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Temperature-dependent magnetic properties of Nd2Fe14B permanent magnets, i.e., saturation magnetization
Ms(T ), effective magnetic anisotropy constants Keff

i (T ) (i = 1, 2, 3), domain-wall width δw (T ), and exchange
stiffness constant Ae(T ), are calculated by using ab initio informed atomistic spin model simulations. We
construct the atomistic spin model Hamiltonian for Nd2Fe14B by using the Heisenberg exchange of Fe − Fe
and Fe − Nd atomic pairs, the uniaxial single-ion anisotropy of Fe atoms, and the crystal-field energy of Nd
ions, which is approximately expanded into an energy formula featured by second-, fourth-, and sixth-order
phenomenological anisotropy constants. After applying a temperature rescaling strategy, we show that the
calculated Curie temperature, spin-reorientation phenomenon, Ms(T ), δw (T ), and Keff

i (T ), agree well with the
experimental results. Ae(T ) is estimated through a general continuum description of the domain-wall profile by
mapping atomistic magnetic moments to the macroscopic magnetization. Ae is found to decrease more slowly
than Keff

1 with increasing temperature and approximately scale with normalized magnetization as Ae(T ) ∼ m1.2.
Specifically, the possible domain-wall configurations at temperatures below the spin-reorientation temperature
and the associated δw and Ae are identified. This work provokes a scale bridge between ab initio calculations and
temperature-dependent micromagnetic simulations of Nd-Fe-B permanent magnets.

DOI: 10.1103/PhysRevB.99.214409

I. INTRODUCTION

Nd-Fe-B permanent magnets are critical for the key com-
ponents of energy-related technologies, such as wind turbines
and electromobility. They are also important in robotics,
automatization, sensors, actuators, and information technol-
ogy [1–3]. Since there is increasing demand in high-end
technology that permanent magnets be used at finite or ele-
vated temperatures, the temperature-dependent properties of
Nd2Fe14B, the main phase of Nd-Fe-B magnets, are of great
interest. For example, these magnets are exposed to elevated
temperatures in many applications, such as the motors inside
hybrid vehicles where the operating temperature can approach
450 K.

Modelling and simulation play an important role in
the design of permanent magnets for applications at el-
evated temperatures. Currently, first-principles calculations
and micromagnetic simulations dominate the modeling of
permanent magnets. The former helps to understand the
magnetic properties on the electronic level, as well as to
predict intrinsic parameters (e.g., magnetic moment, crystal-
field parameter, etc.) at zero temperature [4–9]. However,
first-principles calculations become very challenging at finite
temperature. Micromagnetic modeling aims at simulating the
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domain structure on the nano–/microscale level and is very
useful when studying the influence of microstructure (e.g.,
grain shape/size, grain boundary, intergranular phase, etc.)
on the magnetization reversal process and the macroscopic
properties of permanent magnets [10–19]. The thermal acti-
vation of nucleation at finite temperatures and its effect on the
decay of the coercive field in Nd-Fe-B magnets are addressed
by micromagnetic simulations [20,21], but the temperature-
dependent intrinsic properties have to be already known or de-
termined beforehand. In addition, it is well known that the mi-
cromagnetic model is essentially a continuum approximation
and assumes the magnetization to be a continuous function
of position. This approximation holds when the considered
length scales are large enough for the atomic structure to be
ignored [14,22]. However, when the region of interest is at
the same scale as the exchange length, this approximation
would fail. For example, in Nd-Fe-B magnets, the amorphous
grain boundary is often found to be around 2 nm (close to the
micromagnetic exchange length of Nd2Fe14B). The validity
of micromagnetic representation of this 2-nm region with
homogenized parameters remains as an issue. A scale bridge
between these two methodologies for modeling Nd-Fe-B
magnets is desired. Moreover, the evaluation of temperature-
dependent macroscopic parameters for micromagnetic sim-
ulations is highly nontrivial. In this aspect, there are recent
attempts to study temperature-dependent effective magnetic
anisotropy, saturation magnetization, and reversal processes in
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Nd2Fe14B by using atomistic spin model simulations [23–27],
based on which the concept of a multiscale model approach
for the design of advanced permanent magnets is proposed
[28]. In general, an atomistic spin model is capable of calcu-
lating magnetic properties at different temperatures [29–31] in
which the temperature effects can be taken into account by ei-
ther Langevin-like spin dynamics or Monte Carlo simulations.
Its application to permanent magnets, or more especially
rare-earth permanent magnets, is still at its early stage. More
efforts have to be made to either understand the gap between
model simulations and experimental measurements or pre-
dict parameters over a broad range of temperatures in order
to establish the atomistic spin model as a readily available
methodology for designing Nd-Fe-B magnets. In this work,
following the similar framework in [24,25,32], in addition
to calculating the Curie temperature and the temperature-
dependent magnetization, magnetocrystalline anisotropy, and
domain-wall width, we also add some useful knowledge into
the community of Nd-Fe-B magnets in terms of atomistic
spin model simulations and temperature-dependent intrinsic
parameters. For example, considering the different description
of spin states in the classical and quantum manner, such as the
different availability of spin states in the classical atomistic
spin model simulations and experiments, we determine the
temperature rescaling parameter for Nd2Fe14B and figure out
the difference between simulation and experimental tempera-
tures. In this way, the calculated magnetization vs temperature
curve shows a better agreement with the experimental one
than that in [24]. In addition, except for the domain-wall width
at temperatures higher than the spin reorientation temperature,
we also carefully examine various types of domain-wall con-
figurations and their widths at temperatures lower than the
spin reorientation temperature. Moreover, linking the simu-
lation results and the micromagnetic theory, we determine
the exchange stiffness for a wide range of temperatures and
identify the scaling law.

