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ABSTRACT
The exchange is critical for designing high-performance Nd–Fe–B permanent magnets. Here we
demonstrate throughmultiscale simulations that the exchange in Nd–Fe–Bmagnets, including bulk
exchange stiffness (Ae) in Nd2Fe14B phase and interface exchange coupling strength (Jint) between
Nd2Fe14B and grain boundary (GB), is strongly anisotropic.Ae is larger along crystallographic a/b axis
than along c axis. Even when the GB FexNd1−x has the same composition, Jint for (100) interface is
much higher than that for (001) interface. The discovered anisotropic exchange is shown to have
profound influence on the coercivity. These findings enable more freedom in designing Nd–Fe–B
magnets by tuning exchange.

IMPACT STATEMENT
Bulk exchange stiffness in Nd2Fe14B and interface exchange coupling strength between Nd2Fe14B
and grain boundary are found strongly anisotropic, which have profound influence on the coercivity
of Nd–Fe–B magnets.
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1. Introduction

High-coercivity permanent magnets are indisputably
one of the critical materials indispensible for modern
technologies in which electrical energy is converted
to motion with a high efficiency or vice versa [1–4].
Among all the available permanent magnets, nowa-
days Nd–Fe–B (neodymium–iron–boron) is the most
powerful and commercially important magnet. How-
ever, for certain applications such as hybrid/electric
vehicles where the increased operating temperatures
of 120–160◦C are common, the coercivity of sintered
Nd–Fe–B magnets (∼1.2 T) is too low. Improving the
coercivity of Nd–Fe–B magnets without the usage of
heavy rare earth elements (e.g. Dy, Tb) and without sac-
rificing remanence is still of great importance [5–7].

Coercivity is an extrinsic property. In Nd–Fe–B mag-
nets, it is determined by the interplay of intrinsic

CONTACT Min Yi yi@mfm.tu-darmstadt.de Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany .

Supplemental data for this article can be accessed here. https://doi.org/10.1080/21663831.2019.1702116

magnetic properties of Nd2Fe14B phase (the satura-
tion magnetization Ms, magnetocrystalline anisotropy
constant K1, and the exchange stiffness Ae) and the
microstructure including grain boundary (GB) and inter-
granular phases [5–9]. Microstructure engineering has
been explored to design high-coercivity Nd–Fe–B mag-
nets, e.g. optimizing the grain shape and reducing the
grain size to decrease the local effective demagnetization
factor Neff [10–14], doping Nd2Fe14B grain or its sur-
face with Dy or Tb to increase the anisotropy field HA
[15–18], deceasing Ms of GB to make Nd2Fe14B grains
exchange decoupled by GB diffusion [19–21], etc.

Based on the micromagnetic theory, the coercivity of
Nd–Fe–B magnets can be tailored by controlling the dis-
tribution of three parameters, i.e. Ms, K1, and Ae whose
spatial variation represents the magnetic microstructure.
In contrast to the efforts on tuning Neff , HA, and GBMs,
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the critical role of exchange (Ae) is not fully explored
or less focused for sintered and hot-pressed magnets,
in contrast to the situation of exchange-spring magnets
[22–24]. The associated challenge is mainly attributed
to the difficulty of measuring exchange experimentally,
including bulk exchange stiffness and interface exchange
coupling strength, inNd–Fe–Bmagnets. The experimen-
tal determination of Ms and K1 is much easier [25–28].
Even though the decrease of GB Ms to improve coerciv-
ity is qualitatively explained by the exchange decoupling
[19–21], the underlying quantitative interface exchange
behavior still remains to be explored.

Ae inNd2Fe14B phase is estimated as 7.7 pJ/mby using
K1 and the domain wall energy which is calculated from
the measuredMs and domain width through the Boden-
berger–Hubert formula [26]. This value is widely adopted
and never questioned. As for the interface exchange, both
first-principles calculations and experiments suggest that
the exchange coupling is positive in Nd2Fe14B(001)/α-Fe
interface, while negative in Nd2Fe14B(100)/α-Fe inter-
face [29–32]. But the favorable and extremely thin (sev-
eral nanometers) GB phase in sintered and hot-pressed
Nd–Fe–B magnets is often amorphous, resulting in the
local atomic arrangements different from α-Fe and thus
possibly distinct interface exchange behavior. In addi-
tion, electron microscopic analysis has confirmed that
GB composition is anisotropic, i.e. GB phase parallel to
the c-plane contains lower concentration of Fe than that
perpendicular to the c-plane [33–35]. Whether and how
the Nd2Fe14B/GB interface orientation and GB compo-
sition anisotropy will influence the interface exchange is
yet unknown quantitatively.

