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Abstract

The continuing development of advanced magnetic nanomaterials for electronic
devices and medical applications necessitates an understanding of the origins of
magnetism at the atomistic level. In this thesis current state of the art modelling
methods are developed and applied to a variety of physical problems in order
to better understand the origins and limitations of magnetic materials at the
nanoscale. The dependence of the Curie temperature and magnetocrystalline
anisotropy on the atomic level structure is shown to be significant, and can
sometimes dominate the magnetic properties of nanoparticles. In particular,
the addition of a silver coating to cobalt nanoparticles is shown to induce
a transition of the internal crystal order to bulk-like crystal structure. A
detailed investigation into the effects of Néel surface anisotropy on the magnetic
properties of nanoparticles is made. This study revealed that the local atomic
order at the surface can lead to radically different magnetic behaviour. A
new constrained Monte Carlo modelling method is developed to enable the
calculation of equilibrium properties of magnetic nanoparticles. This method
is used specifically to calculate the temperature dependence of the magneto-
crystalline anisotropy energy and exchange stiffness in bulk-like atomistic systems,
where comparison is made to existing analytical theories. The physics of heat-
assisted magnetic reversal at the nanoscale is investigated by simulation of
iron-platinum nanoparticles, showing the emergence of a previously unknown
elliptical reversal mechanism at temperatures close to the Curie temperature.
An analytic description of the equilibrium reversal properties is formulated
which describes the fundamental thermodynamic limit for heat assisted magnetic
reversal. A large scale atomistic model of a heat assisted magnetic recording
system is constructed to study the effects of inter-grain interactions and to assess
the future feasibility of heat assisted recording in a hard disk drive.
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5.9 Energy barriers for an elongated nanoparticle . . . . . . . . . . . . . 70



List of Figures 6

5.10 Energy landscape for an elliptical particle for KNéel = 150Ku . . . . 71
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1. Introduction

Magnetism is a physical phenomenon first recorded around 600 BC by Greek
philosophers studying ferrite rocks (lodestone). Today it is one of the most
important properties of nature and is used in a multitude of technological devices
from power plants to computer chips. This is largely due to the interaction
of magnets with electricity, which is used to make electric motors. However,
magnetic materials have, for some years now, also found a use in computers
as hard disk drives. The reason for this is the huge capacity for storing digital
information securely when compared to any other technology. This, however,
has been the result of years worth of investment in the research and development
of magnetic materials for hard disk recording. This investment has paid off
since the storage capacity of typical hard drives has effectively doubled every
few years since the 1980s [1]. However, a point will soon be reached where
there are fundamental physical limitations on data density [2]. In order to
continue increasing data density a deeper understanding of the underlying
physics relating to the nanoscale is required, which is where theoretical magnetics
comes into play.

1.1 Origins of Magnetism

Magnetism arises on the sub-atomic level from localised polarisation of the
electron clouds of certain atoms arising from unpaired electrons. This causes
the charge on the atom to have a net angular momentum. Any flow of charge
causes additional physical effects on the surroundings, usually referred to as a
’magnetic’ effect. In the case of atoms the net angular momentum of the charge
cloud causes a magnetic field perpendicular to the rotation of the excess charge.
The magnitude of this magnetic or spin moment is dependent on the species
of atom [3]. How these spin moments interact with each other is critical to
how different materials are characterised magnetically. When atoms are brought
in proximity to each other there is a probability of an electron jumping from
one atom to another, known as the Heisenberg exchange [4]. This interaction
probability can indirectly couple the spin moments of the atoms, causing the
spin moments to align parallel or anti-parallel. In most materials the spin
moments are small and aligned randomly, leading to paramagnetism as shown
in Figure. 1.1(a). In some materials however, specifically transition metals such
as nickel, cobalt, and iron, the spin moments are large, and align in parallel
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or ferromagnetically as shown in Figure. 1.1(b). This causes a net spontaneous
magnetic moment in the material.

(a) Paramagnetic spin moments (b) Ferromagnetic spin moments

Figure. 1.1: Schematic Representation of Magnetic Spin Moments.

Material Magnetism

The magnetisation, M, of a sample is defined by the size and direction of its
net magnetic moment per unit volume. The magnitude of the magnetisation is
affected by a number of factors, including atomic species, temperature, and shape
of the sample. When a magnetic field, H, is applied to a sample the magnetisation
responds in a pattern known as a hysteresis loop, as shown in Figure. 1.2.

!
rrr

ccc

Figure. 1.2: Hysteresis loop for a generic magnet under an applied field shown
as a plot of M vs H.

The critical parameters on this curve are the remanence, Mr, the intrinsic
coercivity, Hc, and the saturation magnetisation, Ms. The remanence is the
magnitude of the magnetisation after an applied field is reduced to zero, the
coercivity is the field required to return the magnetisation of the sample to
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zero from saturation, and the saturation magnetisation is the maximum value
of magnetisation and is purely dependant on the number of spin moments on the
actual sample being measured. Another important feature of magnets is the effect
of heating. As the temperature is increased beyond a critical point, known as the
Curie temperature Tc, all ferromagnets become paramagnetic. These features,
Mr, Hc, Ms and Tc, describe the fundamental behaviour of all magnets. Materials
with a high remanence and coercivity are known as hard materials, while those
with a low remanence and coercivity are denoted as soft materials.

Whenever a magnetised body exists there is always a field which attempts to
oppose the magnetisation, known as the de-magnetisation field, HD. The size
of this field is strongly size and shape dependent. This field leads to the idea
of domains [5, 6]. A typically sized magnetic material in its natural form and
in the absence of an externally applied field has no overall magnetic moment.
This is because on the atomic scale moments are strongly coupled and group
together to form a magnetic domain. Domains, however, are weakly coupled and
as a result they can align randomly in certain materials, leading to an overall de-
magnetised state. As the sizes of samples are reduced it is possible to have only
a few domains. Additionally, most materials are anisotropic, meaning that the
magnetisation prefers to align along particular crystal directions. This is known
as the magnetocrystalline anisotropy. In these small samples the domains tend to
align antiparallel in order to retain an overall magnetic moment of zero. There are
a huge number of factors affecting the size of magnetic domains, but the critical
point for magnetic recording is that formation of domains requires energy. For
large samples it is energetically favourable to form domains, but if a particle is
small enough a single-domain particle is formed.

Single Domain Particles

In a single domain particle all the atomic moments are aligned in parallel. This
leads to improved magnetic characteristics, such as possessing a high coercivity
and remanence, which is in turn ideal for magnetic recording. The magnetic
properties of single domain particles have been described in detail by Stoner and
Wohlfarth [7]. The critical parameter for single domain particles is the anisotropy,
arising either from shape or magnetocrystalline effects. The uniaxial anisotropy
locks the magnetic moment of the particle in one of two directions, thus making
an ideal material for digital storage. The Stoner-Wohlfarth theory provides
an effective basis for modelling the characteristics of conventional particulate
recording media consisting of a collection of single domain particles [8].

A significant problem with very small magnetic particles of only a few
nanometers in diameter, however, is their thermal stability. The thermal stability
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of single domain particles is of critical importance to magnetic storage technology,
since it is a key requirement that stored data persists for periods in excess of
10 years. The time dependent thermal stability of a single domain particle is
described by an Arrhenius-Néel law [9, 10], and is principally dependent on
the particle anisotropy and volume. As the particle volume is reduced, so is
the energy barrier between stable magnetic states. This reduction in the energy
barrier increases the chance that the direction of the magnetisation may reverse
due to thermal fluctuations. For small nanoparticles with weak anisotropy the
rapid thermal switching of nanoparticles can occur at room temperature, leading
to an effect known as superparamagnetism [11]. A schematic diagram illustrating
the thermal switching of a single domain particle is shown in Figure. 1.3.

!"#"$%&

!"#$%&'(&)*+,&*+-.
-,#$(#.#$/0(1&$$+#$

Figure. 1.3: Illustration of the anisotropy energy as a function of angle from the
easy axis, θ, for a single domain particle. The plot shows that the
existence of an energy barrier allows for the possibility of thermal
activation.

The term superparamagnetism originates from the macroscopic behaviour of
an array of particles, where in the absence of an applied field the overall magnetic
moment is zero. When an external field is applied the transition rates between
the two states are changed giving the material a net magnetisation, a behaviour
which is similar to that of a paramagnet. In the case of magnetic data storage,
thermal activation leads to a progressive loss of data. This has led to a significant
amount of research into high anisotropy magnetic materials.
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1.2 Motivation for Research

Magnetic Recording Media

Although magnetism has been critical to technological devices since the discovery
of electricity, it was found in the late 1950’s to make an excellent medium for long-
term storage of digital information. Magnetic recording of digital information
makes use of the ability to “flip” the direction of magnetisation in a uniaxial
material. Traditionally arrays of elongated particles with a preferential easy axis
were used on a thin film, but more recently the magnetocrystalline anisotropy
of spherical particles has been used instead. The magnetic material is usually
mounted on a circular rotating disk, allowing non-sequential access to the data
on the disk. Each bit of digital data is recorded on a corresponding magnetic ’bit’
on the disk. The first hard disks had only a few hundred bits on one square inch
of magnetic material whereas modern disks have hundreds of billions of bits per
square inch. This is more commonly referred to in terms of data density, with
a disk possessing a number of Megabits (Mb) or Gigabits (Gb) per square inch.
This increase in data density has been an order of magnitude per decade ever
since the first disks were ever created and is achieved by decreasing the size of
the bits on the disk. The main difficulty with reducing the bit size is magnetic
stability [2], since at very high density each bit consists of only a few particles.
This means that stray fields from nearby data bits have a much greater impact
on the stored magnetic data, and the magnetisation can decay sufficiently so as
to be unreadable. One solution to this is to use high anisotropy materials such
as FePt [12], which help to “lock” the magnetic moment in the correct direction
for a greater length of time. Another problem with increased data density is
maintaining a good signal to noise ratio which is achieved by having several
magnetic particles per data bit [13], typically around 50. If any one particle
is incorrectly magnetised then the data is still correctly recorded and readable
on the disk by the signal arising from the other particles in the data bit. A
direct consequence of this is that in order to reduce the bit size, maintaining a
similar signal to noise ratio requires the same number of smaller particles. To
achieve the highest bit density therefore requires the use of particles of only a
few nanometres in diameter, referred to as nanoparticles. This miniaturisation to
the nanoscale also applies to other components used in hard disk recording such
as the magnetic read and write heads.