Specifically, here we present an ab initio informed atom-
istic spin model for the theoretical calculation of the Curie
temperature, spin-reorientation temperature, and magnetic
properties of Nd2Fe14B, such as saturation magnetization
Ms(T ), effective magnetic anisotropy constants Ki(T ) (i =
1, 2, 3), domain-wall width δw(T ), and exchange stiffness
constant Ae(T ) at temperatures both higher and lower than
the spin reorientation temperature. The calculation results
are coherent with the experimental results. Our work here
provides effective parameters for micromagnetic simulations
and will be useful for revealing the atomic-scale magnetic
behavior in Nd-Fe-B magnets.

II. ATOMISTIC SPIN MODEL FOR Nd2Fe14B

For calculating the temperature-dependent magnetic prop-
erties, we use the atomistic spin model which treats each atom
as a classic spin [29–31]. For Nd2Fe14B, the atomistic spin
Hamiltonian can be written as

H = −1

2

i, j∈Fe∑
i �= j

JFe-Fe
i j si · s j − 1

2

j∈Nd∑
i∈Fe

JFe-Nd
i j si · s j

−
∑
i∈Fe

kFe
i (si · ez )2 + Hcf

Nd. (1)

It should be noted that in Eq. (1) the energy terms from the
external magnetic field and the dipole interaction between
atomic spin moments are not included, since here we focus
only on the calculation of intrinsic properties. si is a unit
vector denoting the local spin moment direction. The first
two terms in Eq. (1) correspond to the Heisenberg exchange
energy. They only contain the exchange interactions in Fe-Fe
(JFe-Fe

i j ) and Fe-Nd (JFe-Nd
i j ) atomic pairs, owing to the fact that

B sites are usually taken to be nonmagnetic and the interaction
between Nd sites can be negligible [24,25,28]. The third term
in Eq. (1) represents the uniaxial magnetic anisotropy energy
of Fe atoms, with kFe

i as the anisotropy energy per Fe atom and
ez the z-axis unit vector. The fourth term in Eq. (1) denotes the
crystal-field (CF) Hamiltonian of Nd ions, which is the main
source of large magnetic anisotropy in Nd2Fe14B and can be
approximated as [24,25,33]

Hcf
Nd =

∑
i∈Nd

∑
n=2,4,6

αn〈rn〉4 f ,iA
0
n,i�̂

0
n,i, (2)

in which αn is the Stevens factors, 〈rn〉4 f ,i the 4 f radial
expectation value of rn at the respective Nd site i, A0

n,i the
CF parameters, and �̂0

n,i the Stevens operator equivalents.
For Nd+3 ions, α2 = −6.428 × 10−3, α4 = −2.911 × 10−4,
and α6 = −3.799 × 10−5 [34]. 〈rn〉 values of Nd+3 ions can
be calculated as 〈r2〉 = 1.001a2

0, 〈r4〉 = 2.401a4
0, and 〈r6〉 =

12.396a6
0 in which a0 is the Bohr radius [35]. The Stevens

operator equivalents are expressed as [34]

�̂0
2 = 3J2

z − J ,

�̂0
4 = 35J4

z − 30J J2
z + 25J2

z − 6J + 3J 2,

�̂0
6 = 231J6

z − 315J J4
z + 735J4

z + 105J 2J2
z

− 525J J2
z + 294J2

z − 5J 3 + 40J 2 − 60J . (3)

Jz = J (s · ez ) denotes the z component of the total angu-
lar momentum J , which is 9/2 for Nd ions [34]. J = J2

instead of J = J (J + 1) is used in the classical manner
[24]. The reliable first-principles calculation of high-order CF
parameters in Nd2Fe14B is still challenging. Here we take
the A0

n values which are determined from the experiment
results [33], i.e., A0

2 = 295 K/a2
0, A0

4 = −12.3 K/a4
0, and A0

6 =
−1.84 K/a6

0. We approximately set all Nd ions with the same
CF parameters. In this way, combining Eq. (2), Eq. (3), and
Ji,z = J (si · ez ) yields the CF energy

