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For finite-temperature micromagnetic simulations the knowledge of the temperature dependence of the
exchange stiffness plays a central role. We use two approaches for the calculation of the thermodynamic
exchange parameter from spin models: �i� based on the domain-wall energy and �ii� based on the spin-wave
dispersion. The corresponding analytical and numerical approaches are introduced and compared. A general
theory for the temperature dependence and scaling of the exchange stiffness is developed using the classical
spectral density method. The low-temperature exchange stiffness A is found to scale with magnetization as
m1.66 for systems on a simple cubic lattice and as m1.76 for an FePt Hamiltonian parametrized through ab initio
calculations. The additional reduction in the scaling exponent, as compared to the mean-field theory
�A�m2�, comes from the nonlinear spin-wave effects.
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I. INTRODUCTION

Micromagnetic modeling has proved to be a very useful
tool, complementary in many respects to experimental mea-
surements, especially for calculations of hysteresis and dy-
namics of magnetic nanoelements such as magnetic grains,
dots, stripes, etc.1–5 Nowadays the micromagnetic approach
is used as a design tool, for example, for the evaluation of
novel magnetic recording media performance.6 The impor-
tance of micromagnetics can hardly be overestimated since a
huge amount of experimental work in nanomagnetism relies
on the physical insights provided by micromagnetic model-
ing, based, for example, on open source programs such as
OOMMF �Ref. 7� or MAGPAR.4 Micromagnetic modeling needs
as input fundamental magnetic �micromagnetic� parameters:
effective crystalline anisotropy K, exchange stiffness A, and
saturation magnetization Ms. These are provided normally by
experimental measurements as sample averaged quantities.
The dynamics is based on the integration of the classical
Landau-Lifshitz-Gilbert �LLG� equation of motion which re-
quires additional input parameters such as the Gilbert damp-
ing constant.

On the other hand, ab initio models has turned out to be
efficient in providing insight on the local atomic scale values
such as the local magnetic moment �s, the local anisotropy
d, or a pairwise exchange Jij in nanoclusters or periodic
cells.8,9 Most of the ab initio calculations are zero tempera-
ture, and the ab initio modeling of finite-temperature magne-
tization dynamics in nanoscale magnetic elements remains
still a challenge for the future.

At the same time, standard micromagnetics is also essen-
tially zero temperature, although the micromagnetic param-
eters could be taken as experimentally measured values at a
given temperature T. In “thermal micromagnetics” the fluc-
tuations are introduced as additional random fields acting on
each discretization element.10,11 It has been shown that this

approach is correct only for low temperatures12 due to the
fact that the standard micromagnetic approach considers con-
stant magnetization length in each element. Thus high-
frequency spin waves �SWs�, responsible for longitudinal
magnetization fluctuations near the Curie temperature TC are
cut off and the value of the Curie temperature is strongly
overestimated. An improved micromagnetic approach for
higher temperatures is based on the Landau-Lifshitz-Bloch
�LLB� equation13,14 which removes the condition of the con-
servation of the magnetization magnitude at each discretiza-
tion element and introduces longitudinal fluctuations.

The modern approach combines the strength of both
methods in a unique multiscale modeling scheme,15 where
information from the ab initio to the micromagnetic scale is
used. The correct account for thermal fluctuations is pro-
vided by using an intermediate atomistic scale �classical
Heisenberg models15 parametrized through ab initio calcula-
tions�. These models are known for their suitability to evalu-
ate thermodynamic properties at any temperature. Here the
thermal fluctuations are introduced via a Metropolis Monte
Carlo algorithm or by means of the Langevin dynamics
approach.16

The multiscale scheme proposed in Ref. 15 proceeds as
follows. Ab initio calculations are mapped onto an atomistic
spin model based on a classical Heisenberg Hamiltonian.8,9,15

The atomistic model is used to evaluate the temperature-
dependent parameters K�T�, Ms�T� and the longitudinal and
transverse susceptibilities which are the physical parameters
required for the LLB equation. This provides a direct link
from the electronic structure length scale to a mesoscopic,
single spin equation of motion capable of large scale simu-
lations. However, the use of large scale �micromagnetic�
models requires the temperature dependence of the micro-
magnetic exchange constant A�T�. The evaluation of
temperature-dependent macroscopic parameters is highly
nontrivial. While the temperature dependence of the aniso-
tropy constant as well as its scaling behavior with the
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temperature-dependent magnetization Ms�T� is known �ana-
lytically at least at low temperature and for simple systems,
see, e.g., Ref. 17; for a more general numerical method
within the multiscale scheme, see Ref. 18�, the temperature
dependence of the exchange stiffness has received little at-
tention. Atxitia et al.19 employed a quadratic scaling law
A�T��M�T�2, which is essentially a mean-field �MF� result.
However, given the importance of this parameter in micro-
magnetic calculations, a more detailed investigation is
strongly justified.

In the present paper, we investigate the temperature-
dependent exchange stiffness A�T� in detail. In order to get a
thorough understanding of its temperature dependence as
well as its scaling with magnetization we use different meth-
ods and models for our investigation. Our methods are based
on classical definitions of the exchange stiffness: through the
domain wall �DW� and through the SW approaches. The de-
velopment of the methods also provides a basis for future
multiscale modeling theory where the temperature depen-
dence of the parameters cannot be expected to follow simple
laws and should be numerically evaluated. The paper is or-
ganized as follows. First we outline the atomistic model
which forms the basis of the calculations. The model is then
used to calculate A�T� using a method based on the domain-
wall stiffness. This is followed by a mean-field treatment of
the problem. The atomistic model is then used to calculate
A�T� based on the SW stiffness. Interestingly the two meth-
ods �DW stiffness and SW stiffness� give essentially the
same scaling law, demonstrating the link between the two
phenomena. It is also shown that the scaling exponent can be
material dependent. Finally we present analytical calcula-
tions using a classical spectral density method �CSDM�. This
model is shown to give a scaling law in agreement with the
numerical results and, importantly, to give a scaling law for
the anisotropy constant in agreement with experiment and
with previous numerical simulations, demonstrating the
power of the analytical model.

II. MODELS

Our models are based on the classical Heisenberg Hamil-
tonian. To investigate the generality of our approach, in what
follows we use two types of model systems: �i� a generic
Heisenberg Hamiltonian for localized magnetic moments on
a simple cubic lattice and �ii� a specific Hamiltonian for
FePt, parameterized through ab initio calculations.8

The generic ferromagnet is described by the Hamiltonian

H = − �sH · �
i=1

N

Si − d�
i=1

N

�Si
z�2 −

1

2
J�

�i,j�
Si · S j , �1�

where Si, with �Si�=1 and i=1, . . . ,N, are classical spins, J
�0 is the ferromagnetic exchange constant, in the following
restricted to nearest neighbors �nn’s�, �s is the atomistic
magnetic moment, H=Hez is the external magnetic field, d is
the on-site magnetic anisotropy parameter, and N is the num-
ber of spins in the system.