Modelling of magnetic materials is now almost a necessity for complex
components and particles such as those used in hard disks, since there are too
many physical variables to reliably predict the magnetic behaviour of the system
with a pencil and paper approach. The standard method of modelling magnetic
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materials, known as micromagnetics [14], has been used to better understand
the behaviour of magnetic materials with a large number of physical variables.
Micromagnetics works by discretising the magnetic material into smaller spin
components and looking at how these individual moments interact with the local
physical surroundings. However, the fundamental problem when extending
micromagnetics into the nanoscale is one of length scale. At some point it is more
realistic to use atomic resolution as the basis of the discretisation, essentially the
Heisenberg model [15]. This allows the input of ab-initio information directly into
magnetic models forming a link between atomic parameters and larger systems
comprising of a number of atoms. The way atomic moments interact at the
nanoscale, however, can be substantially different from bulk material behaviour
and this improvement in resolution allows such nanoscale magnetic systems
to be modelled more effectively. For example, when looking at the process of
writing magnetic data to nanoparticles on the disk the length of time and actual
mechanism of magnetic reversal are very important to how fast data can be
written to the disk.

Another reason for atomistic scale modelling, other than resolution, is the
introduction of more complex magnetic materials. These are needed to increase
the magnetocrystalline anisotropy of nanoparticles or to allow the use of bit-
patterned media for example. This implies the use of magnetic materials
consisting of two or more chemical elements which has a number of consequences.
The Heisenberg exchange becomes much more complex in such materials,
depending significantly on the particular crystal structure. Also some materials,
such as platinum, are not normally magnetic and have a so-called induced
spin moment arising from neighbouring ferromagnetic spins. Micromagnetics
suffers significantly when calculating the Heisenberg exchange since it uses an
exchange approximation which is only valid for long wavelength magnetization
changes and as a result is incapable of describing multi-element materials on
the nanoscale. Ultimately atomistic modelling of nanoparticles and components
leads to a better understanding of their magnetic behaviour. This understanding
in turn allows the focussed development of new materials and technological
innovation in hard disk drives.

1.3 Thesis Outline

What follows is a general outline for the thesis. The first chapter will detail the
modelling methods required to model magnetic materials at the atomistic level.
This will start with a general introduction to the atomic origins of magnetism,
followed by a detailed analysis of the Heisenberg model, spin dynamics and



1. Thesis Outline 17

equilibrium properties. The final section of the chapter will describe how the
microscopic magnetic parameters relate to macroscopic phenomena such as the
Curie temperature and coercivity, for example.

Chapter 2 will give a more technical overview of current state of the art
modelling methods utilised in this thesis, including the methods used to obtain
atomic-scale parameters from macroscopic material properties. Chapter 3 will
then present a selection of simulation results used to test the atomistic model
and also introduce some of the effects of finite size on the magnetic properties of
nanoparticles.

Chapter 4 will present the first results of the thesis, describing the effects
of atomic structure on the magnetic properties of cobalt, iron, and cobalt-silver
core-shell nanoparticles. Chapter 5 will then extend this work to investigate the
effects of surface faceting and crystal structure on the surface anisotropy of a wide
variety of cobalt nanoparticles.

Chapter 6 will outline a new constrained Monte Carlo approach developed
to investigate the equilibrium properties of magnetic nanoparticles, but with a
physical constraint to force the system magnetisation along the desired direction.
Results for the temperature dependence of the magnetocrystalline anisotropy
based on this new algorithm are also presented and compared to existing
theories. The method is then utilised to give the first calculations of the
temperature dependence of surface anisotropy in thin films, and to calculate the
temperature dependence of the micromagnetic exchange stiffness.

In Chapter 7 a detailed investigation into the physics of heat assisted magnetic
reversal will be presented. This will start with a description of the new
modelling methods developed to allow the investigation of the heating process
by laser irradiation. Simulation results for the reversal processes for different
sizes of FePt nanoparticles will then be presented, illustrating the emergence
of a previously unknown elliptical reversal mechanism [16]. An analytical
description of the equilibrium reversal properties for magnetic nanoparticles
will then be presented, identifying the thermodynamic limits of heat assisted
magnetic reversal. The final section of this chapter will describe the creation of
an atomistic model of heat assisted magnetic recording (HAMR), as found in a
future device. This model is then used to assess the feasibility of this promising
technology at a data density in the Tbit/in2 regime.

The thesis will then conclude with a summary and conclusion, describing
the main discoveries of the thesis and their relevance to developments in high
performance magnetic nanomaterials.
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This first chapter introduces the background to the atomistic magnetic model,
which underpins the remainder of the thesis. The first section describes the
fundamentals of atomic scale magnetism in the context of the Heisenberg model.
The next section will address the physics of spin dynamics and thermal effects,
followed by a section relating the macroscopic magnetic parameters, such as
the coercivity and Curie temperature, to their atomistic equivalents. The final
section will then address the formulation of an atomistic model for FePt, which
is a complex magnetic material with significant potential for future technological
applications.

2.1 Theoretical Background

The principal theoretical method used throughout this thesis is the atomic-
scale modelling of magnetic materials using the classical limit of the Heisenberg
localised spin model. The Heisenberg model describes the atomic scale exchange
interaction with a local moment theory, considering the interaction between two
electron spins on neighbouring atomic sites. By applying the Heitler-London
approximation [17] for the linear combination of electron orbitals, Heisenberg
developed a model which describes the energy of neighbouring atoms with spin
[4], given by:

< H >= −JijS̃i · S̃j (2.1)

where S̃i and S̃j are the quantum mechanical spins on atomic sites i and j
respectively, and Jij is the interaction energy arising from the probability of
the two electrons exchanging atomic sites. The quantum nature of the electron
spins leads to quantisation of the electron energy, which for a single spin was
demonstrated by the Stern-Gerlach experiment [18]. In the above case, however,
the quantum effects are far more complex due to the coupling of the electronic
spin moments. In the limit of infinite spin angular momentum, the quantisation
effects vanish, and the spin moments have continuous degrees of freedom. Such
spins are said to be classical, leading to the classical Heisenberg spin model.
It should be pointed out that there is a fundamental assumption within the
Heisenberg model, namely that the electrons are localised onto the atomic sites.
In general this is not the case, since the magnetic interactions arise from unpaired
outer electrons, which in metals are loosely bound to the individual atomic sites.
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The band theory of ferromagnetism proposed by Stoner [19] successfully
explains why atoms possess non-integer spin moments by describing the exchange
splitting of the spin-up and spin-down energy bands. However, the band theory
reveals little about the fundamental magnetic properties due to its complexity,
and so an assumption that on some, very short, timescale the local moment
approximation is valid is not unreasonable, provided that it is acknowledged that
in fact electrons are not confined to the atomic sites. Collectively this leads to an
effective Heisenberg classical spin model, where the spins have some non-integer,
time-averaged, value of the spin moment.

2.2 Classical Spin Hamiltonian

The Heisenberg spin model incorporates all the possible magnetic interactions
into a single, convenient, formalism which can be used to investigate a myriad
of magnetic phenomena at the fundamental level. The principal part of the
model is forming the Spin Hamiltonian, describing the energetics of the magnetic
system. Such a Hamiltonian is formed from a summation of energy contributions,
E, each of which describes an interaction between an atomic spin moment, �µi

and neighbouring moments or external magnetic fields. The Spin Hamiltonian
typically takes the form:

H = Eexchange + Eanisotropy + Eapplied + Edipolar + others... (2.2)

Each of the individual contributions to the Hamiltonian are described in detail
below. Note that it is usual in the literature to use a dimensionless normalised
spin moment, Si = µi

|µs|
, where |µs| is the magnitude of the spin moment, and this

convention is adopted for this thesis.

Exchange Energy

The dominant contribution to the Spin Hamiltonian in ferromagnetic materials
comes from the internal or Weiss field, which attempts to align the atomic
spin moments. The Weiss field in fact originates from the quantum mechanical
exchange interaction, arising from the probability of an electron moving from
one atomic site to another. The exchange interaction, as it is called, leads to very
strong alignment of spin moments to their neighbours in ferromagnetic metals.
The total exchange energy for each atom, i, is described by the sum over all
neighbouring atomic spin moments:
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Eexchange = −Jij ∑
ij

Si · Sj (2.3)

where Jij is the exchange interaction between the spins i and j, where Si is the
local spin moment and Sj are the spin moments of neighbouring atoms. If
Jij is positive (ferromagnetic), then the exchange contribution will attempt to
align the spins in parallel, whereas if Jij is negative (anti-ferromagnetic), then
it will attempt to align the spins anti-parallel. In simple models it is possible
to approximate the effects of exchange by only considering nearest neighbours
with an overall exchange constant, but in reality the interaction is relatively long
ranged, with ferromagnetic and anti-ferromagnetic contributions leading to an
overall exchange value. For FePt, where the exchange interaction is particularly
long ranged, this leads to enhanced finite size effects which cannot be properly
described by an effective nearest neighbour exchange model.

