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Magnetic anisotropy of the noncollinear antiferromagnet IrMn3
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The magnetic anisotropy of antiferromagnets plays a crucial role in stabilizing the magnetization of many
spintronic devices. In noncollinear antiferromagnets such as IrMn, the symmetry and temperature dependence of
the effective anisotropy are poorly understood. Theoretical calculations and experimental measurements of the
effective anisotropy constant for IrMn differ by two orders of magnitude, while the symmetry has been inferred
as uniaxial in contradiction to the assumed relationship between crystallographic symmetry and temperature
dependence of the anisotropy from the Callen-Callen law. In this Rapid Communication, we determine the
effective anisotropy energy surface of L12- IrMn3 using an atomistic spin model and constrained Monte
Carlo simulations. We find a unique cubiclike symmetry of the anisotropy not seen in ferromagnets and that
metastable spin structures lower the overall energy barrier to a tenth of that estimated from simple geometrical
considerations, removing the discrepancy between experiment and theory. The temperature scaling of the
anisotropy energy barrier shows an exponent of 3.92, close to a uniaxial exponent of 3. Our results demonstrate
the importance of noncollinear spin states on the thermal stability of antiferromagnets with consequences for the
practical application of antiferromagnets in devices operating at elevated temperatures.

DOI: 10.1103/PhysRevB.100.220405

I. INTRODUCTION

The magnetic anisotropy of antiferromagnetic (AF) materi-
als plays a key role in the stability of many spintronic devices
[1–5] and exchange bias effects [6–8]. Recently, interest in the
properties of AF materials has increased due to their emerging
applications in AF spintronic [3,5] and neuromorphic com-
puting devices [9] where the antiferromagnet is the active ele-
ment. The magnetic anisotropy energy density as determined
experimentally is a free-energy difference between maximum
and minimum on the free-energy surface where the tempera-
ture variation of the anisotropy arises from spin fluctuations.
For clarity, we refer to the intrinsic quantity, determined from
ab initio calculations, as the magnetocrystalline anisotropy
energy (MAE) and the experimental temperature-dependent
free-energy density as the magnetocrystalline anisotropy con-
stant K . Magnetic anisotropy is usually classified by sym-
metry in expansions of spherical harmonics with azimuthal
and rotational components [10] describing uniaxial and cubic
forms of the anisotropy. The temperature dependence of the
anisotropy is intrinsically related to the order of the harmonics
[10,11] and is well understood for ferromagnets. In contrast,
the magnetic anisotropy of antiferromagnets is poorly un-
derstood due to the difficulty in experimental measurements,
the complexity of the materials, and noncollinear magnetic
structure.

Iridium manganese (IrMn) is the material chosen for many
AF spintronic devices due to its high thermal stability and
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large exchange bias field. In devices, the ordering and compo-
sition is tuned for optimal performance but here we focus on
the L12 ordered IrMn3 phase due to the existence of extensive
experimental [12,13] and theoretical [14–16] data. Theoretical
calculations by Szunyogh et al. [14] found an extremely
large second-order MAE for IrMn3, leading to a predicted
magnetocrystalline anisotropy energy density of the order of
3 × 107 J/m3 at 0 K. Vallejo-Fernandez et al. [17,19] calcu-
lated a value of the anisotropy constant K = 6.2 × 105 J/m3

at 300 K or K = 14.8 × 105 J/m3 at 0 K, almost two orders
of magnitude lower than the expected value from theoretical
calculations [14]. The experimental estimate of the anisotropy
constant of IrMn is sensitive to the value of the switching
attempt frequency ( f0) in the Arrhenius Néel law given by

1/τ = f0 exp

(
− �E

kBT

)
, (1)

where τ is the relaxation time, �E is the energy barrier, kB

is the Boltzmann constant, and T is the temperature. Origi-
nally, Vallejo-Fernandez et al. used a value of f0 = 109 s−1

[17] but more recent estimates suggest values closer to f0 =
(2.1 ± 0.4)1012 s−1 [19]. Determination of the exact value of
the attempt frequency is therefore critical to determining the
effective anisotropy in AF materials.