In this work, through first-principles calculations and
atomistic spin model (ASM) simulations, we provide
the hitherto missing information on the quantitative
exchange anisotropy in Nd–Fe–B permanent magnets.
Specifically, we demonstrate the strong anisotropy in
the exchange stiffness of Nd2Fe14B phase and the inter-
face exchange coupling strength between Nd2Fe14B and
GB. We discover the ‘double anisotropy’ phenomenon
related to GB, i.e. in addition to the experimentally con-
firmed GB magnetization anisotropy, the Nd2Fe14B/GB
interface exchange coupling is also anisotropic. In detail,
we perform ASM simulations of Nd2Fe14B to calcu-
late the temperature-dependent exchange stiffness along
different crystallographic axes. Moreover, we carry out
first-principles calculations to relax the Nd2Fe14B/GB
interface structure and unravel the interface orientation-
dependent exchange coupling strength. The influence of
exchange anisotropy on coercivity is revealed by micro-
magnetic simulations. More generally, these discoveries
may enable more freedom in the design of Nd–Fe–B
magnets by tuning exchange.

2. Methodology

The temperature-dependent Ae of Nd2Fe14B is evaluated
through ASM simulation by using VAMPIRE [36] based
on the atomistic spinHamiltonian which is proposed and
parameterized previously [37–41]. Detailed formulations
for the ASMofNd2Fe14B are provided in the Supplemen-
tal Material. The spin dynamics approach and the Heun
integration scheme in VAMPIRE [36] are utilized to cal-
culate the domain-wall width. A sharpBloch-like domain
wall (wall plane perpendicular to x axis) and Néel-like
domain wall (wall plane perpendicular to z axis) in the
middle of the sample with Nx × Ny × Nz = 40 × 5 × 5
and Nx × Ny × Nz = 5 × 5 × 40 unit cells is set as the
initial condition, respectively. With the demagnetizing
field included in the ASM simulations, the system is
relaxed from this initial condition by 100,000 steps (time
step: 1 fs). The final domain configuration is obtained by
averaging themagneticmoment distribution of 100 states
at 90.1, 90.2, 90.3, . . . , 100 ps.

First-principles calculations are carried out by using
VASP (Vienna Ab-initio Simulation Package). Accord-
ing to previous studies [30,32,37,42–44], an open-core
pseudopotential for Nd is used, with the 4f elec-
trons put in the core and not treated as valence elec-
trons. The cutoff energy is set as 500 eV. Based on the
energy convergence test, a 3 × 3 × 1 and 1 × 3 × 2 k-
point mesh is used for Nd2Fe14B(001)/FexNd1−x and
Nd2Fe14B(100)/FexNd1−x, respectively. For the relax-
ation of Nd2Fe14B/FexNd1−x, the convergence criteria
for themaximum force on each atom and the total energy
are 0.03 eV/Å, and 0.05meV, respectively. In the self-
consistent calculations of the total energy, an energy
convergence criteria of 0.01meV is used.

Micromagnetic simulations are performed by using
MuMax [45]. There are four kinds of energy consid-
ered in micromagnetics, which are exchange energy,
anisotropy energy, Zeeman energy, demagnetization
energy. The cell size is set as 1 nm, which is smaller than
the exchange length and thus reasonable. The reversed
curves are calculated by using the conjugate gradient
method to find the energy minimum. The external field
(Hex) along z axis is applied as a stepwise field with a step
of 0.01 T.