Magnetocrystalline Anisotropy

One of the most basic parameters in a magnetic system is the magnetocrystalline
anisotropy, namely the preference for spin moments to align with particular
crystallographic axes. This arises from the effect of the local crystal environment
on the spin-orbit coupling of the electron. The simplest form of anisotropy is
single ion uniaxial, where the magnetic moments prefer to align along a single
axis, e, often called the easy axis. Such an anisotropy exists where the crystal
lattice is distorted along a single axis, as in materials such as hexagonal Cobalt
and L10 FePt. Indeed, recent experiments have utilised this property in an
attempt to engineer a higher anisotropy in Fe3Pt [20]. The uniaxial single ion
anisotropy energy is given by:

Euniaxial
anisotropy = de (S · e)2 (2.4)

where de is the anisotropy energy per atom.
Another, less commonly known, form of uniaxial anisotropy energy is the

2-ion form. Unlike the single ion form described above, the 2-ion anisotropy
originates from the interaction of neighbouring spins, in much the same way
as the exchange interaction. The 2-ion anisotropy appears in magnetic Rare
Earth alloys, where the outer electrons are weakly bound, but where the crystal
structure imparts an anisotropic energy contribution to the exchange energy. This
effect is described in detail in Section 2.6 for FePt, but a general form for the 2-ion
anisotropy is given by:
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E2−ion
anisotropy = ∑

ij
−de

ijSi · Sj (2.5)

where de
ij is the local on-site 2-ion anisotropy constant, assuming an easy axis

along e.
Materials with a cubic crystal structure, such as Iron and Nickel, have a

different form of anisotropy known as Cubic anisotropy. Cubic anisotropy is a
much weaker effect than in uniaxial anisotropy, and has three principal directions
which energetically are easy, hard and very hard magnetisation directions
respectively. This is defined in terms of the value of the directional cosines of the
spin moment relative to the cartesian axes, such that, to first order, the anisotropy
energy density of a single spin is given by

Ecubic
anisotropy = d2(Sx

2Sy
2 + Sx

2Sz
2 + Sy

2Sz
2) (2.6)

where d2 is the cubic anisotropy energy per atom, and Sx,Sy, and Sz are the x,y,
and z components of the spin moment respectively.

Applied Fields

Most magnetic problems involve interactions between the system and external
applied fields, Happlied. External fields can arise in many ways, for example a
nearby magnetic material, or as an effective field from an electric current. In all
cases the applied field energy is simply given by:

Eapplied = −|µs|Happlied · S (2.7)

Dipolar Fields

An important property when modelling the dynamics of ensembles of magnetic
moments is the de-magnetising or dipolar field. This arises from law of continuity
of flux, leading to the idea that any magnetised body will have a certain field
opposing the overall magnetisation. The size of the dipolar field relates to the
size and shape of the magnetic body and the separation of individual moments.
In the point-dipole approximation the energy arising from the dipolar field is
represented by a sum over all the moments such that:

Edipolar = −
µs

2µo
4πa3 ∑

i �=j

3(Si · r̂ij)(r̂ij · Sj)− (Si · Sj)
rij3

(2.8)

where µs is the magnitude of the spin moment, µo is the permeability of free
space, a is the lattice spacing, r̂ij is the unit position vector between sites i and j,
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and rij is the distance (in unit cells, a) between sites i and j.

Other Interactions

While the most common magnetic interactions have been described above, such
a list is not comprehensive and so the possibility of other interactions within the
Spin Hamiltonian has been included. These other interactions can arise from
a range of phenomena, such as incorporating implicitly the magnetic effects
of atomic vibrations, or special forms of anisotropy such as surface anisotropy
which is utilised in Chapter 5.

2.3 Spin Dynamics

While the spin Hamiltonian describes the energetics of the magnetic system, it
provides no information regarding its time evolution. The first understanding of
spin dynamics came from ferromagnetic resonance experiments, where the time
dependent behaviour of macroscopic magnetic spin moments is described by the
Torque equation derived by Lifshitz and Landau [21]. The damping parameter
in the Landau-Lifshitz equation has a linear relationship with the relaxation rate.
Subsequently Gilbert introduced a critical damping parameter, with a maximum
effective damping for α = 1, to arrive at the Landau-Lifshitz-Gilbert equation
[22]. It should be noted that although this equation was originally derived from
the motion of macroscopic spin moments, the same equation can also be derived
from the quantum mechanical formulation of the Heisenberg model under an
applied field [23].

The Landau-Lifshitz-Gilbert Equation

The time dependent motion of atomic spin moments is described by the Landau-
Liftshitz-Gilbert equation (LLG), which, in its modern form, is given by:

∂S

∂t
= −

γ

(1 + α2)
[S× Heff + αS× (S× Heff)] (2.9)

where S is the normalised magnetic spin moment, γ is the gyromagnetic ratio,
α is the Gilbert damping parameter, and Heff is the net magnetic field. The
LLG equation describes the interaction of an atomic spin moment with an
effective magnetic field, which is obtained from the negative first derivative of
the complete spin Hamiltonian, such that:

Heff = −
∂H

∂S
(2.10)
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The LLG equation has two distinct parts, the first part, S× Heff induces spin
precession around the net field direction Heff, while the second, αS× (S× Heff)
describes spin relaxation towards Heff. The phenomenological damping constant,
α, determines the rate of relaxation towards the net field direction, representing
the coupling of the spin system to a heat bath. As the spin system is excited
the precession is damped, eventually leading the spin to align with the net
field direction. The physical origin of the damping comes from a range of
different atomic scale phenomena, including lattice vibrations and electron-spin
interactions, although a full theoretical understanding of its origin is still lacking.
Critical damping, where α = 1, aligns the spin moment in the shortest possible
time, while most real magnetic materials have a damping constant in the range
0.01− 0.1. It should be noted that there is, as yet, no first principles derivation
of the damping constant and at present it can only be measured directly from
experiment [24].

Langevin Dynamics

In its standard form the LLG equation is strictly only applicable to simulations at
zero temperature. The effects of temperature are taken into account by using
Langevin Dynamics, an approach developed by Brown [25]. The basic idea
behind Langevin Dynamics is to assume that the thermal fluctuations can be
represented by a Gaussian white noise term. As the temperature is increased, the
width of the Gaussian distribution increases, thus representing stronger thermal
fluctuations. In reality the thermal and magnetic fluctuations are correlated at
the atomic level, arising from the Coulomb interactions of the atoms. New
approaches such as coloured noise [26] and combined magnetic and molecular
dynamics simulations [27] aim to better understand the underlying physics of
the thermal interactions at the atomic level.

Nevertheless the established Langevin Dynamics method is used throughout
the thesis and incorporates an effective thermal “field” into the LLG equation to
simulate thermal effects [28]. The magnitude of the thermal field in each spatial
dimension is represented by a gaussian distribution with a mean of zero and a
variance given by:

σ =

�
2kBTα

γµs∆t
(2.11)

where kB is the Boltzmann constant, T is the system temperature in Kelvin, α is
the damping parameter, γ is the absolute value of the gyromagnetic ratio, µs is
the magnitude of the spin moment, and ∆t is the integration time step [29].

While spin dynamics are particularly useful for obtaining dynamic information
about the magnetic properties, such as magnetic reversal, they are often not the
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most efficient method for determining the equilibrium properties for a system. A
better method, known as Monte Carlo simulation, is described in the next section.

2.4 Monte Carlo Methods

Monte Carlo Metropolis algorithms are an excellent way to study the energetics of
a physical system under equilibrium conditions [30, 31]. The basic idea is to make
an adjustment to a physical system and calculate the change in energy, ∆E. This
change is then accepted or rejected in relation to the Boltzmann distribution for
the system given the temperature. In the case of a classical spin model a single
spin is speculatively moved in space and the difference in energy is evaluated.
The move is then accepted with probability P according to

P = max
�

1, exp
�
−

∆E
kBT

��
(2.12)

where kB is the Boltzmann constant, and T is the absolute temperature. When
using Monte Carlo algorithms the manner in which a trial move is made is
important since it must obey the principle of detailed balance [32]. For a simple
Monte Carlo algorithm, this principle is satisfied if the trial steps are uniformly
random on the unit sphere. An efficient computational method for such a move
was devised by Marsaglia [33]. The Marsaglia method is efficient for high
temperatures since the uniform distribution of trial points gives a good sampling
of the phase space. For low temperatures, however, only moves which have
a small change in energy will be accepted. Due to the exchange energy this
generally requires a small angular change in the spin moment direction. Since
only a small fraction of moves are small angles with the Marsaglia method, a
tuned step size will be a far more efficient at low temperatures.

Tuned Gaussian Trial Step

One method of improving the Monte Carlo algorithm efficiency is to use a tuned
Gaussian step. This method ensures a uniform distribution of points but allows
the angular displacement of the spin moments to be tuned to the temperature. A
trial step, S�, is made from the initial spin position, S by:

S�α = Sα + δα (2.13)

where α = x, y, z and δα is a Gaussian random number with a mean of zero and
width σ where σ is a function of temperature. The new trial spin position is then
normalised to unit length [34]. The width of the Gaussian distribution is chosen
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so that the acceptance rate for Monte Carlo moves is around 50%, which leads to
an optimal sampling of the phase space.

