence of the magnetization and the energy using the dif-
ferent trial moves for low and high anisotropy values. Results 
of Landau–Lifshitz–Gilbert (LLG) spin dynamics simula-
tions are also shown because in one of the tests the efficiency 
of the adaptive move is compared to that of spin dynamics. 
At high anisotropy (kv/J = 1.0), the spin moments remain 
more ordered as temperature increases than at low anisotropy 
(kv/J = 0.001), which increases the critical temperature (see 
figure  5(a)). This behavior also generates an important dif-
ference in the energy between both systems, specially at low 
temperatures (see figure 5(b)). For both high and low aniso-
tropy values, all the trial moves produced the same results, 
indicating that all of them can correctly sample the phase 
space and relax the system to equilibrium.

3.1. Convergence to equilibrium and integrated  
relaxation times

When computing averages of the thermal properties of a 
system, it is necessary to ensure that the system is already in 

(a) (b)

Ordered

Disordered

(c)

(d) (e) (f)

Figure 4. Time dependence of the acceptance rate and the cone width at (a), (d) kBT/J = 0.1, (b), (e) 1.48 and (c), (f) 2.0 for kv/J = 0.001 
when the system is initially (a)–(c) ordered and (d)–(f) disordered.
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equilibrium. Depending on the characteristics of the system, 
such as its size, temperature and anisotropy constant, the time 
required to reach equilibrium can increase greatly. Usually, a 
large number of MCS needs to be discarded to ensure system 
equilibrium. Therefore, speeding up the convergence to equi-
librium and enhancing the statistical quality of the thermal 
averages is important.

In this test, we assessed the performance of the different 
trial moves when the system is both approaching and is already 
in equilibrium. First, we evaluated the convergence to equilib-
rium of the magnetization and the energy as a function of time 
at low and high temperatures below Tc, as shown in figure 6. 
Because at low temperatures the thermal energy is low, the 
spin moments are very ordered and its direction tends to vary 
by small angular changes. Therefore, the small step move has 
good efficiency at low temperatures (see figures 6(a) and (c)). 
However, at high temperatures (see figures 6(b) and (d)), the 
small step move is the least efficient move because the thermal 
energy can overcome the exchange and anisotropy energies, 
generating disorder in the system and high fluctuations in the 
direction of the spin moments. Conversely, the random move 
is very efficient at high temperatures but is the least efficient 
at low temperatures. In the case of the combinational move, 
although it has good efficiency at all temperatures, it is not 
the best move in any of the cases. The adaptive move is the 
most efficient move at low temperatures and presents the same 
efficiency of the random move at high temperatures. Then, in 
general, the adaptive move is the most efficient move to relax 
both thermal averages to equilibrium independently of the 
anisotropy value of the system.

In the second part of the tests, we computed the integrated 
relaxation time (τ ) for the different trial moves. The statistical 
error of the thermal averages depends on the number of sta-
tistically independent configurations generated in the simula-
tion, and this is the total number of configurations divided by 

τ  [2, 9]. Thus, low τ  values reduce the statistical error of the 
thermal averages. τ  is obtained from the equilibrium relaxa-
tion function φMM(t) according to the equation [2]

φMM(t) =
1(

⟨M2⟩ − ⟨M⟩2
)
(

1
Nmcs − t

Nmcs−t∑

t′
M (t′)M (t′ + t)

− 1
(Nmcs − t)2

Nmcs−t∑

t′
M (t′)

Nmcs−t∑

t′′
M (t′′)

)
and φMM(t) → e−t/τ

 (7)
where Nmcs is the total number of MCS and t is the number 
of MCS employed for relaxation. The time dependence of τ  
for the different trial moves is shown in figure 7. These results 
present similar behavior to that of the first part of the test. At 
very low temperatures, the small step move is the most effi-
cient move along with the adaptive move, while the random 
move is the least efficient. The adaptive move is the only 
move that produces low relaxation times at all temperatures. 
Specially at low temperatures, the relaxation times of the 
adaptive move are several orders of magnitude smaller than 
those of the random and the combinational moves, which indi-
cates that it requires less MCS to produce results with similar 
statistics. As expected, all the relaxation times diverge at the 
critical temperature.

Independently of the temperature and the anisotropy 
values, the adaptive move is the most efficient move relaxing 
the system to equilibrium and producing low correlation times 
when the system is already in equilibrium.