3. Results and discussion

Since the exchange stiffness is highly related to the
domain wall, we first calculate the domain wall profile.
The ASM simulated Bloch- and Néel-like configurations
at different temperatures are shown in Figure 1(a,b),
respectively. Different from the previous work [38,39],
domainwalls with the tilting angle θ0 at low temperatures
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Figure 1. ASM simulated temperature-dependent domain wall configurations displayed by the distribution of atomistic magnetic
moments (easy axis tilted from z-axis with a angle θ0): (a) Bloch-like wall and (b) Néel-like wall. (c) The distribution of macroscopic
magnetization component (Mz) along x axis in (a) and z axis in (b). (d) Domain wall width δw at different temperatures.

is also calculated. It is obvious that both walls become
wider when the temperature increases. After mapping
the atomistic magnetic moments in Figure 1(a,b) to the
continuum magnetization, we fit the domain wall by a
hyperbolic function [46], as shown inFigure 1(c) andFig-
ures S1 and S2 (SupplementaryMaterial). In this way, the
temperature-dependent domain wall width δw is deter-
mined and summarized in Figure 1(d). It should be noted
that at 300K, the exchange stiffness Ae [26,46,47] and K1
[26,46] in the literature corresponds to an estimated δw =
π

√
Ae/K1 as 3.63–5.31 nm. Our calculated δw at 300K

falls well in this range. It can be seen fromFigure 1(d) that
after the spin reorientation temperature around 150K,
both the Bloch wall width (δabw ) and Néel wall width (δcw)
increase with temperature. However, δabw is larger than δcw,
indicating the anisotropic nature of domain wall width in
Nd2Fe14B.

According to the continuum micromagnetic theory
[46], the domain wall profile is generally governed by

x(θ ,T) =
√
Aab
e (T)

∫ θ

θ0

[F(�,T) − F(θ0,T)]−(1/2) d�,

(1)
and

z(θ ,T) = √
Ac
e(T)

∫ θ

θ0

[F(�,T) − F(θ0,T)

+ 0.5μ0M2
s (T)(cos� − 1) cos�]−(1/2)d�,

(2)

for Blochwalls andNéel walls, respectively. F(�,T) is the
temperature-dependent magnetocrystalline anisotropy
energy as a function of the polar angle �. Ms(T) is the
temperature-dependent saturation magnetization. Both
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F(�,T) and Ms(T) have been determined previously
[37,40]. In Equation (2), the additional term regarding to
Ms is originated from the demagnetization energy in the
Néel wall. In most cases, there is no analytic solution for
Equations (1) and 2. Since x and z are monotonic func-
tions of θ in Equations (1) and (2), there exists an inverse
function θ(x,T). Therefore, after numerical integration
of Equations (1) and (2) with various Aab

e (T) or Ac
e(T),

we attain a series of theoretical curves with s (s: x or z) as a
function ofMz = Ms(T) cos(θ(x,T)). Then we optimize
Aab
e (T) and Ac

e(T) through the least-square method by
comparing the simulation data to the theoretical curves.
In Figure S3 (Supplementary Material), we plot both the
simulation data points and the theoretical curves (solid
lines) with the optimum Aab

e (T) and Ac
e(T).

The calculated exchange stiffness is summarized in
Figure 2(a). It is obvious that Aab

e (T) is higher than
Ac
e(T), indicating the anisotropic exchange stiffness in

Nd2Fe14B and agreeing with the previous report [39].
This anisotropic Ae is intrinsically attributed to the
tetragonal crystal structure of Nd2Fe14B. At 300K,
Aab
e (T) and Ac

e(T) are estimated as 10.2 and 7.7 pJ/m,
respectively. These values are in accordance with those
used in micromagnetic simulations and experimentally
determined ones [26,46]. Ae is found to decrease much
faster at higher temperatures. The scaling behavior of

Ae(T) with respect to the normalized magnetization m
is presented in Figure 2(b). It is found that fitting the data
gives a scaling law Ae(T) ∝ m1.2.

Another important exchange-related phenomenon,
we have to explore is the interface exchange coupling
strength (Jint) between GB phase and Nd2Fe14B, which
is thought to play a critical role in the determination
of coercivity of Nd–Fe–B magnets. Here, first-principles
calculations are performed to estimate Jint. Following
the experimental observation [34,35,48–50], we take
FexNd1−x with different Fe content as the model GB. The
Nd2Fe14B/GB interface is set as (001) and (100) surface
of Nd2Fe14B, as shown in Figure 3(a,b), respectively. Nd
atoms in FexNd1−x are initially randomly distributed in
a bcc Fe structure. Five different random distributions
are calculated and the associated results are averaged.
The system lattice parameters in the plane parallel to
the interface, as well as the atom position and lattice
parameters of Nd2Fe14B, is fixed. The structure of GB
FexNd1−x is relaxed by two steps. Firstly, only the dis-
tance between Nd2Fe14B and FexNd1−x is relaxed (d in
Figure 3(a)). Then both the atomic position and the lat-
tice parameter along the axis perpendicular to the inter-
face are fully relaxed. The typical relaxed structure is
shown in Figure 3(a,b). It can be seen that after relaxation,
FexNd1−x becomes amorphous-like, in accordance with