A further unresolved problem relates to the symmetry of
the IrMn3 anisotropy. Vallejo-Fernandez [17] and Craig et al.
[20] calculated the anisotropy by fitting to the temperature
dependence of the magnetization using a Callen-Callen [11]
power law KAF(T )/KAF(0) = (nAF(T )/nAF(0))l , with nAF the
AF sublattice magnetization. The exponent l reflects the sym-
metry of the anisotropy, which itself generally reflects that
of the lattice. Agreement with experimental measurements
[17] requires an exponent of l ∼ 3 (uniaxial) rather than

2469-9950/2019/100(22)/220405(5) 220405-1 ©2019 American Physical Society

https://orcid.org/0000-0001-5410-5615
https://orcid.org/0000-0002-2378-8203
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.220405&domain=pdf&date_stamp=2019-12-11
https://doi.org/10.1103/PhysRevB.100.220405


JENKINS, CHANTRELL, KLEMMER, AND EVANS PHYSICAL REVIEW B 100, 220405(R) (2019)

l ∼ 10 (cubic anisotropy). Szunyogh et al. [14] showed that
the local energy surface for individual spins is uniaxial by
rotating the triangular ground state about the (111) direction.
Both experiment and theory agree that the anisotropy has
an approximately uniaxial form. However, this contradicts
the predicted relationship between crystallographic symmetry
and the temperature dependence of the anisotropy from the
Callen-Callen and Zener relations [10,11].

In this Rapid Communication, we resolve this apparent
contradiction by determining the equilibrium anisotropic free-
energy surface and by calculation of the temperature de-
pendence and scaling of the effective anisotropy. We find
that the anisotropy of IrMn3 possesses a unique symmetry
neither uniaxial nor cubic in nature and has an unusual scaling
exponent of l = 3.92, not seen for ferromagnetic materials.

II. METHOD

To study the anisotropy of L12- IrMn3 we use an atomistic
spin model where the energy of the system is defined using
the spin Hamiltonian

H = −
∑
i< j

Ji jSi · S j − kN

2

z∑
i �= j

(Si · ei j )
2, (2)

where Si is a unit vector describing the spin direction on Mn
site i, kN = −4.22 × 10−22 is the Néel anisotropy constant,
and ei j is a unit vector from site i to site j, z is the number
of nearest neighbors and Ji j is the exchange interaction. The
effective exchange interactions (Ji j) were limited to nearest
(Jnn

i j = −6.4 × 10−21 J/link) and next-nearest (Jnnn
i j = 5.1 ×

10−21 J/link) neighbors [21]. In IrMn, the magnetocrystalline
anisotropy arises from the large spin-orbit coupling between
Mn and Ir sites [14]. Here we map the local anisotropies at
each Mn site to a Néel pair anisotropy model [21,22] which
gives exact agreement with the ab initio calculations [14]. The
Néel model reflects the local site symmetry to give the correct
easy axes for each Mn site and by performing coherent spin
rotations as in Ref. [14], we find the same angular dependence
of the anisotropy energy.

III. RESULTS

To verify the model we calculated the ground-state spin
structure of ordered L12 IrMn3 using a Monte Carlo metropo-
lis algorithm with the adaptive update method [23,24] and
implemented in the VAMPIRE software package [25]. The 8 ×
8 × 8 nm3 system was initially equilibrated at a temperature
of 1500 K (above the Néel temperature) to thermalize the
spins. The system was then cooled to 0 K using a linear
cooling function over 106 Monte Carlo steps to find the
ground-state spin configuration. In agreement with previous
experimental [12,13] and ab initio results [14], we find that
ordered L12-IrMn3 has a triangular (T 1) spin structure where
the magnetic moments lie parallel to the [111] planes as shown
in Fig. 1. There are eight [111] planes and, by symmetry, IrMn
has eight magnetic ground states.

The energy barrier separating two ground states is the
minimum energy path for the spins to rotate between them
and defines the effective anisotropy and the thermal stability.

[100]

Θ

Φ

[001]

[010]

FIG. 1. Visualization of the simulated ground-state spin structure
of L12-IrMn3 obtained from zero-field cooling. The spin directions
show an average spin of each magnetic sublattice direction over the
whole sample. The corner atoms represent Ir and so have no net
magnetic moment. The simulated spin structure agrees with exper-
imental measurements [12,13] and first-principles simulations [14].
Crystallographic directions and reference directions for constraint
angles (θ , φ) for the sublattice magnetization are shown inset.

To calculate the energy barrier, we use the constrained Monte
Carlo algorithm to determine the free-energy surface and the
energy barrier to magnetic reversal [26]. Here, we constrain
the direction of magnetization of a single Mn sublattice while
allowing all other spins to relax to obtain the equilibrium spin
structure with a constraint applied. By scanning all angles
(θ, φ), the energy surface is obtained. For each value of θ

and φ, the (8 nm)3 system was initially heated to 1500 K
to thermalize the spins and then cooled to 0 K. Due to the
constraint, the system cannot reach a full equilibrium and so
the total internal torque (τ ) is nonzero and given by

τ = −M × ∂F

∂M
, (3)

where F is the Helmholtz free energy which is a function of
M. Since F cannot be computed directly, we reconstruct it by
numerical integration of the torque