Hcf
Nd = −

∑
i∈Nd

[
kNd

i,1 (si · ez )2 + kNd
i,2 (si · ez )4 + kNd

i,3 (si · ez )6
]
,

(4)

in which the parameters kNd
i,1 , kNd

i,2 , and kNd
i,3 are listed in

Table I. The constant term in Hcf
Nd is not important and thus

is not presented in Eq. (4). The magnetocrystalline anisotropy
energy of the Fe sublattice and the magnetic moments of
each atom, as listed in Table I, are taken from the previous
first-principles calculations [24,36]. The exchange parameters
JFe-Fe

i j and JFe-Nd
i j in Eq. (1) are evaluated in the relaxed unit

cell (lattice parameters are kept constant as a = b = 8.76 Å,
c = 12.13 Å and the thermal expansion is not considered)
by using OPENMX [37–40]. The calculation of Heisenberg
exchange parameters Ji j between two different atomic sites i
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TABLE I. Magnetic moments and atomic-site resolved magnetic
anisotropy energy of each crystallographically equivalent atom.

μi ki

Atom (μB) (×10−21 J)

kNd
i

kNd
i,1 = −4.935

Nd(4g) 2.86
kNd

i,2 = 25.98
Nd(4 f ) 2.871

kNd
i,3 = −22.94

kFe
i

Fe(4c) 2.531 −0.342
Fe(4e) 1.874 −0.0048
Fe(8 j2) 2.629 0.093
Fe(8 j1) 2.298 0.171
Fe(16k2) 2.206 0.0608
Fe(16k1) 2.063 0.0880

and j is implemented in OPENMX by using the magnetic-force
theorem (follow the original formalism by Liechtenstein et al.
[37]) and its extension to the nonorthogonal LCPAO (linear
combination of pseudoatomic orbitals) method [38]. In detail,
Ji j is estimated as a response to small spin tiltings (as a
perturbation) from the given converged solution, as shown the
detailed formulation in [37–39]. More application examples
of OPENMX in calculating Heisenberg exchange parameters
are reported by the OPENMX’s developers in the literature
[38–41]. In fact, the unit cell here is already very large, and
thus the lattice translation vectors have negligible influence on
the calculated Ji j . Indeed, our additional calculations of the
2 × 1 × 1 and 2 × 2 × 1 supercells show that the influence
of the adopted cell size on the calculated Ji j can be ignored,
as shown in Fig. 1. Therefore, the calculated Ji j here can

FIG. 1. Exchange parameters Ji j as a function of interatomic
distance, with the nearest neighbor considered. Inset: Unit cell of
Nd2Fe14B showing different kinds of crystallographically equivalent
atoms. The results of the 2 × 1 × 1 supercell are also presented to
show the independence of Ji j on the calculated cell size.

be used in the Heisenberg spin model and the Monte Carlo
simulations. An open-core pseudopotential for Nd is used,
with the 4 f electrons put in the core and not treated as
valence electrons. For the many local-orbital-based methods
in OPENMX, the basis set of each atom should be chosen. We
use a notation of sNs pNpdNd f Nf to represent the basis-set
choice for a given atom. For example, s1p2d3 denotes that
one s, two p, and three d orbitals are taken as a basis set.
According to the previous work [7], the basis sets for Nd,
Fe, and B atoms are chosen as s2p2d2, s2p2d2, and s2p2,
with cutoff radii of 8.0, 6.0, and 7.0 a.u., respectively. We
use a 5 × 5 × 4 k-point mesh and a 500-Ry cutoff energy.
The convergence criteria for the self-consistent calculation is
10−6 Hartree. The calculated exchange parameters are further
calibrated (interactions of Fe–Fe and Fe–Nd are rescaled by
2 and 0.9, respectively) by checking the results from the
atomistic spin model simulation of Nd2Fe14B and are shown
in Fig. 1. It can be found that the total magnetic moment
of Nd ions is ferromagnetically coupled to Fe moments, and
the exchange of Fe-Fe pairs is 3 − 10 times stronger as that
of Fe-Nd pairs. Previous studies have shown that the cutoff
radius (within which exchange parameters are calculated)
affect the magnetization at higher temperatures [24]. In order
to reduce the computational cost, as a simplification, here
we only calculate exchange parameters within the nearest-
neighbor approximation. The effect from longer-range ex-
change interactions is not included. For the Nd2Fe14B system,
the nearest-neighbor exchange interactions dominate while
the longer-range ones are less important. In the following we
will show that the calculated macroscopic properties from this
simplification are in line with the previous work [24] and the
experimental report [42–44], without significant disparity. It
should be noted that the micromagnetic exchange length is
evaluated from the micromagnetic model in the framework
of the continuum picture without information from the atom-
istic spin at each atomic site. The micromagnetic exchange
length governs the width of the transition between magnetic
domains. In contrast, the exchange parameters describe the
interaction between each pair of atomistic spins at specific
atomic sites. They are in the framework of the discrete picture
in the atomistic spin scale. Thus, the micromagnetic exchange
is not a direct indicator for the cutoff radius of the exchange
interaction in the atomistic spin model.