3.2. Susceptibility: a slow convergence problem

The magnetic susceptibility is a measure of the thermal fluc-
tuations of the magnetization. In a cubic system with uniaxial 
anisotropy along z at a given temperature, it is expected that 
the x and y spatial components of the susceptibility (χx and χy, 
respectively) converge to the same value. However, in Monte 

(a) (b)

Figure 5. Thermal dependence of (a) the magnetization and (b) the energy using the different trial moves for kv/J = 0.001 and 1.0. The 
results of the thermal averages are in good agreement independently of the employed trial move. Dashed vertical lines represent the critical 
temperatures.
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(a) (b)

(c) (d)

Figure 6. Time dependence of the magnetization and the energy at kBT/J = 0.1 and 1.48 for (a), (b) kv/J = 0.001 and (c), (d) kv/J = 1.0. 
The convergence to equilibrium of these thermal averages is different for each trial move, specially at low temperatures. The adaptive move 
is efficient both at low and high temperatures.

(a) (b)

Figure 7. Integrated relaxation time as a function of temperature for (a) kv/J = 0.001 and (b) 1.0. The integrated relaxation times vary 
greatly with temperature. The combinational and the adaptive move are the only ones which present low integrated relaxation times at both 
low and high temperatures. Dashed vertical lines represents the critical temperatures.

J. Phys.: Condens. Matter 31 (2019) 095802
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Carlo simulations, these spatial components of the suscepti-
bility typically require a large number of MCS to converge, 
particularly at high temperatures below Tc.

In this test we evaluated the convergence of χx and χy in a 
system with uniaxial anisotropy along z at kBT/J = 1.48. The 
spatial components χx and χy are given by

χα =

〈
M2

α

〉
− ⟨Mα⟩2

kBT
for α = x, y. (8)

We computed the spatial components at each MCS after relax-
ation taking averages of the magnetization data before that 
MCS, according to

χα(t) =
〈
Mα(t)2

〉
− ⟨Mα(t)⟩2

kBT
 (9)

where t is the number of MCS, 
〈
Mα(t)2

〉
=   

Mα(1)2+Mα(2)2+...+Mα(t)2

t  and ⟨Mα(t)⟩2 =
(

Mα(1)+Mα(2)+...+Mα(t)
t

)
2.

The time dependence of the spatial components χx and 
χy and their difference |χx − χy| is shown in figure  8. As 
expected, χx and χy tend to the same value as time increases 
for all the trial moves, and consequently |χx − χy| converges 
to zero. Because the system is at a high temperature below 
Tc and the thermal energy is considerable, the spin moments 
are more disordered in the low (see figure 8(a)) than in the 
high anisotropy system (see figure  8(b)). Therefore, χx and 
χy conv erge slower to the same value in the low anisotropy 
system, specially using the small step and the combinational 
move. Although the random move presents similar behavior 
to that of the adaptive move, the convergence of |χx − χy| is 
faster when the adaptive move is employed for both low and 
high anisotropy systems.

3.3. Convergence of the coercivity

The calculation of hysteresis loops allows the characteriza-
tion of a great variety of magnetic properties of materials. 
Particularly, a great number of studies deal with calculations 
of the coercivity, mainly because high coercivity materials 
have several applications as permanent magnets. Monte 
Carlo simulations are not considered efficient for the sim-
ulation of hysteresis loops because the collective behavior 
of the interacting moments is not taken into account, there-
fore requiring a huge number of MCS [10]. Thus, proper-
ties like the coercivity can have a very slow convergence to 
equilibrium. Other integration methods such as LLG spin 
dynamics are more commonly employed to make this kind 
of calculations.

In this test, we estimated the convergence of the 
coercivity using both LLG spin dynamics and Monte 
Carlo simulations in a system with parameters similar 
to those of cobalt. We considered a magnetic moment 
µs = 1.72µB, where µB is the Bohr magneton. The hyster-
esis loops were obtained at kBT/JCo ≈ 0.023 (T ≈ 10 K) 
for kv/J = 0.001 (kv = 0.037 85 meV/atom) and 1.0 
(kv = 37.85 meV/atom). For the LLG spin dynamics simu-
lations, we considered a damping parameter λ = 1, time step 
∆t = 0.3 fs and magnetic field steps µs∆B = 0.015 and 0.15 
meV for the low and high anisotropy systems, respectively. 
The time step is in the stable region for the atomistic model 
at low temperatures (T ≪ Tc) and only valid for ferromag-
nets (see figure 2 in [1]). To calculate the coercivity, we made 
independent simulations of the hysteresis loop employing in 
each simulation a specific value of time steps (MCS and LLG 
time steps per field step for the Monte Carlo and LLG spin 
dynamics simulations, respectively). Then, the coercivity was 
calculated in each independent simulation.