FePt is intensively investigated due to its potential appli-
cation as ultrahigh density recording media.20 In previous

publications8 bulk FePt was modeled in the layered L10
phase. The model has been constructed on the basis of first-
principles calculations of noncollinear �finite angle� configu-
rations calculated using constrained local spin-density func-
tional �LSDA� theory,21 infinitesimal angle or LSDA-based
perturbation theory,22–24 and site-resolved magnetocrystalline
anisotropy with beyond LSDA corrections.25 The fundamen-
tal interactions at the electronic level are strongly modified
by the L10 structure. In particular, it was shown8 that the Fe
moments can be considered as localized while the Pt induced
moments have to be treated as essentially delocalized. Nev-
ertheless, it is possible to construct a classical spin Hamil-
tonian involving only the Fe degrees of freedom with the
introduction of a two-ion anisotropy term and a modified
exchange term.8 This Hamiltonian was used in several theo-
retical studies26–28 and was verified by a comparison of the
temperature dependence of the anisotropy constant with ex-
perimental data.8,29,30

In the following, we consider the full Hamiltonian, de-
scribed in detail in Ref. 8 including Zeeman energy and
dipole-dipole coupling,

H = − �
i�j

�JijSi · S j + dij
�2�Si

zSj
z� − �

i

d�0��Si
z�2

− �
i�j

�0�s
2

4�

3�Si · eij��eij · S j� − Si · S j

rij
3 − �

i

�sH · Si.

�2�

The two-ion anisotropy parameters dij
�2� represent the domi-

nant contribution to the uniaxial anisotropy energy as com-
pared to the single-ion term d�0�. The exchange interactions
Jij �and consequently also dij

�2�� are taken into account up to a
distance of 5 unit cells until they are finally small enough to
be neglected. Note that all parameters follow from spin-
dependent density functional theory calculation so that the
model contains no adjustable parameters.

The zero-temperature exchange stiffness A �0 K� can be
easily evaluated from local values Jij and the interatomic
distances. When the exchange energy between spins is writ-
ten for the small angle deviations, the classical exchange
energy in terms of the continuous magnetization vector m
takes the form

Eex = �
ij

Jij��aij · ��m	2 = �
�

A�
 ���m��2	dr , �3�

where the first summation is over the position vectors aij
=ri−r j from lattice point i to all its neighbors, �=x ,y ,z and
the “classical micromagnetic exchange stiffness” at zero
temperature is

A��0 K� =
1

V0
�
ij

�J�
ij/2��aij

� �2, �4�

where V0 is the volume of the unit cell. The direct summa-
tion of the exchange gives Az�0 K�=1.13�10−11 J /m for
the exchange stiffness perpendicular to Fe planes and
Ax�y��0 K�=2.37�10−11 J /m within Fe planes in agreement
with the results of Ref. 27.
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Since we are interested in thermal properties we use
Langevin dynamics, i.e., simulations of the stochastic LLG
equation of motion. This equation has the form

�1 + 	2��s



Ṡi = − Si � Hi�t� − 	Si � �Si � Hi�t�	 �5�

with the gyromagnetic ratio 
=1.76�1011�T s�−1 and a di-
mensionless Gilbert damping parameter 	 which we set to
	=1 �high damping limit� in the domain-wall stiffness ap-
proach �Sec. III� and to 	=0.1 in the spin-wave stiffness
approach �Sec. IV�. Note that the value of the damping pa-
rameter does not influence thermal equilibrium properties,31

only the dynamics of the system. The large value for 	 we
chose guarantees fast relaxation to thermal equilibrium and
will not influence our results since we are only interested in
equilibrium properties.

Thermal fluctuations are included as an additional noise
term �i�t� in the internal field Hi�t�=− �H

�Si
+�i�t�, with ��i�t��

=0 and ��i
k�t��i

l�t���=2�ij�kl��t− t��	kBT�s /
, where i , j de-
note lattice sites and k , l the Cartesian components. All algo-
rithms we use are described in detail in Ref. 16.

In the following we use two physical definitions of A�T�
based on the domain-wall stiffness and the spin-wave stiff-
ness parameter. Numerical calculations are extended using a
mean-field approach and a classical spectral density method.

III. DOMAIN-WALL STIFFNESS APPROACH

A. Numerical approach: Thermodynamic exchange stiffness

In the present section, we evaluate the exchange stiffness
from the temperature-dependent free energy of a domain
wall and its corresponding width. For this purpose we per-
form Langevin dynamics simulations for a generic Heisen-
berg model as well as for the FePt Hamiltonian. For the
generic model we use a system of 323 moments. For FePt the
system size has a cross section of 25.6�25.6 nm2 and a
length of 12.8 nm. This was found sufficiently large to avoid
finite-size effects. In both systems we create a domain wall
by applying fixed, antiparallel boundary conditions.

The free energy 
F of the domain wall is obtained from
numerical calculations of the internal domain-wall energy

E, which is the energy difference between a system with
and without a domain wall, using the relation


F��� =
1

�



0

�


E����d��, �6�

where �=1 /kBT, kB is the Boltzmann constant, and T is the
temperature. It is found that domain-wall profiles are well
described by the usual hyperbolic functions32 so that we
were able to fit the domain-wall width �. Assuming that the
well-known equations for the domain-wall width,

��T� = ��A�T�
K�T�

, �7�

and the free energy,


F�T� = 4�A�T�K�T� , �8�

hold even at finite temperature, we can obtain the micromag-
netic exchange stiffness A�T� as well as the anisotropy en-
ergy constant K�T�. For a more detailed description of the
applied methods see Refs. 27 and 28.

The results obtained for the scaling behavior of A�m� are
shown in Fig. 1 for the generic model and in Fig. 2 for the
FePt model. A scaling behavior, A�m��m�, is found at low
temperatures. The values for � will be discussed later on in
connection with the SW stiffness approach.