2.5 Calculation of Atomic-Scale Parameters

In order that atomistic models represent real materials as closely as possible,
parameters from the atomistic model must be derived from experimental data
or ab-initio calculations. To illustrate this, the process of obtaining a spin
Hamiltonian for Co, a common magnetic element, is outlined below.

Material Parameters

The principal interaction in the classical spin Hamiltonian is the exchange energy,
Jij, which defines the temperature of the magnetic phase transition, or Curie
temperature. Using the Curie-Weiss mean field model [5, 6], it is possible to relate
the total exchange energy per atom to the Curie temperature by the expression:

∑
ij

Jij =
3kBTc

ε
(2.14)

where kB is the Boltzmann constant and ε is an interaction constant which is equal
to 1 in the mean-field model (where all interactions are equal in size) and less than
one for increasingly localised interactions. For a 2D Ising model ε ≈ 0.66 while for
a 3D Heisenberg model ε ≈ 0.86. Once the total exchange energy is found it must
then be divided between neighbouring atoms. The actual distribution and range
of the exchange interaction can only be found by ab-initio calculations, however
an approximation that the interaction is uniformly confined to nearest neighbours
only is a reasonable approximation for cobalt. Cobalt has either a face-centred
cubic (fcc) or hexagonal (hcp) crystal structure, both of which have 12 nearest
neighbours. Assuming an isotropic distribution of the exchange energy, and
an experimental Curie temperature of ∼ 1390 K, this gives a Jij of 5.6 ×10−21

Joules/link.
The magnitude of the uniaxial anisotropy constant, datomic, is derived from

material parameters, using the expression

datomic =
K1Matomic

ρNA
(2.15)

where K1 is the anisotropy energy density, Matomic is the atomic mass, ρ is the
density, and NA is Avogadro’s number. For Cobalt this yields a value of 4.644×
10−24 J.
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Another parameter in the LLG equation requiring ab-initio information is the
magnitude of the spin moment, |µs|. In general |µs| is atomic species dependent
and arises from the resultant orbital angular momentum of electrons in the outer
shells of the atom. Strongly magnetic materials have spin moments of the order
of a Bohr magneton, µB, for example Cobalt has an average spin moment of
∼ 1.4 Bohr magnetons. This is approximated in this model by assuming a time
averaged value of the spin moment, µs, though in reality its magnitude can vary
slightly on very short timescales due to its electronic origin. One situation where
there are significant changes in the size of the spin moment is at the surface
of nanoparticles, where typically the spin moment becomes much larger [35].
While the enhancement of surface spin moments can be significant for very small
systems, it is generally neglected due to the complexity in determining its actual
size, though it is intended that future work might incorporate a variable spin
moment into the atomistic model. Generally the bulk magnetic spin moment is
used for all calculations.

In order to demonstrate that these atomistic parameters lead to the correct
macroscopic behaviour, such as the correct Curie temperature and coercivity, test
simulations for cobalt are presented in Chapter. 3. Although the above methods
work well for generic modelling of magnetic materials, some materials have
more complicated Hamiltonians which have specific effects on the macroscopic
material parameters, particularly at elevated temperatures. The next section
describes one such material, where the atomistic parameters are taken directly
from ab-initio calculations.

2.6 Atomic Scale Properties of L10 FePt

For the most part, magnetic materials used in technological applications today
are alloys containing one of the three principal magnetic elements, Fe, Co,
and Ni. Alloyed magnetic materials develop complex characteristics due to
the interactions with non-magnetic elements. These can range from magnetic
nanoparticles which are oxidised on the surface, to alloyed thin films containing
a wide variety of elemental ingredients. Accurately modelling such materials
presents a significant number of challenges due to the close relationship between
local atomic structure and the magnetic properties [36]. In order to understand
the properties of complex magnetic materials other modelling approaches, such
as the use of ab-initio calculations, are required. Due to the computational
effort required for such calculations, it is usual to make a number of physical
assumptions, such as the material having a fixed periodic atomic crystal structure.
Nevertheless it is possible to extract a significant amount of information about the
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magnetic properties, such as the exchange interactions and magnetic anisotropy.
Using these parameters it is then possible to model the spin dynamics and much
larger problems using the atomic-scale magnetic model.

FePt is a material which has received a lot of attention from the magnetics
research community due to its exceptionally high magnetocrystalline anisotropy
of around 107 Joules/m3 [12]. Because of this high anisotropy, FePt potentially
has a particular application in future magnetic recording media, since it is the
anisotropy which determines the thermal stability of written information. For
FePt to possess this property, however, it must have an alternating Fe-Pt-Fe-Pt
layered structure known as L10. A visualisation of this structure is shown in
Figure. 2.1.

Figure. 2.1: Visualisation of the L10 crystal structure of FePt. Grey spheres
represent the Pt sites, while the brown spheres represent the Fe
sites. The layered nature of the crystal stacking gives L10 FePt its
exceptionally high anisotropy.

Ab-initio calculations of the L10 phase of FePt by Mryasov et al [37] show that
the Iron moments (i) are reasonably well localised, while the Platinum moments
(ν) are delocalised. This presents a problem for the Heisenberg model since it
assumes that moments are localised to the atomic sites. However, the ab-initio
calculations also show that the Fe moments polarise the Pt moments, so that the
effective Platinum moment, mν, can be expressed in terms of the surrounding Fe
moments, given by:

mν =
χν

M0
ν

∑
i

JiνSi (2.16)

where χν is the local Pt susceptibility, M0
ν is the local Pt saturation magnetisation,
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Jiν is the Fe-Pt exchange interaction, and Si is the Fe moment. With the
above expression for the Pt moment it is then possible to construct an effective
Hamiltonian consisting of the localised and delocalised moments of the form:

H = −∑
i �=j

JijSi · Sj −∑
i

kFe [Sz
i ]

2
−∑

ν
Ĩm

2
ν −∑

ν
kPt [mz

ν]
2 (2.17)

where respectively Jij and Ĩ are the Fe-Fe and Pt-Pt exchange interactions, and
kFe = -0.097 meV and kPt = 1.427 meV are the Fe and Pt anisotropy constants.
Since the Pt moment can be described in terms of the Fe moments, a reduction of
equation 2.17 purely in terms of the Fe degrees of freedom can be made, and is
given by:

H = −∑
i �=j

J̃ijSi · Sj − dz
i (S

z
i )

2
−∑

i �=j
dz

ijS
z
i S

z
j (2.18)

where J̃ij = Jij + Ĩ
�

χν

M0
ν

�2
∑ν Jiν Jjν is the effective Fe-Fe exchange constant, and

di and dij are the effective single-ion and two-ion anisotropy constants, given by:

dz
i = kFe + kPt

�
χν

M0
ν

�2

∑
ν

J2
iν (2.19)

and

dz
ij = kPt

�
χν

M0
ν

�2

∑
ν

Jiν Jjν (2.20)

respectively. This reduced effective spin Hamiltonian clearly shows the effect
of the delocalised moments on the overall magnetic properties for FePt, by
inducing a 2-ion anisotropy which depends on the effective Fe-Pt exchange
interaction, Jiν. It is this 2-ion anisotropy which forms the dominant part of
the overall macroscopic anisotropy constant, since the single-ion anisotropy is
approximately ten times weaker and in fact easy plane. For computational
efficiency one usually includes the two-ion anisotropy term into the exchange
interaction, forming an anisotropic exchange. In this form of the Hamiltonian in
vector components becomes:

Hx = −∑
i �=j

J̃ijS
x
i · S

x
j

Hy = −∑
i �=j

J̃ijS
y
i · S

y
j

Hz = −∑
i �=j

�
J̃ij − dz

ij

�
S

z
i · S

z
j − dz

i (S
z
i )

2 (2.21)
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One characteristic shown by the ab-initio calculations is that the magnetic
interactions are long-ranged, with each Fe moment having over 1000 interactions
with neighbouring moments, as illustrated in Figures. 2.2 and 2.3. A visualisation
of the exchange interactions within an Fe-plane, as shown in Figure. 2.4, show
that they are also highly anisotropic, though symmetric around the crystal planes.
The complex long-ranged nature of the exchange energy makes computing the
magnetic properties of FePt with the atomistic model very slow, even when using
computational techniques such as Fast Fourier Transform (FFT) to calculate the
long range interactions [38]. While this is not a problem for small systems, it
prohibits the simulation of large problems. In the next section, an attempt will be
made to express the core physics of the full FePt model described above in terms
of a shorter ranged, truncated Hamiltonian with fewer interactions between the
Fe moments. This allows the computation of much larger problems without
significant loss of accuracy.



















        

















 



Figure. 2.2: Plot of normalised effective exchange constant J̃ij vs radius [Å] for
L10 FePt.















        
























Figure. 2.3: Plot of normalised 2-ion anisotropy energy vs radius [Å] for L10 FePt.
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Figure. 2.4: Visualisation of the exchange interactions in L10 showing the
anisotropic nature of the interaction. Red spheres represent
ferromagnetic interactions, while the blue spheres represent the anti-
ferromagnetic interactions. The colour depth shows the relative
strength of the interactions as indicated in the key.