After parametrization, the atomistic spin model in Eq. (1)
is implemented in VAMPIRE [30]. For calculating the Curie
temperature and temperature-dependent magnetization, the
Monte Carlo Metropolis method is adopted using a sample
with 10 × 10 × 10 unit cells and periodic boundary condi-
tions in all three directions. After performing 10,000 Monte
Carlo steps at each temperature, the equilibrium properties
of the system are calculated by averaging the magnetic mo-
ments over a further 10,000 steps. It should be noted that by
performing calculations at different steps, we find the results
remain the same after Monte Carlo steps exceed 10,000. For
the calculation of effective magnetic anisotropy constants at
different temperatures, we use the constrained Monte Carlo
method [30,45]. We constrain the direction of the global
magnetization at a fixed polar angle (θ ) while allowing the
individual spins to vary. In this way, we can calculate the
restoring torque acting on the magnetization as a function
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FIG. 2. Temperature dependence of (a, b) the magnetization amplitude, (c) the magnetization components Mz and Mxy, and (d) the magnetic
moment per atom in Nd and Fe sublattices. The corrected curves are plotted by α = 1.802. The experimental results are taken from [43].

of θ , from which the effective magnetic anisotropy constants
can be obtained by fitting. When calculating domain-wall
width, we apply the spin dynamics approach and the Heun
integration scheme. A sharp Bloch-like domain wall (wall
plane perpendicular to x axis) in the middle of the sample
with Nx × Ny × Nz unit cells is set as the initial condition.
The system with the demagnetizing field included further
relaxes from this initial condition by 100,000 steps with a time
step of 1 fs. The final domain configuration is determined by
averaging the magnetic moment distribution of 100 states at
90.1, 90.2, 90.3, . . . , 100 ps.

III. RESULTS AND DISCUSSION

A. Curie temperature and saturation magnetization

The calculated temperature-dependent magnetization
curve for Nd2Fe14B is shown in Fig. 2(a). For a classical
spin model, the simulated magnetization can be related to
temperature through the function [30]

m = Ms(T )/M0 = (1 − T/Tc)β, (5)

in which Ms(T ) is the temperature-dependent saturation mag-
netization, M0 denotes the saturation magnetization at zero K,
Tc is the Curie temperature, and β is an exponent. Direct fitting
the simulation data by Eq. (5) gives Tc = 602 K and β =
0.418. The calculated Tc matches well with the experimental
data [43].

However, it can be found from Fig. 2(a) that only the
simulation results around the Curie temperature agree with
the experimental measurement. This disparity could be related
to the following two aspects. First, the exchange parame-
ters could vary when temperature changes, as the case for
Fe shown in [46]. At high temperatures, there may exist a

disordered local moment (DLM) state [47] and thus different
exchange parameters and magnetization. However, the calcu-
lation of temperature-dependent exchange parameters by first-
principles methods is still challenging for the complicated
Nd2Fe14B. Nevertheless, using the constant exchange param-
eters, the Curie temperature of Nd2Fe14B is well predicted in
Fig. 2(a). Apart from the possible reason related to tempera-
ture or DLM-state-dependent exchange parameters, we think
the distinction between the quantum model and the classical
model should also contribute to the deviation in Fig. 2(a), as
thoroughly discussed in [48]. The atomistic spin model is a
classical model which considers localized classical atomistic
spins with unrestricted and continuous values. In contrast, the
experimental measurement spontaneously includes the man-
ifestation of a quantum system which only allows particular
eigenvalues. It indicates more available states in the classical
model than in experiments. The macroscopic magnetization
obtained at simulation temperature Tsim should be achieved
at higher temperature Texp in experiments. For this reason,
there should be a mapping between Tsim and Texp. Here we
adopt the temperature rescaling method, as proposed in the
previous work [48], to determine this mapping. The (internal)
simulation temperature Tsim is rescaled so that the equilibrium
magnetization at the input experimental (external) tempera-
ture Texp agrees with the experimental result, i.e.,

Tsim/Tc = (Texp/Tc)α, (6)

in which α is the rescaling parameter which can be fitted.
The physical interpretation of the rescaling is that at low
temperatures the allowed spin fluctuations in the classical
limit are overestimated, and so this corresponds to a higher
effective temperature than given in the simulation (i.e., Texp >