B. Theory: Mean-field approximation

To gain a further insight into the thermodynamic behavior
of exchange stiffness we performed also MF calculation. A
one-dimensional domain wall is considered, where the mag-
netization is uniform within planes. We start with the Hamil-
tonian of a generic ferromagnet given in Eq. �1�, on a simple
cubic lattice with nearest-neighbor interactions only and in
zero anisotropy and magnetic field. The MF Hamiltonian has
the form

HMF = − J�
i

Si · �mi−1 + 4mi + mi+1�

+
J

2�
i

mi · �mi−1 + 4mi + mi+1� , �9�

where mi is the thermally averaged magnetization of the ith
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FIG. 1. �Color online� Scaling behavior of the exchange stiff-
ness �DW Langevin� as obtained from the domain-wall free energy
for a generic model with d /J=0.032. The solid line is the numerical
solution of the CSD method outlined in Sec. IV B. The SW Lange-
vin points are obtained from the SW stiffness approach based on the
atomistic LLG-Langevin simulations outlined in Sec. IV A.
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FIG. 2. �Color online� Scaling behavior of the exchange stiff-
ness as obtained from the DW method applied to the full FePt
Hamiltonian. The solid line indicates the numerical solution using
the CSD method �see Sec. IV B� for the FePt Hamiltonian without
dipole-dipole interaction.
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plane. The free energy is F=−kBT ln Z with the partition
function Z=��
idSi�e−�HMF and �=1 /kBT.

Consider a domain wall forced into the system by appro-
priate boundary conditions. In a system without anisotropy a
one-dimensional domain wall would develop; a state with a
unique angle between all planes involved. In a MF picture it
is hence sufficient to consider only three planes in order to
describe the thermodynamics of the whole domain wall. Let
� be the angle between the magnetic moments of the differ-
ent planes. The thermally averaged magnetization of the ith
plane is assumed to be oriented in the z direction and is given
by mi=m�ez, with m� being the magnitude of the magneti-
zation in a wall with angle �. The magnetization of the �i
−1�th plane is then given by mi−1=m��cos �ez+sin �ex� and
the one of the �i+1�th plane has the form mi+1
=m��cos �ez−sin �ex� where it is assumed that the magne-
tization is in the x-z plane �see Fig. 3�. With these assump-
tions the free energy per spin has the form

F��� = −
1

�
ln Tr e�J�

i
Si·�m��4+2 cos ��ez	

−
1

�
ln Tr e−�J/2�im�

2 �4+2 cos ��. �10�

The free energy of the domain wall 
F is the difference of
the free energies of a system with �F���	 and without a do-
main wall �F�0�	. The integrals can be solved, resulting in
the free energy �per spin� of a domain wall with angle �
between adjacent planes


F =
J

2
�m�

2�4 + 2 cos �� − 6m0
2	

−
1

�
ln

sinh�J�m��4 + 2 cos ��	
sinh�6J�m0�

+
1

�
ln

m��4 + 2 cos ��
6m0

.

�11�

m0 is the magnetization in a system without a wall. These
magnetization values can be obtained from the MF self-
consistency equation,

mi = �Si� =
1

Z

 �


i

dSi�Sie
−�HMF. �12�

Once again solving the integral results in the thermally
averaged magnetization of the ith plane �in the z direction�
within a domain wall with angle �. This is given by

m� = L� Jm��4 + 2 cos ��
kBT

� �13�

with L�x�=coth x−1 /x being the Langevin function. Note
that m0=m�=0 is the normal equilibrium magnetization.
These equations for m0 and m� can be solved numerically
and the results can be used in Eq. �11� to calculate the
domain-wall free energy exactly. However, in certain limits
analytical solutions can be obtained as well.

In the following we will focus on the behavior of the
domain-wall free energy in the low-temperature limit. In this
limit the self-consistency equation can be expanded up to the
first order in T and one obtains

m� =
1

2
+�1

4
−

1

�J�4 + 2 cos ��
. �14�

Using this approximation in Eq. �11� leads to an approxima-
tion for the free energy of a domain wall in the limit of small
angles as well as for low temperature,


F �
J

2
m�

2�2 � Jm�
2�1 − cos���	 . �15�

This expression for the domain-wall free energy can well be
compared with a micromagnetic expression for the exchange
contribution to the energy density �per cross-sectional area�

Fexc=2aA�1−cos���	, yielding a relation for the
temperature-dependent exchange stiffness A�T�=Jm�

2�T� /2a,
where a is the distance between adjacent planes. The main
result is that the exchange stiffness scales with the square of
the magnetization in the domain wall.

Figure 4 shows a comparison of the domain-wall free en-
ergy obtained from a numerical solution of the self-
consistency equations with the small angle—low-
temperature approximation. It can be seen that in the limit of
small angles the approximation coincide with the exact data.

FIG. 3. Sketch of the three planes under consideration. The
magnetization is in the x-z plane and tilted by an angle � between
adjacent planes.

kBT = 1.5J
kBT = 1.0J
kBT = 0.5J
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FIG. 4. �Color online� Angle dependence of the domain-wall
free energy for different temperatures. The data points are the nu-
merical solution of Eq. �13� in connection with Eq. �11� while the
solid lines represent the analytical approximation �the second part
of Eq. �15�	.
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The lower is the temperature the wider is the range of valid-
ity of the approximation shown in Eq. �15�.

Figure 5 shows the scaling behavior of the domain-wall
free energy with the magnetization m� for different angles �.
The smaller is the angle the larger is the magnetization range
where the m�

2-scaling applies. The data points represent the
numerical solution while the solid line represents the scaling
behavior in the low-temperature limit according to Eq. �15�.

IV. SPIN-WAVE STIFFNESS APPROACH

A. Numerical approach: Langevin dynamics simulation
of spin waves

Another common definition of the exchange parameter is
via the SW stiffness. A priori it is not clear that this defini-
tion coincides with the one used in the previous section
based on domain-wall properties since the equilibrium back-
ground magnetization is different in both cases. In the
present section we evaluate the temperature-dependent ex-
change stiffness via Langevin dynamics simulations of ther-
mally excited SW �SW Langevin�, using the method outlined
in Refs. 33 and 34. For this purpose we simulate a generic,
three-dimensional ferromagnet with a Heisenberg Hamil-
tonian as in Eq. �1�, with d=0 and external applied field H
parallel to the z axis. The system size is N=32�32�32
with TC=700 K �kBTC�1.44J, see, e.g., Ref. 35�.

The random thermal field introduces correlated magneti-
zation fluctuations. These can be analyzed via a Fourier
analysis, both in space and time, by transforming the mag-
netization fluctuations m̃�r , t�= �mx�r , t� ,my�r , t�	 around the
equilibrium direction m0= �0,0 ,1� via a discrete Fourier
transform �DFT�,

m̃�k,�n� = DFT�m̃�r,tn�	 . �16�

where �tn� is the discrete time and the wave vector for a finite
box-shaped ferromagnet with periodic boundary conditions
takes the form k�=

2�n�

aN�
with n�=0,1 , . . . ,N�−1; �=x ,y ,z

and a being the lattice parameter.
The power spectral density F�k ,w�= �m̃�k ,���2 is pre-

sented in Fig. 6�a� for four different characteristic tempera-
ture regions and for the fixed wave vector q= �0,0 ,� / �4a�	.
For low temperatures the intensity of the SW modes decrease

with the wave number k while at high temperature there
occurs a redistribution of the energy over all modes. The
mode intensities are fitted by the Lorentzian profile from
which the resonance frequency of each mode is extracted and
finally the dispersion relation �k is constructed. The corre-
sponding dispersion relations are plotted in Fig. 6�b�. As ex-
pected, a softening of the SW modes with increased tempera-
ture occurs.