(a) (b)

Figure 8. Time dependence of the difference of the x and y spatial components of the susceptibility at kBT/J = 1.48 for (a) kv/J = 0.001 
and (b) 1.0. The insets show the time dependence of the spatial components.
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Figure 9 shows the coercivity (Bc) as a function of the 
time steps per field step for the Monte Carlo and LLG spin 
dynamics simulations. Independently of the integration 
method and the trial move used, the coercivity is expected 
to converge to the same value as the number of time steps 
increases. At both low (see figure  9(a)) and high (figure 
9(b)) anisotropies, the coercivity converges faster with the 
adaptive move and slower with the random move. Then, the 
adaptive move requires less runtime to simulate a complete 
hysteresis loop than the random and combinational moves, 
and the LLG spin dynamics. Furthermore, according to the 
results shown in section 3.1, the adaptive move is expected 
to be significantly more efficient than the random move at 
lower temperatures and still more efficient at higher temper-
atures below Tc.

3.4. Magnetization reversal

Different mechanisms of magnetization reversal present in 
magnetic materials make them ideal for technological applica-
tions such as magnetic recording. In Monte Carlo simulations, 

the reversal mechanism and the time required to reverse the 
spin moments depend on the trial move employed.

In this final test, we simulated thermally activated reversal 
processes, as simulated by Hinzke and Nowak [5]. To begin 
the test, we considered a system with an initial spin moments 
configuration where all of them were pointing up and an 
external magnetic field pointing down. After some time, the 
external magnetic field energy overcomes the anisotropy and 
exchange energy and eventually the spin moments, which are 
in a metastable state, reverse their magnetization. The time 
required to produce a magnetization in z equal to zero, i.e. 
Mz(τ) = 0, is known as the metastable lifetime (τml). For low 
temperatures, τml is given by [5]

τml = τ0e
(

∆E
kBT

)
 (10)

where ∆E is the energy barrier which depends on the reversal 
mechanism. The temperature dependence of τml for the dif-
ferent trial moves is shown in figure 10. It is observed that the 
results are very similar independently of the anisotropy value 
of the system. Such as in the results of the integrated relax-
ation times (figure 7), the small step and the random moves 

(a) (b)

Figure 9. Coercivity as a function of the number of MCS and LLG time steps per magnetic field step at kBT/JCo = 0.091 for (a) 
kv/J = 0.001 and (b) 1.0.

(a) (b)

Figure 10. Temperature dependence of the metastable lifetimes for (a) kv/J = 0.001 and (b) 1.0.
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are the most and the least efficient moves at low temperatures, 
respectively. While at high temperatures, the adaptive and 
random move are the most efficient and the small step move is 
the least efficient. Overall, the adaptive move presents a good 
efficiency at all temperatures, indicating that it would require 
less time to reverse the magnetization of the system.

Although we performed the simulations on a simple cubic 
lattice with nearest neighbor interactions, the adaptive move can 
be applied to any lattice and long range interactions. There is 
no difference in terms of sample for the more general case, as 
each spin will have an effective exchange energy, and the spins 
simply sample the relevant phase space with an optimal sampling 
method. Moreover, in systems composed of two or more magn-
etic phases with distinct magnetic properties, such as hard/soft 
core/shell nanoparticles, using the adaptive move with a unique 
adaptive cone width could lead to a poor phase space sampling 
for some or all the phases due to the different optimal cone width 
for a given temperature. In this case, it is more suitable to use 
independent adaptive cone widths for each magnetic phase.

4. Conclusions

In summary, we have developed an adaptive algorithm for the 
optimal phase space sampling in Monte Carlo simulations of 
3D Heisenberg spin systems. The proposed adaptive algo-
rithm modifies adaptively a cone-based spin update method 
keeping the acceptance rate close to 50%. We have shown that 
the adaptive algorithm is more efficient than other common 
spin update methods independently of the temperature and 
the anisotropy of the system in consideration. Low correlation 
times and a faster convergence to equilibrium of the thermal 
averages and the coercivity were obtained when the adaptive 
algorithm was used. Also, the adaptive algorithm showed good 
efficiency for magnetization reversal at all temperatures, even 
for high anisotropy systems. A generalization of the adaptive 
algorithm could be made to enhance the efficiency of Monte 
Carlo simulations of other kinds of systems.
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