Tsim) [48]. The physical origin of α may be relate to the
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different availability of spin states in the classical atomistic
spin model simulation and the experiment. However, it would
be interesting to apply detailed first-principles calculations to
delineate the origin. For detailed discussion on the tempera-
ture rescaling, the readers are referred to [48]. By applying
the temperature rescaling Eq. (6) to the simulation data and
directly comparing the rescaled data with the experimental
data, we fit the parameter α as 1.802. After these operations,
we can see in Fig. 2(a) that the corrected simulation data show
excellent agreement with the experimental one, and both can
be described by the Curie-Bloch equation

m = Ms(T )/M0 = [1 − (T/Tc)α]β, (7)

with the fitted parameters α = 1.802 and β = 0.418.
Calculating the total magnetic moments per volume, we

then obtain the temperature-dependent saturation magnetiza-
tion Ms(T ) from the corrected simulation data. Ms(T ) agrees
well with the experimental data [43], as shown in Fig. 2(b).
The spin reorientation phenomenon can also be captured
by atomistic spin simulations, as shown in Fig. 2(c). The
simulated Mz in Fig. 2(c) first increases and then decreases
with the increasing temperature. By comparing Mz in Fig. 2(c)
to Ms in Fig. 2(b), it can be estimated that the tilting angle of
the magnetization direction away from the z axis is around 32◦
at T = 25 K. The simulated spin reorientation temperature
is around 180 K, higher than the experimental value around
150 K. This deviation may be related to the low quality of the
temperature rescaling at low temperature. Nevertheless, the
results on spin reorientation are in line with the experimental
observations [33,43,44]. Meanwhile, it can be seen from
Fig. 2(d) that as temperature increases, the magnetization of
the Nd sublattice decreases faster than that of the Fe sublattice.
This is due to the strong exchange coupling in the Fe sublattice
and indicates that the Fe sublattice is responsible for the
magnetic order.

B. Effective magnetic anisotropy

In order to determine the effective magnetic anisotropy
constants, we have to calculate the system energy when the
global magnetization is aligned along different directions.
This can be done through the calculation of torque. In the con-
strained Monte Carlo scheme, we fix the azimuthal angle at
zero degrees and gradually change polar angle from 0◦ to 90◦,
i.e., the global magnetization is rotated in the z-x plane and
only the torque component Ty is nonzero. The total internal
torque Ty is calculated from the thermodynamic average and
transferred into the energy per volume, as shown in Fig. 3(a).
It can be seen that at low temperature (e.g., 25 and 100 K)
Ty is positive when θ is close to the z/[001] axis, indicating
a spontaneous deviation of the global magnetization from the
z/[001] axis. This result is in line with the easy-cone type of
anisotropy and the spin tilting away from the z/[001] axis
[Fig. 2(c)] at low temperature. At high temperature, Ty is
always negative and thus there is a revert torque for driving
the global magnetization towards the z/[001] axis, implying
an easy-axis type of anisotropy.

After obtaining the temperature-dependent Ty, the free
energy (F ) of the magnetic system can be related to the work

FIG. 3. (a) Internal torque density Ty(θ ) and (b) free-energy
density F (θ ) at different temperatures. (c) Temperature-dependent
experimental and calculated effective magnetic anisotropy constants
Keff

i (i = 1, 2, 3). The experimental results are taken from [42].

done by the torque acting on the whole system, i.e.,

F (θ, T ) = −
∫ θ

0
Ty(�, T )d�. (8)

Integrating the data in Fig. 3(a) through Eq. (8) gives the
free-energy curves in Fig. 3(b). It can be seen that at 25 K, F
shows a local minimum at θ ≈ 32◦, reflecting the spin tilting
away from the z/[001] axis. The effective magnetic anisotropy
constants can be determined through the fitting of F curves by
the phenomenological six-order formula

F (θ, T ) = Keff
1 (T ) sin2 θ + Keff

2 (T ) sin4 θ + Keff
3 (T ) sin6 θ,

(9)

in which Keff
1 , Keff

2 , and Keff
3 are the macroscopically effec-

tive second-, fourth-, and sixth-order anisotropy constants,
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FIG. 4. (a, d, g) Three types of possible low-temperature (easy axis tilted from the z axis with angle θ0) domain-wall configurations
displayed by the distribution of atomistic magnetic moments. The distribution of macroscopic magnetization components along the x axis in
the case of (b, c) domain wall θ0 → −θ0, (e, f) domain wall θ0 → π + θ0, and (h, i) domain wall θ0 → π − θ0.

respectively. The fitting results are presented in Fig. 3(c)
and compared to the experimental measurement [42]. We
can see that below 150 K, Keff

1 is negative and both Keff
2

and Keff
3 play a critical role, agreeing with the cone-type

anisotropy of Nd2Fe14B at low temperature. After 250 K,
Keff

1 dominates and Keff
2 and Keff

3 are relatively small. At
300 K, our calculated results are Keff

1 = 4.26, Keff
2 = 0.15, and

Keff
3 = −0.10 MJ/m3. At higher temperature, Keff

2 and Keff
3

almost vanish. The calculated temperature dependence of Keff
i

in Fig. 3(c) agrees reasonably with the previous experimental
measurement [42,43,49] and theoretical calculations [24,50].