The low-temperature dispersion relation of spin waves is
well known. It is obtained by linearizing the LLG equation
around equilibrium and has the form

�k



= H + HA +

J0

�s
�1 − 
k� �17�

with J0=zJ and 
k=z−1� je
ik·aij, where z is the number of

nearest neighbors, HA=2d�0� /�s is the anisotropy field. By
using the SW Langevin technique we obtain an exact disper-
sion relation �k as can be seen in Fig. 6�b�. We now assume
the following temperature-dependent dispersion relation for
the LLG Langevin simulated SWs,

�k�T�



= H + HA +
A�T�

Ms�T�a2 �1 − 
k� , �18�

By fitting our numerical dispersion relations to this ex-
pression, we extract the temperature dependence of the mi-
cromagnetic parameter A�T�. Note that at high temperatures
only the low-frequency part of the spectrum was used, in
agreement with the long-wavelength interpretation of the mi-
cromagnetic exchange, Eq. �3�. The results are presented in
Fig. 1 as a function of the equilibrium magnetization m�T�
=Ms�T� /Ms�0�. Once again, a scaling behavior A�m� is
found, coinciding with the results based on the numerical
evaluation of the domain-wall stiffness �see also the discus-
sion in the next section�.

B. Analytical approach: The classical spectral density method

We now use theoretical formalism developed in Ref. 36,
known as the CSDM. We will apply the CSDM to two dif-
ferent systems, a ferromagnet described by the generic clas-
sical Hamiltonian in Eq. �1� and to the full FePt Hamiltonian
�2� without dipole-dipole interaction.

ψ = 5
ψ = 10
ψ = 20
ψ = 30
ψ = 40

mψ

2∆
F

/(
J
ψ

2 )

10.80.60.40.20.1

1

0.5

0.1

0.05

0.01

FIG. 5. �Color online� Magnetization dependence of the
domain-wall free energy for different angles �. The data points are
from the numerical solution of Eq. �13� in connection with Eq. �11�
while the black line represents the m�

2 behavior �see Eq. �15�	.
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FIG. 6. �Color online� �a� Power spectrum density as a function
of frequency for thermally excited SW in a generic Heisenberg
Hamiltonian for a system of N=32�32�32 moments for various
temperatures �from top to bottom� T=TC /70, T=TC /4, T=TC /2,
and T=0.9TC, for fixed wave vector q= �0,0 ,� / �4a�	, and applied
field Hz=1 T. �b� Dispersion relations for SWs with wave vector
q= �0,0 ,q� computed via the Langevin dynamics simulations �sym-
bols� for the same temperatures �from top to bottom�. The lines
show the results obtained by the CSDM method, see Sec. IV B.
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In this method one makes use of the lowering and raising
operators Si

��Si
x�Si

y, related to Si
z by the identity Si

+Si
−

=S2− �Si
z�2, and of the Fourier transforms

Sk = �
j

eik·rjS j, Jk = �
j

Jije
−ik�ri−rj�, �19�

where the zero wave-vector component reads J0=� jJij =zJ,
with J being the exchange coupling between first nn’s. z
=J0 /J can be seen as the mean coordination number with
interaction coupling J. For sc lattice with only nn z=6. By
defining 
q=z−1� j�

je−iqaij, where aij is the relative position
of considered neighbors and �i=Jij /J1 the relative exchange
strength, we can write Jq=J0
q. The spin variables Sq

� and Sq
z

satisfy the following Poisson relations:

�Sk
�,Sq

z � = � Sk+q
� , �Sk

+,Sq
−� = − 2iSk+q

z . �20�

In terms of these Fourier components the Hamiltonian be-
comes

H = − hS0
z −

1

2N�
q

Jq�Sq
+S−q

− + Sq
z S−q

z �

−
1

2N�
q

�dq
�2� + d�0��Sq

z S−q
z , �21�

where h��sH, the sum in the last term is restricted to the
first Brillouin zone �1BZ� of the lattice and S0

z =� j=1
N Sj

z is the
k=0 Fourier component of Sz�r�. Analogously to the ex-
change term, we have also defined for the two-ion anisotropy
dq

�2�=d0
�2�
q

�ani� with 
q
�ani�=zani

−1� j�ani
j e−iqaij, d0

�2�=� jdij
�2�, and

�ani
i =dij

�2� /d1
�2�. Note that this Hamiltonian reduces to the ge-

neric one for dq
�2�=0.

In CSDM one further introduces the classical spectral
density �AB���� i��A��� ,B�� where the brackets �¯ � denote
the equilibrium ensemble average and �� the Poisson bracket
of the classical operators A and B. Then, the calculations
proceed by assuming a given form �e.g., a Gaussian or a
Lorentzian� for �k��̃� involving a few parameters �the fre-
quency �̃ is measured in the energy units �s /
�. The latter
are obtained by solving a hierarchy of moment equations
which are in turn obtained from a chain of equations for
Green functions �GF� of all orders. In terms of the spectral
density �AB��� these equations can be written as



−�

� d�̃

2�
�̃m�AB��̃� = − im−1��LH

mA,B��, m = 1,2, . . . ,

�22�

where LH
mA stands for LH

0 A=A , LH
1 A= �A ,H� , LH

2 A
={�A ,H� ,A} and so on.

In the present case, we introduce the following spectral
density:

�k��̃� = i��Sk
+���,S−k

− ���̃ = i

−�

�

d�ei�̃���Sk
+���,S−k

− �0���

�23�

and assume that it can be represented approximately by one
� function,

�k��̃� = 2��k���̃ − �̃�k�	 . �24�

This involves two unknown parameters �k and �̃�k� which
are obtained by solving the equations for the first two mo-
ments. Indeed, from the zero-moment equation we have


 d�̃

2�
�k��̃� = 2Nm , �25�

where we have introduced the magnetization along the field
direction as m=N−1�S0

z�. Thus, from Eq. �25� it immediately
follows that �k=2Nm and from the first moment equation
we have


 d�̃

2�
�̃�k��̃� = 2mNh +

1

N�
q

�q
��Sq

+S−q
− � + 2�q

� �Sq
z S−q

z � ,

�26�

where we have defined �q
��k�=2dk−q

�2� −2d�0�+Jk−Jk−q and
�q

� �k�=2dq
�2�+2d�0�+Jk−Jk−q.