Figure 2. Exchange stiffness (Ae) of Nd2Fe14B calculated by ASM simulation: Ae as a function of (a) temperature T and (b) normalized
magnetizationm = Ms(T)/Ms(T = 0). The fitting lines in (b)∝ m1.2.
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Figure 3. Interface exchange coupling strength (Jint) in Nd2Fe14B/GB evaluated by first-principles calculation. Unrelaxed and relaxed
structure of Nd2Fe14B/FexNd1−x system with interface located at (a) (001) plane and (b) (100) plane. (c) Jint and (d) magnetization of
FexNd1−x (MFeNd) as a function of Fe content x for both (001) and (100) interfaces. The experimental data in (d) are taken from the
literature [48–50].

the experimental observation of thin amorphous GB in
Nd–Fe–B magnets [33].

After obtaining the relaxed structure, we estimate Jint
between Nd2Fe14B and GB FexNd1−x by comparing the
energy difference between the ferromagnetic (EFM) and
antiferromagnetic (EAFM) configurations as illustrated in
the inset of Figure 3(c), i.e. Jint = (EAFM − EFM)/2Swith
S as the interface area. The calculated Jint for both (001)
and (100) interfaces is summarized in Figure 3(c). It is
found that Jint is positive for both interfaces, indicat-
ing ferromagnetic coupling between GB FexNd1−x and
Nd2Fe14B. It should be noted that in the case of (100)
interface, if the GB phase is kept as α-Fe or not fully
relaxed to be amorphous-like [29–32], Jint is negative
and the antiferromagnetic coupling dominates. In con-
trast, our results here reveal that if GB is amorphous-like
(i.e. the experimental case when GB is as thin as several
nanometers), ferromagnetic coupling between Nd2Fe14B
and GB still remains for the (100) interface. Most impor-
tantly, even when the Fe content is the same, Jint is
much higher for (100) interface than for (001) interface,
indicating strong anisotropy in the interface exchange
coupling.

Previous experiments have confirmed that the Nd-
containing GB in the (100) surface of Nd2Fe14B grain
contains much higher Fe (i.e. higher magnetization)
than those in the (001) surface [33–35]. Therefore, if
the anisotropy in GB magnetization is considered, Jint

will be even more anisotropic due to the increasing Jint
with Fe content. This GB/Nd2Fe14B interface orienta-
tion induced ‘double anisotropy’ (i.e. anisotropy in both
magnetization and Jint) is expected to have a remark-
able influence on the coercivity of Nd–Fe–B magnets.
The magnetization of FexNd1−x GB phase (MFeNd) as
a function of Fe content is also calculated and shown
in Figure 3(d). The calculated MFeNd agrees well with
the experimental reports [48–50]. It can be also seen
that regardless of the interface orientation, MFeNd only
depends on the Fe content.

In order to evaluate the influence of the above
anisotropy (i.e. exchange anisotropy in Ae and Jint, and
GB composition anisotropy) on the coercivity (μ0Hc) of
Nd–Fe–B magnets, we further carry out micromagnetic
simulations of model microstructures by using MuMax
[45], as shown in Figure 4. For the exchange anisotropy,
the effective field due to the bulk exchange within the
Nd2Fe14B grain is reformulated (using a 6-neighbor
small-angle approximation) as

BB
exch = 2

Aab
e

Ms

∑
i∈a or b

MMMi + 2
Ac
e

Ms

∑
i∈c

MMMi, (3)

in whichMMMi = (mi − m)/�2
i with �i as the mesh size

along i direction, m as the magnetization unit vector of
the current cell, and mi as the magnetization unit vec-
tor of the neighbor cell along i direction. Similarly, the
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effective field (due to the exchange interaction between
Nd2Fe14B and GB) which is exerted on Nd2Fe14B can be
reformulated as

BInt
exch = 2

Aab
int
Ms

miinGB∑
i∈a or b

MMMi and 2
Ac
int
Ms

miinGB∑
i∈c

MMMi (4)

for the (100) and (001) interface, respectively. Aint is the
inter-region exchange parameter as defined in MuMax
[45], which is an indicator of Jint in Figure 3(c). The
bulk exchange of GB phase is isotropic and estimated as
AGB
e ∼ ε(μ0MGB)