C. Domain wall

Due to the different anisotropy types at low tempera-
ture (cone-type anisotropy) and high temperature (easy-axis

anisotropy) in Nd2Fe14B, the domain wall will also be distinct.
At temperatures lower than the spin reorientation temperature,
a number of possible variants of domain-wall types have been
observed due to the cone-type anisotropy [51,52]. For hard
materials (Nd-Fe-B permanent magnets here) with dominant
magnetocrystalline anisotropy, the typical domain-wall profile
is of the Bloch type, i.e., the magnetization is parallel to the
easy axis (z or c axis for Nd2Fe14B) in the two domains
separated by a domain wall perpendicular to the x (a) axis.
Hence, here we study the Bloch-like domain walls, with the
wall plane perpendicular to the x axis, as shown in Figs. 4
and 5. We consider three types of Bloch-like domain walls at
low temperatures in Fig. 4. More complicated domain walls
with the wall plane perpendicular to different crystallographic
axes will be investigated in our next work. The three wall
modes are described as the polar angle changing from θ0 to
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FIG. 5. (a) High-temperature (easy axis along z axis) domain-wall configuration displayed by the distribution of atomistic magnetic
moments. Macroscopic (b) Mz and (c) Mxy distribution along the x axis at T = 300 K. (d) Domain-wall width δw at different temperatures.
Inset in (d): δw scaling with magnetization as a function of m2.92. δw0 is the wall width at zero temperature.

−θ0 in Fig. 4(a), θ0 to π + θ0 in Fig. 4(d), and θ0 to π − θ0

in Fig. 4(g), with the angle through the wall as 2θ0, π , and
π − 2θ0, respectively. At temperatures higher than the spin
reorientation temperature, the 180◦ Bloch-like domain wall
with the polar angle changing from 0 to π is considered, as
shown in Fig. 5(a).

For calculating the domain wall, we set the magnetic
moment direction in the y-z plane with a polar angle as θ0

(i.e., tilting angle) and −θ0 (or π ± θ0) in the upward and
downward domain, respectively. We then relax the system
to attain the distribution of magnetic moments around the
domain wall, as shown in Figs. 4(a), 4(d), 4(g), and 5(a). It
can be seen that at low temperature (e.g., below 200 K) the
magnetic moments are uniformly distributed within the do-
main, and a clear transition of magnetic moment distribution
from the domain wall to the domain is visually observable.
In contrast, at higher temperatures (e.g., above 400 K), the
effect of thermal fluctuations is stronger, so that there are
some randomly distributed magnetic moments even in the
domain and no obvious transition between the domain wall
and domain can be intuitively identified.

In order to determine the domain-wall width, we turn
to the continuum description of domain wall or diffusive
interface. For mapping the atomistic magnetic moments to the

continuum magnetization, we divide the simulation sample
with Nx × Ny × Nz = 40 × 5 × 5 unit cells into Nx parts along
the x axis. For the case of the 2θ0 domain wall in Fig. 4(a),
the wall is very wide and thus a simulation sample with Nx ×
Ny × Nz = 120 × 5 × 5 unit cells is used. Each part (with an
index of lx, 1 � lx � Nx) represents 1 × 5 × 5 unit cells, with
its x coordinate set in its center. The magnetization of each
part is calculated by dividing its total magnetic moments by its
volume. In this way, we attain the magnetization components
Mi(x) and Mjk (x) for each part lx from the atomistic results in
Figs. 4 and 5, i.e.,

Mi(x) =
∑
I∈lx

μI si
I

Vlx

(10)

and

Mjk (x) =
∑
I∈lx

μI

√(
s j

I

)2 + (
sk

I

)2

Vlx

(11)

at x = 0.5 + (lx − 1)a, in which μI is the magnetic moment
of atom I in the part lx, si

I (i = x, y, z) the spin direction com-
ponents of atom I , Vlx the volume of part lx, and a = 8.76 Å
the in-plane lattice parameter. Following the mapping in
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Eqs. (10) and (11), we obtain the scattered data to describe
the domain-wall configuration, as shown in Figs. 4 and 5. In
the continuum model, the domain wall or diffusive interface
can be described by the hyperbolic functions [53–55] through