The transverse correlation function appearing on the
right-hand side of Eq. �26� can be readily calculated leading
to

�Sk
+S−k

− � =
2Nm

��̃k
� 2Nm�k, �27�

where we have introduced the thermally averaged occupation
number

�k =
1

��̃k
. �28�

In order to compute the longitudinal correlation function
in Eq. �26� one has to make use of a particular decoupling
procedure �see the discussion below and in the Appendix�.
This is the second approximation used in CSDM, in addition
to that related with the choice for the form of the spectral
density. In Ref. 36 �and references therein� the following
approximation is used, which we also found suitable for our
case:

�Sk
z S−k

z � � �Sk
z ��S−k

z � −
1

2
�1 − m2��Sk

+S−k
− � . �29�

Finally, we define the averaged exchange structural fac-
tors T�ex�, where T�iso�=N−1�q
q�q stands for the isotropic
exchange interaction and T�ani�=N−1�q
q

�ani��q for the aniso-
tropic one �two-ion anisotropy, see above�. We have for the
frequency dispersion relation the self-consistent equation

�̃k = h + 2d�0�K1�T� + 2d0
�2�K2�T� + A�T�J0�1 − 
k� ,

�30�

where the first contribution stems from the Zeeman energy
and the second from the single-ion uniaxial anisotropy en-
ergy, where

K1�T� = m −
�

2
�3 − m2� �31�

with �=N−1�k
1BZ�k. The third term in Eq. �30� is due to the

two-ion anisotropy and contributes to both the zero wave-
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vector mode �̃0 and to the nonzero wave-vector modes �i.e.,
exchange�. Its temperature dependence is described by

K2�T� = m − T�ani��1 − m2 + 
k
�ani�� . �32�

As a result, within the CSDM approximation we recover
the anisotropy field scaling with magnetization in the low-
temperature region. Especially for FePt, we obtain that the
effective anisotropy field is hA=2d�0�K1�T�+2d0

�2�K2�T�
�2d0

�2�m�A, where �A=1+d�0� /d0
�2��1.072. Moreover, the

micromagnetic anisotropy constant scales as 2.072, to be
compared with the scaling exponent 2.1 of the anisotropy
constant found experimentally29,30 and numerically.8 The last
term in Eq. �30� is due to the isotropic exchange interaction
whose temperature dependence is given by

A�T� = m�1 + mT�iso�� . �33�

In all cases the contributions T�iso�
k and T�ani�
k
�ani� are

due to magnon-magnon interactions as can be checked from
different theoretical approaches that account for nonlinear
SW effects. This is discussed in the Appendix.

To solve Eq. �30�, the thermally reduced magnetization
value is necessary. We use the following expression, valid for
arbitrary temperature, as suggested in Ref. 36,

m2 =
1 − 3m�

1 − m�
. �34�

It is easy to show that it reduces to the well-known expres-
sion for the reduced magnetization in the low-temperature
limit, m�1−�, for classical spin systems.37 Consequently,
Eq. �30� should be solved self-consistently together with Eq.
�34�. The results are plotted in Fig. 6�b� and compared with
the SW dispersion obtained through the Langevin dynamics
simulation.

Despite the assumptions, the � function for the spectral
density and the decoupling procedure such as in Eq. �29�, the
temperature-dependent equilibrium magnetization m is well
described in the low-temperature region T�TC /4 and in the
high-temperature region T�TC, including an acceptable pre-
diction of the Curie temperature kBTC�1.47J for the generic
case.36 At the same time in the intermediate temperature re-
gion the temperature-dependent equilibrium magnetization
obtained through the CSDM approach is lower with respect
to that obtained within the SW Langevin approach. This ex-
plains the deviations observed in the dispersion relation for
intermediate temperature �see Fig. 6�b��. This discrepancy,
however, almost vanishes when the exchange stiffness is
plotted in terms of the corresponding magnetization value m
�see Figs. 1 and 2� where the CSDM approach practically
coincides with the Langevin simulations.

The low-temperature exponent for the scaling of the ex-
change stiffness with magnetization can be found analyti-
cally with some approximations. We will neglect the influ-
ence of the temperature dependence of the zero wave-vector
part �̃0=h+hA�T� on the dispersion relation, which becomes
exact in the absence of anisotropy. For the anisotropic ex-
change case of FePt we neglect the exchange anisotropy con-
tribution to �̃k because d0

�2� /J0�1. With these approxima-
tions, the dispersion relation �Eq. �30�	 reduces to

�̃k � �̃0�T� + mQ�m�J0�1 − 
k� �35�

with Q�m�=1+mT�iso�. Averaging over the noninteracting
magnon gas the interaction terms T�iso� and using Eq. �34�,
we obtain the following expression for the function Q�m�:

Q�m� � 1 +
G���
W���


m , �36�

where we have used the low-temperature approximation for
the magnetization, i.e., m�1−

WkB

J0
T and we have defined


m=1−m�1. We have also defined the lattice sums W���
and G���, according to

W��� =
1

N�
q

1

1 − �
q
, G��� =

1

N�
q


q

1 − �
q
�37�

with �=J0 / ��̃0+J0�. In the case of FePt, due to the high
anisotropy contribution, we obtain �FePt�0.975 at low tem-
peratures and zero applied field. For other materials d�J0
and ��1 even for relatively high applied fields. The values
of the geometrical parameters and scaling exponents are pre-
sented in Table I for sc, bcc, and fcc lattice structure for �
=1. Note that the numerical calculation of the sums should
be made carefully due to the divergent contribution of the
Goldstone mode. With the definitions above, we can rewrite
the value of Q�m��1+�
m=m−�, where �=G��� /W���.

Analogously to the SW Langevin approach �cf. Eq. �18�	
the micromagnetic exchange at low temperatures is defined
by

A��T� � Q�m�m2 � m2−�, �38�

where �=x ,y ,z. We should note that the differences W���
−1 and G��� measure the deviation of our result from the MF
approximation �MFA� behavior and tend to zero if the num-
ber of equivalent neighbors tends to infinity �z→��. In this
case Q�m�=1 and we recover the MFA result A��m��m2.
The high-temperature behavior is evaluated via numerical
calculation of the dependence of Q�m� on m. It is easy to
show that near the critical temperature T�TC the parameter
Q�m�→1 recovering again the MFA result. Moreover, from
Eq. �34� we get m��T−TC�1/2 in this region, leading to a
linear dependence of the exchange stiffness on temperature,
in agreement with the Landau theory of phase transitions.38

In Fig. 1 we compare the numerical solution of the com-
plete set of self-consistent Eqs. �30� and �34� for all ranges of
temperature and the atomistic simulation results described in
the previous sections. For a generic ferromagnet there is a

TABLE I. Geometrical factors and values of the scaling expo-
nents � and �=2−� for different lattice structures and for the par-
ticular case of the full ab initio parametrized FePt Hamiltonian.