F = F0 +
∫ M ′

M
(M′ × T) · dM′ (4)

taken along any path between two points on the energy
surface. The computed energy surface at 0 K is shown in
Fig. 2(a) and has a complicated structure with four minima.
The energy minima lie at φ ∼ ±56◦, corresponding to the
expected easy directions of the constrained sublattice. To
calculate the energy barrier between two adjacent minima, we
compute the minimum energy path between them as shown in
Fig. 2(b). The calculated 0 K anisotropy is 1.78 × 106 J/m3,
which is an order of magnitude lower than that for rigid
rotation of spins calculated by Szunyogh et al. [14] and has
massively reduced the disparity between the experiment and
theory with this result being less than 10% off the experi-
mental measurement. The surprising reduction arises due to
a bobbing motion of the unconstrained spins which results
from the competition between the exchange and anisotropy
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FIG. 2. (a) Simulated anisotropy energy surface for ordered L12-
IrMn3 at 0 K recovered from the integral of the total torque given by
Eq. (4). The marked path shows the minimum energy route between
the two energy minima. (b) Cross section of the anisotropy surface at
T = 0 K showing the minimum energy path to reversal. The energy
barrier �EB to move between the minima is shown.

energies leading to small deviations from the ground-state
spin structure when the AF spins are rotated. This is particu-
larly relevant to macroscopic approximations of AF materials
with Néel vectors where the sublattices are always assumed to
have a fixed local spin structure. The remaining difference in
the values of the effective magnetic anisotropy could be due
to different ordering or defects in the experimental samples,
but our results finally resolve the large disparity between the
theoretically calculated and experimentally measured mag-
netic anisotropy of IrMn3. We note that, although the energy
surface illustrated in Fig. 2(a) has an unusually complex
form, the minima themselves exhibit a fourfold symmetry,
characteristic of cubic rather than uniaxial anisotropy. The
question remains how to resolve the apparent contradiction
with the experimental data of Vallejo-Fernandez et al. [17] and
its requirement of a magnetization scaling exponent consistent
with uniaxial symmetry.

To resolve this discrepancy, we now investigate the temper-
ature dependence of the anisotropy constant to calculate the
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FIG. 3. Simulated temperature dependence of the energy barrier
and scaling of the effective anisotropy. (a) The cross-sectional energy
surface along the minimum energy path at different temperatures.
The total anisotropy energy increases due to spin fluctuations, but
the free-energy barrier decreases with temperature. (b) The scaling
of the effective energy barrier with sublattice magnetization length
nAF fitted using EB(nAF ) = E0nl

AF. l is calculated to be 3.92, ±0.14
suggesting a scaling similar to uniaxial anisotropy l = 3.

scaling exponent. The energy surfaces and minimum energy
path were calculated for temperatures between 0 K and 350 K
as shown in Fig. 3(a). The absolute free energy increases with
temperature due to spin fluctuations but the free-energy barrier
between neighboring ground-state minima, i.e., the magnetic
anisotropy, decreases. In Fig. 3(b), we plot the power-law
dependence of the effective energy barrier as a function
of the magnetization and find an unusual exponent of l =
3.92,±0.14. The exponent is closer to a uniaxial exponent
of l = 3, matching the experimental observations but deviates
from this ideal value due to the complex symmetry of the
anisotropy energy surface. We also note that the specific scal-
ing exponent is dependent on the strength of the anisotropy,
and for weaker anisotropy tends towardan exponent of l = 3,
which may be seen in similar noncollinear magnets such as
PtMn3. We conclude that the magnetic anisotropy of L12-
IrMn3 possesses a close to uniaxial temperature dependence in
direct contradiction with the usual Callen-Callen power laws
and cubic nature of the crystal [11].
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Finally, another problem in calculating the anisotropy
comes from the experimentally determined values of the
anisotropy constant; we consider the basis of the experiments
[17,18], where the attempt frequency f0 is a critical parameter
in calculating the effective anisotropy. Having determined
the precise energy barrier at an elevated temperature, we are
now able to compute the attempt frequency using atomistic
spin dynamics. We simulate the dynamic behavior using the
stochastic Landau-Lifshitz-Gilbert (sLLG) equation [24,27]

∂Si

∂t
= − γ

1 + λ2
[Si × Beff + λSi × (Si × Beff )], (5)

where λ is the Gilbert damping constant and |γ | is the
gyromagnetic ratio. The effective field Beff is calculated
as the derivative of the spin Hamiltonian with respect to
the local spin moment plus a random thermal field (Beff =
−μS

−1∂H /∂Si + Bi
th), where Bi

th = 	(t )
√

2λkBT
γμS�t and 	 is

a 3D random Gaussian distribution. The sLLG equation is
integrated using a second-order predictor corrector Heun
scheme [24].