Mi(x) = −Ms(T ) tanh
x − x0

δ
(12)

or

Mjk (x) = Ms(T )/ cosh
x − x0

δ
, (13)

in which x0 is for shifting the domain wall to the center and δ

is the parameter related to domain-wall width δw by δw = πδ.
In Fig. 4, we present the domain-wall profile at temperature

lower than the spin reorientation temperature. For the 2θ0

domain wall in Fig. 4(a), the domain-wall width is quiet large.
It can be found from Figs. 4(b) and 4(c) that Mz does not
change along the x axis, whereas Mx can be described by
Eq. (12). So this wall does not satisfy the condition of constant
normal component of the magnetization along the wall axis,
i.e., it is not a Bloch-like wall. Moreover, the uniform Mz

indicates constant magnetic anisotropy energy according to
Eq. (9) and thus the domain wall cannot exist, because the for-
mation of domain wall is a result of the competition between
variable exchange energy and magnetic anisotropy energy.
One possible explanation for the wide domain wall in Fig. 4(a)
is that the azimuthal angle also takes effects in the magnetic
anisotropy energy and could contribute to the domain wall
formation. The role of azimuthal angle in determining the
easy direction of Nd2Fe14B at low temperatures has also been
addressed before [52]. However, in Eq. (9) we neglect the
azimuth-angle dependence, which has to be taken into account
in the following work. Here we focus on the Bloch-like wall
and will not put emphasis on the wide domain wall in Fig. 4(a)
as well as its width. In contrast, the π and π − 2θ0 domain
walls are Bloch-like and narrow, and Mz can be well described
by Eq. (12), as shown in Figs. 4(e), 4(f), 4(h), and 4(i).
The domain wall becomes slightly wider as the temperature
increases from 25 to 140 K. In addition, the wall profiles in
π and π − 2θ0 domain walls are almost the same at a specific
temperature. In the following, we will take the wall profile in
the π − 2θ0 domain wall to calculate the domain-wall width
and exchange stiffness at low temperatures.

At temperatures higher than the spin reorientation temper-
ature, 180◦ Bloch-like domain walls clearly form, as shown
in Fig. 5(a). Fitting the scattered data associated with the
domain-wall configuration by Eq. (12) or (13) can give δ

and thus the domain-wall width. Typical fitting results at
300 K are presented in Figs. 5(b) and 5(c), with δ = 1.55
nm and δw = 4.87 nm. It should be noted that at 300 K, the
exchange stiffness Ae is often taken as 6.6–12 pJ/m [42,55,56]
and Keff

1 as 4.2−4.5 MJ/m3 [42,55] in the literature, corre-

sponding to an estimated δw = π
√

Ae/Keff
1 as 3.63–5.31 nm.

Our calculated δw at 300 K falls well in the range of δw

estimated from the literature. The measured δw by electron
microscopy is more widely distributed, ranging from 1 to 10
nm [57–59]. The calculated domain-wall widths at different
temperatures are summarized in Fig. 5(d). It can be found
that domain wall becomes wider as the temperature increases,
from δw = 2.72 nm at 25 K to δw = 8.67 nm at 550 K.

The large standard deviation of δw at higher temperature is
attributed to the stronger thermal fluctuations. These results
are also consistent with the previous simulation results [25].
In addition, the dimensionless wall width δw/δw0 (δw0: wall
width at 0 K) can be fitted as a function of the power of
dimensionless magnetization, i.e., δw/δw0 linearly varies with
m2.26, as shown in the inset of Fig. 5(d). This is different from
the low-temperature power-law scaling behavior of m−0.59 as
found in cobalt [60], possibly due to the complicated and
intrinsically different crystal structure of Nd2Fe14B.

D. Exchange stiffness

The determination of the temperature-dependent exchange
stiffness constant Ae(T ) is nontrivial. At 300 K, spin-wave
dispersion measurements in Nd-Fe-B magnets reveal Ae as
6.6 pJ/m [56]. In the case of uniaxial anisotropy with positive
Keff

1 and zero Keff
2 and Keff

3 , the domain-wall width can be

calculated as δw = π
√

Ae/Keff
1 , from which Ae is estimated

at around 7–12 pJ/m at 300 K [42,55]. However, when Keff
1

is negative or Keff
2 and Keff

3 cannot be neglected, e.g., at low

temperatures, the expression δw = π
√

Ae/Keff
1 does not work.

It should be mentioned that if all Keff
i are taken into account,

there is no analytic solution for the Bloch wall profile [54]. In
the general case, the Bloch wall profile is governed by [54]

dx = dθ
√

Ae(T )/[F (θ, T ) − F (θ0, T )] (14)

and thus

x(θ, T ) =
√

Ae(T )
∫ θ

θ0

d�√
F (�, T ) − F (θ0, T )

, (15)

in which F (θ, T ) is taken from Eq. (9).
Since x is a monotonic function of θ in Eq. (15), there

exists an inverse function θ (x, T ). Therefore, after numeri-
cal integration of Eq. (15) with various Ae(T ), we attain a
series of theoretical curves with x as a function of Mz =
Ms(T ) cos (θ (x, T )). Then we optimize Ae(T ) through the
least-squares method by comparing the simulation data to
the theoretical curves. In Fig. 6(a), we plot both the sim-
ulation data points and the theoretical curves (solid lines)
with the optimum Ae(T ). It can be found that the theoretical
curves by Eq. (15) match well with the fitting results by
Eq. (12). But there is an intrinsic difference—Eq. (12) only
gives domain-wall width, which can be used to estimate Ae

indirectly through δw = π
√

Ae/Keff
1 when Keff

1 is positive,
whereas Eq. (15) directly gives Ae without the constraint
on Keff

i . The optimum Ae(T ) as a function of temperature
is presented in Fig. 6(b). We can see that Ae = (δw/π )2Keff