W G � �

sc 1.5164 0.52 0.343 1.66

bcc 1.393 0.3965 0.2847 1.715

fcc 1.3446 0.343 0.255 1.745

FePt 1.317 0.3175 0.24 1.76
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good agreement within the three approaches, in this case the
scaling is given by A�T��m1.66 and it is valid until the usual
low-temperature region T�TC /4. It can be seen that the
CSD method and SW Langevin simulations give a very close
behavior. Moreover, the SW Langevin data has a very low
data dispersion.

In the special and more complex FePt case, there are two
different exchange parameters, one for directions parallel to z
axis, which we call A� and another for directions perpendicu-
lar to the z axis A�. These exchange parameters satisfy
A��m�=Az�0 K�m� and A��m�=Ax�y��0 K�m�. As observed
from the DW simulations28 the temperature dependence in
both directions is the same, whereas the absolute value is
different. The low-temperature scaling exponent �=1.76 is
valid approximately until T�TC /4. Note that the high-
temperature behavior cannot be described in terms of the
power scaling law.

V. CONCLUSIONS

We have introduced methods suitable for the multiscale
modeling of the temperature-dependent exchange stiffness in
magnetic materials, described by Heisenberg-type spin mod-
els. The present paper aims to show the capability of the
calculations of exchange stiffness, in principle, leaving the
investigation of more complex Hamiltonians for the future.
As a first step and to check in the first place the generality of
the conclusions, we have used a generic spin model on a
cubic lattice and a spin Hamiltonian for FePt, parametrized
through the ab initio calculations.

In the spirit of classical approaches to the exchange stiff-
ness, we have considered two possibilities: the domain-wall
and the SW approaches. It is not clear a priori that the two
definitions give the same answer in the thermodynamical
sense. Indeed, the first approach captures the thermal aver-
aging of the micromagnetic parameters inside the long-
wavelength excitations in the form of a domain wall. At the
same time, the SW spectrum was evaluated as small-
amplitude excitations in the whole wave-vector range on the
background of the saturated state. To make the situations
similar and to comply with the micromagnetic interpretation
of exchange, only the long-wavelength part of the SW spec-
trum was used at high temperatures. The results of the two
numerical approaches are in agreement and they also agree
with analytical calculations based on the classical spectral
density method.

Our methods allow us to obtain the low-temperature scal-
ing behavior of the exchange stiffness with magnetization.
The scaling exponent was found to be A�T��m1.66 for the
generic sc lattice and A�T��m1.76 for FePt. The values of the
exponents are well understood within the CSDM approach as
a consequence of the linear magnetization dependence on
temperature within the Heisenberg model and SW nonlin-
earities. The absolute value of the low-temperature exponent
is defined by the geometry of the lattice. The CSDM method
also clarifies the failure of the mean-field approximation to
get the correct low-temperature scaling. Indeed, as is well
known, the MF model does not treat correctly the correla-
tions between different SW modes �magnon-magnon interac-

tions�. Our results show that this problem also manifests it-
self in the temperature dependence of the exchange stiffness.

The CSDM method adequately describes the SW disper-
sion relation for low temperatures only up to T�TC /4. At
the same time, when the exchange stiffness is represented as
a function of magnetization �averaged strength of the mag-
netization fluctuations�, it gives a satisfactory agreement
with numerical approaches even at high temperatures. How-
ever, for more complex Hamiltonian models its validity re-
gion should always be checked against numerical ap-
proaches.

The SW stiffness method requires a lot of computational
space for the Fourier transform in four dimensions. The use
of the Fourier transform also implies a regular lattice. In
spite of the fact that the definition of the exchange via the
long-wavelength SW stiffness is rigorous, its computational
feasibility is limited. The domain-wall approach, however,
can be applied in arbitrary systems, including multiphase and
disordered ones.
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APPENDIX: NONLINEAR SPIN-WAVE EFFECTS

Considering the simpler Hamiltonian �1� without the an-
isotropy contribution, the CSDM approach yields the follow-
ing SW dispersion relation:

�̃k = h + m�J0 − Jk� +
m2

�
�

1

N�
p

Jp − Jk−p

�̃p
. �A1�

The extra term in Eq. �A1� with a quadratic dependence
on the magnetization m is a contribution that stems from the
particular �higher-order� decoupling scheme used for the lon-
gitudinal correlation function in Eq. �29�. With a simpler MF
theory, or random-phase approximation �RPA�, or still the
well-known Bogoliubov-Tyablikov approximation �BTA�,
one obtains a linear dependence on m in the additional con-
tribution, as will be seen shortly.

In fact, there are many prescriptions for such a decoupling
scheme that is used within the GF approach to the calcula-
tion of the dispersion relation, the magnetization, and higher-
order spin averages of a magnetic system. Indeed, within this
approach one is led to apply a certain scheme for breaking
high-order Green’s function into lower-order ones in order to
close the system of equations which is then easily solved in
Fourier space. Finding an adequate scheme for doing so has
triggered many investigations each dealing with a specific
situation with a particular Hamiltonian. Unfortunately, there
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is no general or systematic procedure. What is clear, how-
ever, is that this variety of decoupling schemes only reflects
the complexity of dealing with magnon-magnon interactions
and nonlinear SW effects. On the other hand, a decoupling
scheme that may be valid for the exchange coupling is not
necessarily a good approximation for the local anisotropy
contributions. Indeed, in the quantum case, the spin operators
satisfy the SO�3� Lie algebra and this implies that two spin
operators commute when they refer to distinct lattice sites. In
particular, the longitudinal and transverse motions are uncor-
related when they refer to two distinct lattice sites and they
are strongly correlated otherwise. Now, when applying MF
theory, RPA, or the BTA approximation, it is assumed that
the longitudinal and transverse motions are uncorrelated and
this is a valid approximation only when they refer to distinct
sites i�k. However, in the �local� anisotropy contributions
these sites are identical and thus the longitudinal and trans-
verse motions are correlated, which renders such decoupling
procedures bad approximations. In Ref. 39 it was argued that
one can avoid using a decoupling scheme by establishing 2S
equations of motion for the anisotropy functions. The prob-
lem, however, with this approach is that in practice one has
to specify the spin S thus limiting the calculations to a par-
ticular material. In addition, it is not obvious how to obtain
the classical limit from the final results. One should also note
that Devlin’s approach39 is only worth the trouble when one
is interested in an arbitrary ratio k=K /J. However, in typical
situations this ratio is on the order of 10−2 for bulk magne-
tocrystalline anisotropy.