Short-range Spin Hamiltonian for FePt

Due to the computational complexity of the full FePt Hamiltonian, a new
truncated Hamiltonian has been developed to enable the simulation of much
larger systems, or systems requiring extensive statistics. This new truncated
Hamiltonian is utilised in Chapter 7 to investigate the physics of Heat Assisted
Magnetic Recording (HAMR). In order to achieve the best approximation, the
truncated Hamiltonian is derived directly from the full range version calculated
from ab-initio calculations. This aims to preserve the bulk properties of FePt,
such as the Curie temperature and anisotropic nature of the exchange energy.
Although the magnetic interactions are long ranged, the strength of the interactions
decreases exponentially with distance, and so a short range Hamiltonian in
principle should be a good approximation.

A Hamiltonian incorporating 26 nearest neighbours has been adopted, where
the values of the exchange constants are chosen initially from the original
Hamiltonian. A visualisation of these neighbours for the fcc lattice is shown in
Figure. 2.5. Due to the slight compression of the lattice along the z-direction,
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there are five unique neighbours, each indicated by the different colouring and
each with a different exchange interaction, J.

Figure. 2.5: Visualisation of the Fe neighbours for the short range Hamiltonian for
FePt, showing the five unique neighbours with different colouring.
The Pt atoms are indicated in grey but are incorporated into the
effective hamiltonian utilising only the Fe degrees of freedom.
Each of the five neighbours have an associated effective exchange
interaction, J.

These 26 interactions form around 80% of the total strength of the exchange
interactions which define the Curie temperature of the material. In order for the
short range Hamiltonian to maintain the correct bulk Curie temperature of 750K
the remaining exchange energy must be distributed between the 26 neighbours.
There are a number of alternative methods for determining the distribution of this
remainder between the 26 neighbours, such as an even distribution, a weighted
distribution or some other scheme. A characteristic of the full FePt Hamiltonian
is the anisotropic nature of the micromagnetic exchange constant, A [39].

In order to preserve the spatial anisotropy in the exchange energy the
remaining exchange energy is distributed so that both the full and short-range
Hamiltonians have the same anisotropic micromagnetic exchange constants. The
directional component of the micromagnetic exchange constant, Aα, is given by a
sum over all the exchange interactions between atoms i and j:

Aα = ∑ Jij
|rijα |

|rij|
(2.22)

where α is the dimension in Cartesian coordinates, Jij is the exchange energy, |rij|

is the distance between atoms i and j, and rijα is the vector component of rij along
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α. For the full FePt Hamiltonian, Aα is calculated numerically as a direct sum
over all atoms.

For the short range Hamiltonian, however, the small number of interactions
means that the individual contributions to the micromagnetic exchange can be
evaluated as:

Ashort−range
α = aα

1 J1 + aα
2 J2 + aα

3 J3 + aα
4 J4 + aα

5 J5 (2.23)

where aα
n is the fractional contribution of the nth exchange interaction, Jn, to the

micromagnetic exchange, A. Each of the atomistic exchange constants above refer
to interactions with atoms which lie along different crystallographic axes. This
means that along the principal x,y, and z axes, each exchange value contributes
differently to the anisotropic micromagnetic exchange. These contributions, aα

n,
are evaluated numerically for the L10 crystal phase.

In the first instance, all interactions in the short-range Hamiltonian are set to
the same value as they would have in the full Hamiltonian, meaning that the
interactions will have some initial contribution to the micromagnetic exchange
constant. So in order to have a good approximation to the full range Hamiltonian,
the following condition is required:

Afull
α = Asr

α + ∆Asr
α (2.24)

where Afull
α is the α-contribution to the micromagnetic exchange for the full

Hamiltonian, Asr
α is the contribution of the nearest neighbour interactions in

the short-range (sr) Hamiltonian, and ∆Asr
α is the remaining contribution of the

nearest neighbour interactions in the short-range Hamiltonian. Thus we arrive at
an expression for the remaining contribution to the micromagnetic exchange in
the short-range FePt Hamiltonian of:

∆Asr
α = aα

1∆J1 + aα
2∆J2 + aα

3∆J3 + aα
4∆J4 + aα

5∆J5 (2.25)

A similar equation also exists for the remainder of all exchange interactions,
∆ ∑ij Jij, which is given by:

∆ ∑
ij

Jij = n1∆J1 + n2∆J2 + n3∆J3 + n4∆J4 + n5∆J5 (2.26)

where n1,2,...5 are the number of neighbours of each type. Here the summation of
the atomistic exchange energy is scalar, and so the contributions of each exchange
energy is known simply from the number of neighbours.

If it is assumed that the first two exchange contributions, J1 and J2 are
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unchanged from their usual value from the full Hamiltonian, then by setting
∆J1 and ∆J2 to zero, equations 2.25 and 2.26 can be solved simultaneously to
give the exchange parameters shown in Table. 2.1. These total exchange energy
coefficients are related to the atomic positions as shown in Figure. 2.5 and result
in a short-range Hamiltonian with the correct Curie temperature and reasonable
value for the micromagnetic exchange constant, A.

Exchange Energy
Constant nneighbours x y z (10−21 Joules)

J1 n1 = 4 ±1 ±1 0 -1.7809570580
J2 n2 = 4 ±2, 0 0, ±2 0 -1.4866740680
J3 n3 = 2 0 0 ±2 0.01200762678
J4 n4 = 8 ±1 ±1 ±2 -0.6068754807
J5 n5 = 8 ±2, 0 0, ±2 ±2 -0.0075810829

Table. 2.1: Table of exchange interactions for short-range FePt Hamiltonian

This truncated FePt Hamiltonian is utilised in Chapter 7 to investigate heat
assisted reversal, where its macroscopic properties such as Curie temperature
and coercivity are investigated in detail to ensure good agreement with the full
range Hamiltonian.

2.7 Summary

This chapter has covered in detail the current modelling methods used to
simulate magnetic materials on the atomic level, including Langevin Dynamics,
Monte Carlo methods and the determination of atomistic parameters. In particular
an approximation to the full FePt Hamiltonian has been developed in order
to reduce the computational effort required to simulate this technologically
important material. In the next chapter these methods will be tested to ensure
that both the atomic scale parameters exhibit the correct macroscopic magnetic
properties, such as coercivity and Curie Temperature, and that the methods yield
the correct behaviour. These results will also be compared to the established
Stoner-Wohlfarth model for single domain particles, as described previously in
the Introduction.



3. Computational Methods and Test
Simulations

In order to investigate the magnetic properties on the atomic scale, one must
resort to using fast computers, since the complexity of the atomistic model
makes the analytical solution intractable, except for 1 and 2-spin systems. Most
atomic scale systems of interest include thousands of atoms and so advanced
computational techniques are needed to investigate their magnetic properties. In
this chapter these techniques are outlined and then applied to test systems of
Cobalt. This serves to test the atomistic material parameters and the correctness
of the computer code by comparison with known results and macroscopic
magnetic properties, such as the Curie temperature.

3.1 Computational Methods

The first section of this chapter illustrates the computational approaches used to
model magnetic materials on the atomic scale, including how the particles are
generated and time integration using the Heun scheme.

Atomistic System Generation

In order to effectively model real materials it is important to recreate their crystal
structures. Since the work in this thesis primarily relates to small particles,
different shapes and sizes of particles needed to be created. This was achieved
by writing a stand-alone program capable of creating any required particles of a
predefined size, shape, and crystal structure. Many examples of these particles
are shown in later sections of the thesis. A method for generating materials with
different crystal structures and also a fast neighbour list method are presented in
the Appendix.

Time Integration of the LLG Equation

In order to solve the LLG equation, as given by Equation. 2.9, numerically, it is
necessary to perform some form of discretised time integration. The most basic
time integration scheme is the Euler method [40], which assumes a linear change
in the spin direction in a single discretised time step, ∆t. An improved integration
scheme, known as the Heun method [41], allows the use of larger time steps
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because of its use of a predictor-corrector algorithm. The first (predictor) step
calculates the new spin direction, S

�, by performing a standard Euler integration
step, given by:

S
� =

�
−

γ

(1 + α2)
[S× Heff + αS× (S× Heff)]

�
∆t (3.1)

The second (corrector) step then uses the predicted spin position to calculate
the final spin position, resulting in a complete integration step given by:

S (t + ∆t) = S(t) +
1
2

�
∆S(S, t) + ∆S(S

�, t + ∆t)
�

∆t (3.2)

where

∆S(S, t) = −
γ

(1 + α2)
[S× Heff + αS× (S× Heff)] (3.3)

The integration is performed on every spin in the system to make one
complete time step. This is then repeated many times so that the time evolution
of the system can be simulated. As discussed in the previous chapter, the
effective field, Heff, includes the effective thermal field as well as contributions
from the spin Hamiltonian. Although the Heun scheme was derived specifically
for a stochastic equation with multiplicative noise, in the absence of the noise
term the Heun method reduces to a standard second order Runge-Kutta method
[42]. Consequently the Heun method is used throughout the thesis for all time
integration of the LLG equation.

One point not yet discussed is the appropriate choice of timestep, ∆t. Ideally
one would like to use the largest time step possible so as to simulate systems for
the longest time. However, in order to maintain the precessional nature of the
LLG equation, the time step is fundamentally related to the size of the effective
field, Heff. For large fields the precession frequency is large, and so a small time
step is required. Since the exchange is by far the largest interaction in an atomistic
system, it dominates the effective field. Unfortunately this limits the timestep to a
maximum value of around 1 femtosecond (10−15 s) to allow for correct integration
of the LLG equation. In order to ascertain the maximum allowable timestep,
plots of the equilibrium magnetisation as a function of the timestep for different
temperatures are plotted in Figure. 3.1 for a generic material of 30,000 spins with
a Curie temperature of 700K and for α = 1.