2 with ε = 5.41 pJm−1T−2 [34].
The effect of anisotropic Ae in Nd2Fe14B is explored

in a single grain model with GB at different surfaces, as
shown in Figure 4(a,b). It can be seen that for GB on
the (100) interface, the anisotropic exchange Aab

e = 10.2
pJ/m and Ac

e = 7.7 pJ/m results in much higher coer-
civity than the isotropic case Ae = 7.7 pJ/m. In contrast,
for GB on the (001) surface, the anisotropic exchange
leads to much lower coercivity than the isotropic case

Ae = 10.2 pJ/m.These results indicate that the anisotropic
exchange stiffness of Nd2Fe14B has obvious influence on
the coercivity, and the influence also depends on the
Nd2Fe14B/GB interface orientation.

The determination of Aint in micromagnetics is non-
trivial. In most literature on micromagnetic simulations
of exchange-coupled behavior, Aint is chosen as the same
as the bulk value, or is artificially tuned to study its
influence. Skomski presented a continuum method to
estimate the effective exchange between grains [24].
However, in the case of interface, the methodology
for transferring first-principles results (Jint) to the con-
tinuum micromagnetic interface parameters (Aint) is
unattainable at present. Here, Aint is assumed to be
proportional to Jint, and its value along a or b axis is
set as Aab

int = 5 pJ/m for ab-GB with 80% Fe (Mab
GB =

1MA/m). The c-GB contains less Fe, i.e. 60% Fe (Mc
GB =

0.55MA/m). According to Jint in Figure 3(c), Ac
int is

estimated as one fifth of Aab
int, i.e. 1 pJ/m. The influ-

ence of anisotropy in exchange (Ae and Jint) and GB

Figure 4. Dependency of coercivity on anisotropic exchange. Effect of anisotropic exchange stiffness of Nd2Fe14B (Ae) in single grain
with GB at (a) a surface and (b) c surface (with the same Aint = 5 pJ/m). (c) Effect of Ae, GB composition anisotropy, and anisotropic
exchange coupling between two regions (Aint) in multigrain Nd–Fe–B. Ae and Aint: pJ/m. MGB: MA/m. Grain size: 100 nm. GB thickness:
4 nm. The external field is applied along negative z axis.
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composition on the coercivity in an 8-grain microstruc-
ture is summarized in Figure 4(c). It can be found that
Ae anisotropy alone increasesμ0Hc by 0.17 T when com-
pared to the case of isotropic Ae = 7.7 pJ/m. GB compo-
sition anisotropy alone slightly improves μ0Hc by 0.03 T.
When both the anisotropy in Ae and GB composition
have been taken into account, the additional consider-
ation of interface exchange anisotropy can remarkably
enhance μ0Hc by 0.33 T. These results imply that the
aforementioned exchange anisotropy has profound influ-
ence on the coercivity. It is thus necessary for the com-
munity of micromagnetic simulations to include these
anisotropies in order to realize a reasonable design or
prediction.

4. Conclusion

In conclusion,we have identified the exchange anisotropy
and its influence on the coercivity of Nd–Fe–B mag-
nets by using multiscale simulations. The exchange stiff-
ness in Nd2Fe14B phase is found to be intrinsically
anisotropic (i.e. depend on the crystallographic axis) and
its value along c axis is lower than along a/b axis. We
discover the ‘double anisotropy’ phenomenon regarding
to GB, i.e. in addition to the experimentally determined
anisotropy in GB composition or magnetization, the
interface exchange coupling strength between Nd2Fe14B
and GB is also confirmed to be strongly anisotropic. Due
to this ‘double anisotropy’, the ferromagnetic exchange
coupling for (001) interface is much weaker than that
for (100) interface. The coercivity of Nd–Fe–B mag-
nets is demonstrated to be obviously influenced by the
exchange anisotropy, suggesting the necessity of includ-
ing exchange anisotropy in order to realize a reason-
able design or prediction by micromagnetic simulations.
Overall, these findings in our Letter not only provide
comprehensive understanding of exchange in Nd–Fe–B
magnets but also are useful in deciphering coercivity
mechanism and inspiring a strategy of tailoring exchange
for the design of high-performance Nd–Fe–B permanent
magnets.
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