As mentioned earlier, these various contributions that
stem from different decoupling schemes are in fact due to
magnon-magnon interactions and nonlinear SW effects. To
illustrate this idea, let us consider the simplest case of a spin
Hamiltonian without the anisotropy contribution and use the
Holstein-Primakoff representation for the spin operators S.
Then, the lowest-order nonlinear terms arising from the iso-
tropic exchange interaction are the four-magnon terms as
were derived by Dyson40,41 �see also Refs. 42 and 43�

Hex
�4� =

1

4N �
k,k�,k�

�J�k� + J�k + k� − k��

− 2J�k − k��	ak
†ak�

† ak�ak+k�−k�. �A2�

Applying the lowest-order RPA to this fourth-order term we
obtain

Hex
�4� = −

1

2N �
k,k�

�J�0� − J�k� − J�k�� + J�k� − k�	�nk�ak�
† ak�,

�A3�

where �nk� is the thermal occupation number given by the
Bose-Einstein distribution

�nk� =
1

exp����̃k� − 1
.

In the classical limit this reduces to Eq. �28�.

On the other hand, the linear SW theory yields the mag-
non dispersion

�̃k�0� = h + S�J�0� − J�k�	 � h + �̃k
ex�0� . �A4�

Then, the temperature-dependent magnon dispersion is
obtained by adding the contribution from the magnon-
magnon interactions, Eq. �A3�, to �̃k�0�. Indeed, after taking
into account the symmetry k↔k� in Eq. �A3� we obtain

�̃k�T� = �̃k�0� −
1

N�
p

�J�0� − J�k� − J�p� + J�p − k�	�np� ,

�A5�

which can be rewritten as �see the textbook,44 p. 256�

�̃k�T� = h + �̃k
ex�0��1 −

1

NJ0
�
k�

�̃k�
ex�0��nk��� . �A6�

This �renormalized� dispersion relation can also be de-
rived using the technique of double-time Green’s function.
Indeed, this technique yields

�̃k
free = �sH + �Sz��J�0� − J�k�	 , �A7�

where �Sz� is the magnetization in the direction of the field.
Now, replacing the latter by

�Sz� = S −
1

N�
p

�np�

and adding the magnon interaction contribution

�̃k
int =

1

N�
p

�J�p� − J�p − k�	�np�

yields the temperature-dependent dispersion

�̃k�T� = h + S�J�0� − J�k�	

−
1

N�
p

�J�0� − �k� − J�p� + J�p − k�	�np� ,

which is just the dispersion given earlier in Eq. �A5�. This
result simply shows that the extra term �third� in Eq. �A1� is
clearly due to magnon-magnon interactions.

Note that the dispersion relation in Eq. �A7� is obtained
within the BTA. However, it was shown by Tahir-Kheli and
Callen45–47 that the more sophisticated decoupling scheme

��Si
zSj

+;C��→
i�j

�Si
z���Sj

+;C�� −
�Si

z�
S2 �Si

−Sj
+���Si

+;C��

leads to the dispersion relation

�̃k = �sH + �Sz��J�0� − J�k�	 +
�Sz�2

NS2 �
p

�J�p� − J�p − k�	�np� .

�A8�

In the classical limit, using expression �28� for �np�, this
dispersion relation reduces to that in Eq. �A1� obtained
within the CSDM.

MULTISCALE MODELING OF MAGNETIC MATERIALS:… PHYSICAL REVIEW B 82, 134440 �2010�

134440-9



1 W. F. Brown, Micromagnetics �Wiley, New York, 1963�.
2 J. Fidler and T. Schrefl, J. Phys. D: Appl. Phys. 33, R135 �2000�.
3 J. Gonzalez, O. Chubykalo, and J. Gonzalez, in Encyclopedia of

Nanoscience and Nanotechnology, edited by E. Nalwa �Ameri-
can Scientific, Valencia, CA, 2004�, Vol. 19.

4 W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster,
and V. Tsiantos, Comput. Mater. Sci. 28, 366 �2003�.

5 J. Fidler, T. Schrefl, and W. Scholz, in Handbook of Theoretical
and Computational Nanotechnology, edited by W. S. M. Rieth
�American Scientific, Valencia, CA, 2006�.

6 E. D. Mee and E. D. Daniels, Magnetic Recording Technology
�Springer-Verlag, Berlin, 1990�.

7 http://math.nist.gov/oommf/
8 O. N. Mryasov, U. Nowak, K. Guslienko, and R. W. Chantrell,

Europhys. Lett. 69, 805 �2005�.
9 A. Antal, B. Lazarovits, L. Balogh, L. Udvardi, and L. Szun-

yogh, Philos. Mag. 88, 2715 �2008�.
10 W. F. Brown, Phys. Rev. 130, 1677 �1963�.
11 O. Chubykalo, R. Smirnov-Rueda, M. A. Wongsam, R. W.

Chantrell, U. Nowak, and J. M. González, J. Magn. Magn.
Mater. 266, 28 �2003�.

12 G. Grinstein and R. H. Koch, Phys. Rev. Lett. 90, 207201
�2003�.

13 D. A. Garanin, Phys. Rev. B 55, 3050 �1997�.
14 O. Chubykalo-Fesenko, U. Nowak, R. W. Chantrell, and D. Ga-

ranin, Phys. Rev. B 74, 094436 �2006�.
15 N. Kazantseva, D. Hinzke, U. Nowak, R. W. Chantrell, U. Atxi-

tia, and O. Chubykalo-Fesenko, Phys. Rev. B 77, 184428
�2008�.

16 U. Nowak, Handbook of Magnetism and Advanced Magnetic
Materials �Wiley, Chichester, 2007�, Vol. 2.

17 H. B. Callen, J. Phys. Chem. Solids 4, 256 �1958�.
18 P. Asselin, R. F. L. Evans, J. Barker, R. W. Chantrell, R. Yanes,

O. Chubykalo-Fesenko, D. Hinzke, and U. Nowak, Phys. Rev. B
82, 054415 �2010�.

19 U. Atxitia, O. Chubykalo-Fesenko, N. Kazantseva, D. Hinzke, U.
Nowak, and R. W. Chantrell, Appl. Phys. Lett. 91, 232507
�2007�.