The plots show that for small timesteps and low temperatures, the equilibrium
magnetisation remains roughly constant until ∆t ∼ 5 × 10−15. For larger
timesteps the Heun scheme begins to break down causing a reduction in the
equilibrium magnetisation. It is interesting to note the effect of different timesteps
near the Curie temperature of 700K. Here the Heun scheme breaks down at lower
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Figure. 3.1: Plot of equilibrium magnetisation vs timestep, showing the
divergence of the integration timestep near the Curie temperature of
700K. For simulations near Tc a minimum timestep of 5.0× 10−16 s is
needed to yield the correct solution of the LLG equation.

timesteps, leading to a higher than expected equilibrium magnetisation. Thus for
temperatures close to Tc a timestep of around 5 × 10−16 is required to ensure
the stability of the integration scheme. At higher temperatures the behaviour of
the Heun scheme is similar to that at low temperatures, and larger timesteps are
permissible.

Random Number Generators

Another important consideration for computer simulation is the generation of
“random” numbers. These are required for simulations at finite temperature in
order to generate the random thermal fields for the LLG equation or random
trial spin positions for the Monte Carlo algorithm. The main difficulty with
computers, of course, is that they are designed to consistently generate predictable
results and as a consequence a truly random number is impossible to achieve.
Therefore algorithms have been developed to generate a sequence of so-called
pseudo-random numbers, producing either a binomial, uniform or Gaussian
distribution of numbers between between 0 and 1. A critical parameter with
these pseudo-random numbers is the period, i.e. the number of numbers in
the generated sequence before the series repeats itself. The main difficultly with
these algorithms is ensuring they are sufficiently “random” and don’t produce
sequences of correlated numbers. A long sequence of random numbers is needed
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and so a recently developed algorithm called the Mersenne Twister [43] with a
period of 219937 − 1 is used instead of the intrinsic generators included with the
programming language.

3.2 Test Simulations

Having outlined the methods for the computational simulation of atomistic
magnetic materials, the following section will apply these methods to a test
system of Cobalt. The initial tests will investigate the properties of a single
isolated spin moment with anisotropy, looking at the solution of the LLG
equation for an external field and for different temperatures. The later tests will
calculate the Curie temperature for a range of different Cobalt nanoparticles.

Angular variation of the Coercivity

The first test involves calculating the angular variation of the coercivity, or
reversing field, of a single spin moment under the action of an external field. A
significant amount of theoretical work has been done on the magnetic properties
of single-domain particles and a key characteristic is the angular variation of the
coercivity [7]. Although the theory was derived for particles, it applies equally
well to single atoms, although the simulation is somewhat artificial. Nevertheless
such a simulation serves to test the static solution for the LLG equation. For a
single isolated Cobalt atom in an external field, the Hamiltonian is given by:

H = dzS2
z + S · Happlied (3.4)

where dz is the on-site uniaxial anisotropy constant and Happlied is the external
applied field vector. The spin is initialised pointing along the applied field
direction, and then the LLG equation is solved for the system, until S · Heff ≤

0.0001 The field strength is then decreased in steps of 0.01 Tesla and solved again
for the same condition. This generates a hysteresis loop showing the response of
the spin moment to the external field. When the external field is applied along
the anisotropy axis (z-axis), the anisotropy and applied fields act along the same
direction, producing a square hysteresis loop. When an angle φ is set between the
field and anisotropy directions the fields begin to compete, leading to a reduction
in the coercivity. A plot of the resulting M− H curve for a single spin at zero K is
plotted in Figure. 3.2.

The M−H hysteresis curve conforms exactly to the Stoner-Wohlfarth solution,
showing a 50% reduction in the coercivity for the applied field at an angle of 45◦

to the easy axis, and no coercivity for φ = 90◦.
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Figure. 3.2: Plot of M vs H for different angles of H (degrees) from the easy axis
for a single spin moment.

Boltzmann Distribution for a Single Spin

To quantitatively test the thermal effects in the model, the probability of the spin
moment lying at a certain angle from the easy axis in a system with uniaxial
anisotropy was investigated. The distribution is characteristic of the temperature
and the anisotropy energy and in the form of a Boltzmann distribution, given by:

P(θ) ∝ sin(θ) exp
�

E(θ)
kBT

�
∝ sin(θ) exp

�
dz sin2(θ)

kBT

�
(3.5)

where θ is the angle from the easy axis, dz is the on-site atomistic anisotropy
constant, kB is the Boltzmann constant, and T is the absolute temperature. The
sin(θ) weighting normalises the probability to the surface area of the unit sphere.
For the calculations the spin was initialised pointing in the easy axis direction and
the system was allowed to evolve for 108 timesteps after equilibration, recording
the angle of the spin to the easy axis each time. Since the anisotropy energy
is known to be symmetric along the hard axis, the probability distribution is
reflected and summed about the 90o point to improve the statistics. For low
temperatures the spin never leaves the initial spin direction and so the reflection
of the probability distribution allows the full Boltzmann probability to be seen.
Figure. 3.3 shows the normalised probability of the spin being at a particular
angle from the easy axis as a function of angle from the easy axis for 3 different
temperatures.



3. Test Simulations 39

















         















 




Figure. 3.3: Plots of the probability of the spin moment lying at an angle θ to the
easy axis vs θ for different temperatures. The fits to equation 3.5 are
shown by the solid lines.

As can be seen, at a temperature of 0.1 K the spin moment is confined
entirely to small angles from the easy axis. As the temperature is increased the
distribution is broader, showing superparamagnetic behaviour as the spin flips
between the two anisotropy directions. This is seen by the finite probability of
the spin lying along the hard axis. At a higher temperature the spin has sufficient
thermal energy to overcome the anisotropy energy and as a result the distribution
is flat on the unit sphere. The fits to equation 3.5 show excellent agreement with
the theory.

Curie Temperature

Although the above tests confirm the behaviour of isolated moments, all real
systems consist of an ensemble of spins connected by the interatomic exchange
interaction. The Curie temperature of a particle is dominated by the strength of
the exchange interaction between spins and so made an ideal test. For Cobalt
the expected Curie temperature is around 1390 K. However, this is only for a
bulk system with an infinite volume to surface ratio. Since it is impossible to
simulate such a system, bulk like systems are modelled using a reasonably large
system (∼ 105 spins) with periodic boundary conditions. This eliminates the
surface effects due to missing exchange links, and minimises the effect of small
system size, known generally as finite size effects. However, the increasing areal



3. Test Simulations 40

density of hard disk drives requires smaller and smaller magnetic grains, where
eventually the effects of finite size become important. In order to investigate the
effect of system size on the Curie temperature, the equilibrium magnetisation
for different sizes of truncated octahedron nanoparticles was calculated as a
function of temperature. For comparison a 32,000 atom cube with periodic
boundary conditions was also simulated in order to approximate a bulk-like
system. The simulations were performed by initialising the spin moments along
the +z-direction. A Monte Carlo algorithm was then used to find the equilibrium
magnetisation as a function of temperature. The temperature was increased in 25
K increments and 20,000 Monte Carlo steps were calculated for each temperature.
The system was allowed to equilibrate for the first 5000 steps, after which a
snapshot of the magnetisation was sampled every three steps. The reason for only
taking one snapshot in three is that the usual statistical methods assume that all
samples taken of a variable are random. However, it is likely that snapshots from
sequential Monte Carlo steps are correlated, and so only one in three snapshots
is used to gather the statistics. Each of these samples of the magnetisation is
then added to a running total which is averaged at the end to find the mean
equilibrium magnetisation for a given temperature. A snapshot of the system
spin configuration is then used as the starting point for the next temperature in
order to minimise the equilibration time from one temperature to another. The
results of these simulations are plotted in Figure. 3.4.























    

















Figure. 3.4: Plots of the equilibrium magnetisation M/Ms as a function of
temperature for different sized truncated octahedral Cobalt particles.
A visualisation of a 3nm particle is inset.
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The first point to note is the data for the bulk-like simulation for a large cube
of Cobalt with periodic boundary conditions, showing a Curie temperature of
around 1375 K, which is very close to the expected value of 1390 K. For the 5 nm
diameter particle, the principal effect of the surface is to reduce the criticality of
the temperature dependence of the magnetisation. This effect has been studied in
detail by Binder et al [44], and arises due to the reduction in atomic coordination
number at the particle surface. However, the Curie temperature for the 5 nm
particle remains close to that of the bulk value. For the 3 and 4 nm diameter
particles, the criticality of the curve is reduced, but for the 1 and 2 nm diameter
particles another effect appears; namely a persistent magnetisation above the
expected Curie temperature. This effect is distinguishable from the surface effect
of the reduction in the criticality, and arises due to the (small) finite size of the
system. The persistent magnetisation can be described by considering any two
magnetic moments from the system. For a truly bulk system above Tc, it is
possible to find a pair of moments which are aligned anti-parallel, due to the
effectively infinite number of available spins. This means that above Tc, in the
absence of an applied field, a bulk system will have zero net magnetisation.
For a finite sized system, however, there is a probability that at any instant all
moments are not perfectly aligned, leading to a persistent magnetisation above
Tc. However, this persistent magnetisation is disordered, in so much as the
correlations in spin direction are correlated only in space, not in time.

3.3 Summary

In this chapter the methods and models described in Chapter 2 have been
applied to a single spin and ensembles of spins to test the correctness of their
implementation, and to discern the underlying physics of the atomistic model.
The remainder of the thesis will apply these methods to a variety of different
problems and situations, to further our understanding of magnetism at the
atomic level. The next Chapter will start with an investigation into the effects
of atomic structure on the magnetic properties of Co and Fe nanoparticles.