1
yields reasonable results only above 300 K. In general, Ae(T )
shows a decreasing trend as the temperature increases. Below
the spin reorientation temperature, Ae(T ) slowly decreases
from 11.3 pJ/m at 25 K to 10.2 pJ/m at 140 K. After 200 K,
Ae(T ) decreases much faster, from 11 pJ/m at 200 K to
3.5 pJ/m at 575 K. Ae = 10.2 pJ/m at 300 K is also consistent
with the literature. However, Ae decreases more slowly than
Keff

1 with increasing temperature. For instance, from 300 to
500 K, Ae is reduced by 34% while Keff

1 by 85%. This explains
the wider domain wall at higher temperature in Fig. 5(d).
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FIG. 6. (a) Mz distribution along the x axis at different tem-
peratures. (b) Calculated temperature-dependent exchange stiffness.
(c) Scaling behavior of the exchange stiffness, with the solid lines
showing the scaling law with normalized magnetization. Ae0 is the
exchange stiffness at zero temperature.

The scaling behavior of Ae(T ) is presented in Fig. 6(c).
It is found that at temperatures lower than 500 K, a scaling
behavior Ae(T ) ∼ m exists. The power exponent of 1 for
Nd2Fe14B is much lower than 2 in the mean-field approxima-
tion (MFA)—1.66 for a simple cubic lattice, and 1.76 for FePt
[61]. At temperatures close to Tc, the high-temperature behav-
ior deviates far away from this power scaling law. In addition,
fitting the data after 500 K reveals that Ae(T ) approximately
follows the scaling law of m1.55. Fitting all the data together
with low quality gives a scaling law of m1.2. The underlying
physical reason of this distinct scaling behavior in Nd2Fe14B
has to be uncovered theoretically in the near future. It should
be mentioned that the classical spectral density method has
been attempted towards a deep theoretical understanding of

the scaling behavior of exchange stiffness for simple cubic,
body-centered cubic, and face-centered cubic systems [61,62],
but its application to the complex rare-earth-based Nd2Fe14B
system remains to be further explored.

IV. CONCLUSIONS

In summary, we have carried out ab initio informed
atomistic spin model simulations to predict the temperature-
dependent intrinsic properties of Nd2Fe14B permanent mag-
nets. The results are relevant for temperature-dependent
micromagnetic simulations of Nd-Fe-B magnets. The main
conclusions are summarized as:

(1) The Hamiltonian of the atomistic spin model for
Nd2Fe14B includes contributions from the Heisenberg ex-
change of Fe-Fe and Fe-Nd atomic pairs, the uniaxial single-
ion anisotropy energy of Fe atoms, and the crystal-field energy
of Nd ions. Specially, we approximately expand the crystal-
field Hamiltonian of Nd ions into an energy formula fea-
tured by second-, fourth-, and sixth-order phenomenological
anisotropy constants.

(2) Monte Carlo simulations of the atomistic spin model
readily capture the Curie temperature Tc of Nd2Fe14B. Af-
ter applying the temperature rescaling strategy and the fit-
ted rescaling parameter α = 1.802, we show the calculated
temperature dependence of saturation magnetization Ms(T )
agrees well with the experimental results, and the spin reori-
entation phenomenon at low temperature is well predicted.

(3) Constrained Monte Carlo simulations give the
temperature-dependent total internal torque, from which we
calculate that the macroscopically effective second-, fourth-,
and sixth-order anisotropy constants that match well with the
experimental measurements. The calculated values at 300 K
show good consistency with literature reports, with Keff

1 , Keff
2 ,

and Keff
3 as 4.26, 0.15, and −0.10 MJ/m3, respectively.

(4) Mapping the atomistic magnetic moments to the con-
tinuum magnetization leads to the domain-wall profile, which
can be further fitted by hyperbolic functions to evaluate the
domain-wall width δw. Different domain-wall configurations
at low temperatures are identified. The calculated δw and its
variance increases with temperature, and its value at 300 K is
consistent with experimental observation. δw is found to scale
with magnetization as a function of m2.26.

(5) By using a general continuum formula with the ex-
change stiffness constant Ae(T ) as a parameter to describe
the domain-wall profile, we determine Ae(T ). Ae is found
to decrease more slowly than Keff

1 with increasing temper-
ature. The scaling behavior of the exchange stiffness with
the normalized magnetization is found to be Ae(T ) ∼ m at
temperatures below 500 K and Ae(T ) ∼ m1.55 at temperatures
close to Tc.
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