20 S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Sci-
ence 287, 1989 �2000�.

21 O. N. Mryasov, V. A. Gubanov, and A. I. Liechtenstein, Phys.
Rev. B 45, 12330 �1992�.

22 V. Heine, O. N. Mryasov, and A. I. Liechtenstein, Europhys.
Lett. 12, 545 �1990�.

23 O. N. Mryasov, A. J. Freeman, and A. I. Liechtenstein, J. Appl.

Phys. 79, 4805 �1996�.
24 O. N. Mryasov, J. Magn. Magn. Mater. 272-276, 800 �2004�.
25 A. B. Shick and O. N. Mryasov, Phys. Rev. B 67, 172407

�2003�.
26 U. Nowak, O. N. Mryasov, R. Wieser, K. Guslienko, and R. W.

Chantrell, Phys. Rev. B 72, 172410 �2005�.
27 D. Hinzke, U. Nowak, O. N. Mryasov, and R. W. Chantrell,

Appl. Phys. Lett. 90, 082507 �2007�.
28 D. Hinzke, N. Kazantseva, U. Nowak, O. N. Mryasov, P. Asse-

lin, and R. W. Chantrell, Phys. Rev. B 77, 094407 �2008�.
29 S. Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, Y. Shimada,

and K. Fukamichi, Phys. Rev. B 66, 024413 �2002�.
30 J.-U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A.

J. Kellock, J. Appl. Phys. 91, 6595 �2002�.
31 O. Chubykalo, U. Nowak, R. Smirnov-Rueda, M. A. Wongsam,

R. W. Chantrell, and J. M. Gonzalez, Phys. Rev. B 67, 064422
�2003�.

32 N. Kazantseva, R. Wieser, and U. Nowak, Phys. Rev. Lett. 94,
037206 �2005�.

33 O. Chubykalo, J. D. Hannay, M. A. Wongsam, R. W. Chantrell,
and J. M. González, Phys. Rev. B 65, 184428 �2002�.

34 K. Yu. Guslienko, O. Chubykalo, J. D. Hannay, and R. W.
Chantrell, J. Magn. Magn. Mater. 272-276, 251 �2004�.

35 J. G. S. Rushbrooke and G. A. Baker, Phase Transitions and
Critical Phenomena �Academic, New York, 1974�, Vol. 3.

36 L. S. Campana, A. Caramico D’Auria, M. D’Ambrosio, U. Es-
posito, L. De Cesare, and G. Kamieniarz, Phys. Rev. B 30, 2769
�1984�.

37 D. A. Garanin, Phys. Rev. B 53, 11593 �1996�.
38 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous

Media �Pergamon, New York, 1984�.
39 J. Devlin, Phys. Rev. B 4, 136 �1971�.
40 F. J. Dyson, Phys. Rev. 102, 1217 �1956�.
41 F. J. Dyson, Phys. Rev. 102, 1230 �1956�.
42 D. C. Mattis, The Theory of Magnetism �Harper & Row, New

York, 1964�.
43 Yu. A. Izyumov and Yu. N. Skryabin, Statistical Mechanics of

Magnetically Ordered Materials �Consultants Bureau, New
York, London, 1988�.

44 R. M. White, Quantum Theory of Magnetism �Springer, Berlin,
1970�.

45 R. Tahir-Kheli and H. B. Callen, Phys. Rev. 135, A679 �1964�.
46 R. Tahir-Kheli, Phys. Rev. 132, 689 �1963�.
47 H. B. Callen, Phys. Rev. 130, 890 �1963�.

ATXITIA et al. PHYSICAL REVIEW B 82, 134440 �2010�

134440-10

http://dx.doi.org/10.1088/0022-3727/33/15/201
http://dx.doi.org/10.1016/S0927-0256(03)00119-8
http://math.nist.gov/oommf/
http://dx.doi.org/10.1209/epl/i2004-10404-2
http://dx.doi.org/10.1080/14786430802389213
http://dx.doi.org/10.1103/PhysRev.130.1677
http://dx.doi.org/10.1016/S0304-8853(03)00452-9
http://dx.doi.org/10.1016/S0304-8853(03)00452-9
http://dx.doi.org/10.1103/PhysRevLett.90.207201
http://dx.doi.org/10.1103/PhysRevLett.90.207201
http://dx.doi.org/10.1103/PhysRevB.55.3050
http://dx.doi.org/10.1103/PhysRevB.74.094436
http://dx.doi.org/10.1103/PhysRevB.77.184428
http://dx.doi.org/10.1103/PhysRevB.77.184428
http://dx.doi.org/10.1016/0022-3697(58)90077-5
http://dx.doi.org/10.1103/PhysRevB.82.054415
http://dx.doi.org/10.1103/PhysRevB.82.054415
http://dx.doi.org/10.1063/1.2822807
http://dx.doi.org/10.1063/1.2822807
http://dx.doi.org/10.1126/science.287.5460.1989
http://dx.doi.org/10.1126/science.287.5460.1989
http://dx.doi.org/10.1103/PhysRevB.45.12330
http://dx.doi.org/10.1103/PhysRevB.45.12330
http://dx.doi.org/10.1209/0295-5075/12/6/013
http://dx.doi.org/10.1209/0295-5075/12/6/013
http://dx.doi.org/10.1063/1.361678
http://dx.doi.org/10.1063/1.361678
http://dx.doi.org/10.1016/j.jmmm.2003.11.285
http://dx.doi.org/10.1103/PhysRevB.67.172407
http://dx.doi.org/10.1103/PhysRevB.67.172407
http://dx.doi.org/10.1103/PhysRevB.72.172410
http://dx.doi.org/10.1063/1.2696353
http://dx.doi.org/10.1103/PhysRevB.77.094407
http://dx.doi.org/10.1103/PhysRevB.66.024413
http://dx.doi.org/10.1063/1.1470254
http://dx.doi.org/10.1103/PhysRevB.67.064422
http://dx.doi.org/10.1103/PhysRevB.67.064422
http://dx.doi.org/10.1103/PhysRevLett.94.037206
http://dx.doi.org/10.1103/PhysRevLett.94.037206
http://dx.doi.org/10.1103/PhysRevB.65.184428
http://dx.doi.org/10.1016/j.jmmm.2003.11.107
http://dx.doi.org/10.1103/PhysRevB.30.2769
http://dx.doi.org/10.1103/PhysRevB.30.2769
http://dx.doi.org/10.1103/PhysRevB.53.11593
http://dx.doi.org/10.1103/PhysRevB.4.136
http://dx.doi.org/10.1103/PhysRev.102.1217
http://dx.doi.org/10.1103/PhysRev.102.1230
http://dx.doi.org/10.1103/PhysRev.135.A679
http://dx.doi.org/10.1103/PhysRev.132.689
http://dx.doi.org/10.1103/PhysRev.130.890