4. The Influence of Shape and Structure on
the Magnetic Properties of Fe and Co
Nanoparticles

Materials at the nanoscale behave differently from the bulk form due to their
finite size and surface effects. One example of such an effect was demonstrated
in the previous chapter, with the smallest particles showing a persistent magnetic
ordering above the Curie temperature. Physical effects due to the size of
particles are broadly given the name of finite size effects, while surface effects
are dealt with separately. Characterising and understanding these effects is
important as the use of nanomaterials becomes more widespread, especially in
the development of future materials for magnetic recording. When modelling
nanomaterials it is usually assumed that their fundamental properties are the
same as those of the same material in bulk form. Since the size range of
nanomaterials is quite large (anything up to a few hundred nanometres), this
approximation is justifiable for most nanomaterials. For the smallest of nanomaterials,
however, the finite size, and particularly surface effects, begin to play a very
important role in their magnetic properties.

In this chapter the effects of surface and finite size on the magnetic properties
of small nanoparticles will be investigated. The challenge with understanding
these effects is taking into account changes to the atomic structure due to the
small size and large surface to volume ratio. This was achieved by generating
simulated annealed Co and Fe nanoparticles using a molecular dynamics approach,
provided by collaboration with Florian Dorfbauer at the Technical University
of Vienna, Austria. The first part of this chapter describes the new theoretical
approaches developed to model particles with a non-bulk atomic microstructure.
The structural effects of the surface and finite size of the annealed nanoparticle are
then described in detail, finally followed by various magnetic results, showing a
change in the Curie temperature.

4.1 Modelling Methods

In order to obtain realistic particle shapes molecular dynamic annealing of
the particles was performed. The basic idea behind molecular dynamics is
to simulate the motion of atoms with classical equations of motion using an
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assumed interatomic potential. For certain elements, such as Argon, the interatomic
potential can be well approximated by the Lennard-Jones potential[45]. However,
simple pair-potentials, like Lennard-Jones potentials, are unable to reproduce
certain specific properties of metals, such as elastic constants. Therefore a more
complicated method known as the Embedded Atom Method (EAM) was utilized
[46] to create the microstructures. The main idea of EAM is to consider each atom
as being an impurity in the host with an additional energy term dependent on
the surrounding electron density. The total energy of the system is given by:

E =
1
2 ∑

i,j,i �=j
φij(rij) + ∑

i
Fi(ρi,host), (4.1)

where Φij denotes the short range, double screened electrostatic interaction
between the cores i and j; Fi(ρ) is the energy related with the embedding of atom
i in the host; and ρi,host is just the sum over all electronic densities of all other
atoms at the position of atom i,

ρi,host = ∑
j �=i

ρj,atom(rij). (4.2)

A well-established set of EAM-potentials was used to model the interatomic
interactions. The employed potentials were fitted to bulk properties like lattice
constants, elastic constants, vacancy free energies and heats of solution [47].

The time evolution of the atomic system was computed using a velocity Verlet
algorithm, which shows a much better stability and time-reversability than a
conventional Euler integration scheme. The instantaneous atomic positions are
used to compute the forces on the atoms which are then moved according to the
velocity Verlet algorithm[48].

One problem with molecular dynamics is controlling the temperature of
the system so that the atomic structures can be cooled. One basic method of
controlling the temperature is to perform velocity scaling, since the temperature
of the system is related to the kinetic energy of the atoms. Velocity scaling works
by simply changing the length of the velocity vector so that the thermal energy
equates to the correct temperature. However, this leads to incorrect thermal
statistics. A much better method of controlling the temperature comes from
assuming a heat bath in thermal equilibrium with the system, more commonly
known as a Nosé-Hoover (NH) thermostat [49]. The NH thermostat works by
assuming that there is a thermal reservoir, with an effective fictitious mass, Q, in
thermal equilibrium with the system. The total Hamiltonian for a system with
the NH thermostat is given by:
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LNosé =
N

∑
i=1

mi
2

s2ṙi
2
−U(r1, r2, ...rN) +

�
Q
2

� �
ds
dt

�2
− ( f + 1)kBT ln s (4.3)

where mi is the mass of atom i, ṙi is the instantaneous velocity, U(r) is some
distance dependent interatomic potential, f is the number of degrees of freedom
of the system (typically 3N), and s is a dynamical variable. The evolution of s is
governed by ṡ = spi

Q , where pi is the momentum of the system. The effect of s is
to effectively re-scale time during the simulation, since the time evolution of the
system depends on the total Hamiltonian in equation 4.3 above. The size of the
fictitious mass, Q, is an adjustable parameter in the NH thermostat. If Q is too
large then the flow of energy between the reservoir and the system is very slow,
resulting in slow equilibration of the system to the desired temperature. If Q
is too small then unphysical oscillations in the system energy appear, making
equilibration difficult. Generally the size of Q is taken to be some multiple
of f kBT found by trial and error for the specific system being modelled. The
temperature of the thermostat can be freely controlled and thus heat is then
transferred to the molecular dynamic system.

The desired number of atoms (672 for Cobalt and 432 for Iron) was initialised
in a perfect crystal structure and then successively cooled through the ordering
temperature to produce a low temperature ordered state. Because of the small
size of the cluster, typically only a few hundred atoms, the final structure is
quite different to that of the bulk form. As can be seen in Figure. 4.1, the
annealed particles show faceting on the outer surface due to the surface structural
optimisation, which is not present in bulk microstructure particles.

The dynamic magnetic calculations were performed largely using the methods
described above in Chapter 2. To investigate the effects of particle shape on
the Curie temperature, the variation of the magnetisation with temperature was
simulated for particles with a perfect crystal structure, being body centred cubic
(bcc) for Fe and hexagonal close packed (hcp) for Co, with spherical and cubic
particle shapes. For comparison, similar calculations were also performed for
annealed particles with a static low temperature atomic configuration, which
determines the sole effect of the geometric arrangement of atoms in the particle.

The spin moments are initialised pointing in the easy axis direction, i.e.
an ideal zero temperature configuration. The temperature was then increased
in 20K steps in keeping with the molecular dynamic calculations, and the
system was equilibrated before taking time-averaged measurements of the mean
magnetization of the particle. The system was then reset and the simulation
repeated 500 times to calculate the average magnetization and the standard
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Figure. 4.1: Visualisation of simulated annealed 672 atom Co [left] and 432
atom Fe [right] nanoparticles, showing the different types of
faceting induced for the different materials. The Co particle shows
icosahedral like faceting, while the Fe particle shows truncated
octahedral faceting.

error. During the annealing process the structure of the particle changes
significantly and so additionally the variation of magnetization with temperature
was calculated for the dynamic particle as well, at each temperature step
incorporating any structural changes following from the Molecular Dynamic
calculations, and by default any corresponding changes in exchange energy.
The main difficulty in performing the dynamic simulations for the annealed
particles is calculating the Heisenberg exchange energy between neighbouring
atoms, since the particles no longer have a perfect bulk structure for which the
exchange constants are known. The exchange interaction also varies considerably
with atomic separation, and subtly in different crystallographic directions. As a
result it was necessary to find a functional variation of exchange energy with
atomic separation. Such ab-initio calculations have been described by Pajda et al
[50]. Due to the complexity in calculating the exchange energy the calculations
performed by Pajda et al were for a perfect crystal and the values quoted were
along specific crystallographic directions. However, there were insufficient data
points to allow the Ruderman-Kittel-Kasuya-Yosida (RKKY) - type interaction
function to be reliably fitted to the data, since the curve has a different form
along different crystallographic directions. As an approximation a polynomial
fit to the data was used as shown in Figure. 4.2, approximating the magnitude of
the exchange but neglecting any anisotropic directional variation.

For dynamic magnetic simulations in Cobalt it is the usual convention
to include only nearest atomic neighbours when calculating exchange energy.
However, as Figure. 4.2 shows, there are significant contributions to the Heisenberg
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Figure. 4.2: Plot of the site-to-site exchange energy for Cobalt and Iron as
a function of interatomic separation. The points correspond
to those calculated by Pajda et al [50], while the solid line
indicates the fitted polynomial functions. Values above zero
show ferromagnetic interactions, while values below indicate anti-
ferromagnetic interactions. It can be seen that both interactions for Fe
and Co are long ranged, although beyond an interatomic separation
of 6 Åthey become less significant.

exchange up to fourth nearest neighbours. For completeness all the calculations
performed used the full range of the interaction. Another problem arises from
thermal fluctuations in the positions of the atoms in the particle, even though
the particle structure is notionally ’frozen’. For a given snapshot of atomic
positions, the atoms are not in an instantaneous equilibrium state due to the finite
temperature of the system. In order to take account of this, several snapshots
of the atomic structure were taken for each temperature. All the magnetic
calculations were repeated for each of these different structures and averaged,
effectively eliminating any artifacts introduced by using only a single snapshot
of the atomic structure.

4.2 Structural Analysis

Having found a satisfactory method of approximating the Heisenberg exchange,
the influence of the annealing process on the structural properties of the nanoparticles
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was investigated. To observe any expansion or relaxation of the interatomic
spacing, a plot of the mean atomic spacing of an atom from its nearest neighbours
as a function of its radial distance from the centre of the particle is shown below
in Figure. 4.4 for Co and Figure. 4.6 for Fe. Before going on to analyse the results,
it is appropriate to explain why the data is plotted in this way. Figure. 4.3 shows
a schematic diagram of the data plotted. First consider a target atom coloured
in blue, where the distance from the centre of the particle, r, is indicated by the
black arrow. The blue atom has 6 nearest neighbours, coloured in red. The atomic
separation distance, a, is totalled for all the nearest neighbours. This is done for all
atoms in the particle, showing any compression or expansion in the mean atomic
spacing as a function of the radial distance from the centre.