We determined the attempt frequency by calculating the
transition rate just below the blocking temperature of the
antiferromagnet. Due to the giant anisotropy of IrMn3 and
limited time accessible by simulations, we simulate a small
sample (1.5 nm)3 which has a blocking temperature of TB =
101.5K for a timescale of 0.1 ns. To precisely calculate the en-
ergy barrier for this system at 100 K, we use the same method
as above to calculate the energy surface. The time-dependent
dynamics of the magnetization for a single sublattice is shown
in Fig. 4.

As the temperature is just below the blocking tempera-
ture, the IrMn switches between stable states giving a time-
dependent form similar to telegraph noise. Over a total sim-
ulation time of 100 ns, the total number of transitions was
calculated and divided by the total simulation time. The
frequency of the transitions is dependent on the magnitude of
the damping constant, which is typically in the range 0.01 to 1
for materials with large spin-orbit coupling. The simulation
was repeated for damping constants within this range to
determine the variation in the attempt frequency, giving f0

values between 0.1 and 4 × 1012 Hz, shown in Fig. 4. The
simulated values are of the same order as the experimentally
determined value [19] and provide reasonable bounds for the
attempt frequency for noncollinear antiferromagnets.

IV. DISCUSSION

Applying constrained minimization and spin dynamics
simulations, we have determined the symmetry and effective
temperature-dependent anisotropy and relaxation dynamics of
IrMn3, one of the most technologically important noncollinear
AF materials. We find that the anisotropy energy surface is
unusually complex and find a scaling exponent of the effective
magnetic anisotropy that is fundamentally different from the
expectations of Callen-Callen theory despite the presence of
cubic crystal symmetry and localized uniaxial anisotropy at
atomic Mn sites. Metastable spin structures are shown to
lower the overall energy barrier to a tenth of that estimated
from simple geometrical approximations. Spin dynamics cal-
culations reveal an exceptionally high attempt frequency in

(a)

(b)

FIG. 4. Time-dependent magnetization of IrMn3 at 100 K simu-
lated using atomistic spin dynamics and dependence of the switching
frequency on the damping constant. (a) The magnetization of IrMn
was simulated for 100 ns for a damping constant of 0.1, where
only the first 1 ns is shown for clarity. The sublattice magnetiza-
tion flips superparamagnetically between different coherent ground-
state orientations. At this temperature, the sublattice ordering is
approximately 90% since the system is simulated far from the Néel
temperature. (b) Dependence of the attempt frequency for reasonable
values of the damping constant from 0.01–1 shows a range for the
attempt frequency between f0 = 0.1 − 4 THz

IrMn3 of between f0 = 0.1 and 4 × 1012 s−1; a value three
orders of magnitude larger than the typical value chosen for
ferromagnets of 109 s−1. Considering a specific value for the
damping constant of λ ≈ 0.1 gives a comparable value of
the attempt frequency with respect to the measured exper-
imental value [19] of 2.4 THz. We have therefore resolved
the outstanding discrepancy between theory and experiments
calculating a value for the anisotropy energy within 10% of
the experimental value.

From the structure of the zero Kelvin energy surface we
conclude that the magnetic anisotropy of L12- IrMn3 pos-
sesses a unique symmetry not seen for ferromagnets, yet con-
sistent with the expected relationship to the crystal symmetry
by rotation of the ground-state spin structure. We find that
the scaling of the anisotropy is similarly unusual with an
exponent of 3.92, which is closer to uniaxial magnetization
scaling of the anisotropy despite the near-cubic symmetry.
The resolution of this apparent contradiction (and the asso-
ciated experimental measurements) is as follows. Although
the anisotropy is shown to have cubiclike symmetry, the
scaling arises from the spin fluctuations which reflect the local
uniaxial environment of individual spins. This is an intriguing
and unusual separation of the fundamental origin of the MAE
and the temperature dependence of the anisotropy.
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Although we have focused on IrMn3 we expect that other
noncollinear antiferromagnets such as MnPt and MnFe will
exhibit similarly complex temperature-dependent magnetic
anisotropy. This is likely to be strongly affected by compo-
sition and ordering which will disrupt the local anisotropy
energy surface at different atomic sites. Our results have
important consequences for applications of antiferromagnets
in determining their thermal stability and dynamic properties
and provide an established methodology for determining the
effective magnetic anisotropy at elevated temperatures. This
is particularly important for emerging applications in neuro-

morphic computing and AF spintronics where the long-term
stability of the antiferromagnet is critical to device operation.
Further investigation may yield different classes of antiferro-
magnets with unusual temperature-dependent properties.
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