!eennttrree  ooff
PPaarrttiiccllee

Figure. 4.3: Schematic diagram of atomic spacing plots. The target atom (in blue)
has 6 nearest neighbours (in red) and lies at a distance r from the
centre of the particle. The interatomic distance, a, is averaged over
all the nearest neighbours, showing any compression or expansion
of the lattice as a function of radial distance from the centre of the
particle.

The first point to note is the extent of the scatter in the mean atomic spacing in
Figure. 4.4, clearly showing thermal fluctuations in the interatomic spacing. The
dark lines represent the weighted mean of the points. In the case of the 672 atom
Co particle, there is a reduction in the mean atomic spacing near both the centre
and surface of the particle. This reduction indicates a region of compression when
compared to a bulk interatomic spacing of ∼ 2.507 Å. The compression at the
surface of nanoparticles has previously been reported in ab-initio calculations
[51] and arises from the reduction in coordination number at the surface. Due
to the long range nature of the interatomic potential, surface atoms feel a net
attractive force towards the centre of the particle, which induces a reduction in
the mean atomic spacing.
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Figure. 4.4: Plot of mean interatomic separation as a function of radial distance
from the centre for a 672 atom Co particle. The black line is a guide to
the eye, while the dashed red line indicates the interatomic spacing
for bulk Cobalt. The graph shows compressions in the mean atomic
spacing at the surface and in the centre due to a dislocation in the
crystal structure.

Figure. 4.5: A transparent visualisation of the 672 atom Co particle showing the
screw defect thought to be responsible for the compression towards
the centre of the particle.
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The compression towards the centre of the Co particle is thought to be due
to a visible dislocation in the atomic structure, as shown in Figure. 4.5. The
dislocation appears to show a low density region, which, as with the surface,
induces a compression of the mean atomic spacing.



      














































Figure. 4.6: Plot of mean interatomic separation as a function of radial distance
from the centre for a 432 atom Fe particle. The black line is a guide to
the eye, while the dashed red line indicates the interatomic spacing
for bulk Iron. The graph shows a compression in the mean atomic
spacing at the surface, but not in the centre as for the Co particle.

The Fe particle as shown in Figure 4.6, by comparison, only shows a characteristic
compression at the surface of the particle, while the centre of the particle
shows a mean atomic spacing comparable to the bulk value of ∼ 2.635 Å.
However, the reduction in coordination number also means that the surface
atoms are less tightly bound to their local environment, and thus experience
bigger thermal fluctuations in their position compared with atoms at the centre
of the particle. These compressions can significantly affect the Curie temperature
of these particles, since the exchange energy (which, overall, essentially defines
the Curie temperature) varies strongly with interatomic separation.
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4.3 Results

Shape Dependence of the Curie Temperature

Since the overall exchange in the annealed particles is different from that of a
particle of the same size but with a bulk structure, one would expect that the
Curie temperature of these particles would be different. The calculation of the
Curie temperature was performed by incrementally increasing the temperature
of the system and letting the system equilibrate and calculating the mean
magnetisation and standard error. Calculations were repeated 500 times for
the smaller particles and the results averaged to achieve reliable statistics. In
order to maintain consistency the same form of the interatomic exchange energy,
Jij(r), was used for all the particles which includes long range interactions up
to 8 nearest neighbours. Figure. 4.7 shows comparative plots of M vs T for the
annealed particle, spherical and cubic particles of the same size, and for an 8nm
diameter particle approximating bulk.























        













Figure. 4.7: Plot of M/Ms vs T for a 672 atom Co nanoparticle of differing shapes.
The cubic shaped particle shows the lowest Curie temperature, while
the annealed particle possesses the most highly optimised geometry
leading to an enhancement of the Curie temperature. All particles
show a sizeable reduction in their Curie temperature when compared
to bulk.

As can be seen all the smaller particles exhibit a significant reduction in their
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Curie temperature compared with the larger particle, but also there is a significant
difference between different shapes. As previously reported [52], the spherical
particle has a higher Curie temperature than the cubic particle. This arises from
the fact that the cubic particle has a greater number of surface atoms and hence
a lower coordination number. This lowers the overall exchange leading to a
reduced Curie temperature. The annealed particle, however, has a higher Curie
temperature than that of the spherical particle, even though the shapes are nearly
identical. This then suggests that the compression at the surface of the annealed
particle causes an increase in the Curie temperature, although still below the bulk
value. This effect is also more significant for the Co compared to the Fe particles,
as shown in Figure. 4.8, and is likely due to the different distance dependence
of the exchange interaction for Fe and Co. The difference between the form of
the exchange interactions in Fe and Co means that any compression in the lattice
spacing, or change in the number of missing neighbours, will lead to a larger
increase in the overall exchange in Co compared with Fe.























      













Figure. 4.8: Plot of M/Ms vs T for a 432 Atom Fe nanoparticle of differing shapes.
As with the Co particles, the cubic shaped particle shows the lowest
Curie temperature, while the annealed particle possesses the highest,
although the effect is much less pronounced than with Co. This is
likely due to differences in the attenuation of the exchange interaction
with increasing interatomic distance between the two materials.
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Structure Dependence of the Curie Temperature

In atomistic simulations it is usual to use a bulk microstructure at 0K. However,
when simulating a system at finite temperature, this structure does not take
into account the expansion of the lattice. This effect was simulated by taking
snapshots of the microstructure for a 432 atom Fe particle in 20K steps from
the molecular dynamic annealing simulation. The correct structure for a given
temperature was then used in the atomistic spin simulation of the Curie temperature
in the same way as above. At each temperature the atomic positions change so
it is necessary to recalculate the exchange parameters for each different particle
structure. It should be noted that any given snapshot from the molecular dynamic
annealing simulation does not take into account the fact that in reality the
individual atoms are not static. To correct for this calculations were performed
over 20 different snapshots, effectively averaging over the thermal fluctuations in
the atomic positions and giving an effective mean exchange for the whole particle
at the given temperature.























      














Figure. 4.9: Plot of M/Ms vs T for a 432 atom Fe nanoparticle, comparing
the difference between static and temperature dependent atomic
structures. The dynamic structure shows a reduced Curie
temperature due to the expansion of the lattice, caused by a reduction
in the exchange interaction.

The comparative results of a 432 atom annealed Fe particle with a “frozen” or
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static structure with the same particle with a dynamic microstructure changing
with temperature is shown in Figure. 4.9. Here the dynamic structure shows a
reduction in the Curie temperature compared with the static structure. This is
to be expected since an expansion of the lattice with increasing temperature will
lower the exchange energy, although the size of the reduction is of course material
dependent. In the final section of this chapter the effects of structural changes on
the magnetic anisotropy energy will be investigated in detail for CoAg core-shell
nanoparticles.

Structure Dependence of the Anisotropy

Although the exchange energy is the largest interaction within magnetic nanoparticles,
the form of the anisotropy energy is also particularly important for applications.
Single ion anisotropy energy arises from spin-orbit coupling between a magnetic
atom and its immediate neighbours, and is typically one thousand times weaker
than the exchange interaction energy. Given the localised origin of the anisotropy
energy, in principle it should be possible to understand qualitatively the effects
of atomic structure on the form of the anisotropy, without resorting to ab-
initio calculations. Nevertheless, to obtain a definitive value and precise form
for the anisotropy in mixed systems would still require the use of ab-initio
calculations. This approach certainly fails for magnetic alloys, such as FePt,
where an additional 2-ion anisotropy arises from the interaction between the Fe
and Pt ions.

An interesting material to investigate in terms of its anisotropy is Cobalt. This
is because there are two common structural forms of Co, namely fcc and hcp.
In the bulk, the hcp structure has a slightly lower configuration energy, which
forms the high anisotropy hcp phase at room temperature, and transitions to an
fcc phase at around 500K. For Co nanoparticles [53] and ultrathin films [54] it is
possible for the normally high-temperature fcc phase to become stable at room
temperature. This arises due to the effect of the surface on the lattice spacing,
making the fcc phase more stable. Although the two structural phases of Cobalt
are very close in energy, magnetically they are very different. This arises due to
the slight compression of the hcp lattice along the [0001] direction, giving a large
uniaxial contribution to the anisotropy energy along this axis. The fcc structure is
symmetric along all three principal axes, and so the contribution to the anisotropy
energy is small and cubic.

For the pure Cobalt particles simulated above, the atomic structure was
icosahedral in form, consisting of multiple twinned fcc regions. Resolving the
magnetic anisotropy energy for such a structure is complex since no definable
orientation axis exists, but due to the radial nature of the twinned regions the



4. Results 54

anisotropy energy is likely to be very small. A detailed investigation of the
anisotropy energy of perfect icosahedral nanoparticles was investigated by Morel
et al[55].

The addition of silver to the Cobalt nanoparticle forms a so-called core-shell
nanoparticle, where the silver is ejected to the surface[56]. Figure. 4.10 shows
the radial variation of mean atomic spacing for a simulated annealed CoAg
nanoparticle.













        




























Figure. 4.10: Plot of mean interatomic separation as a function of radial distance
from the centre for a 864 atom CoAg core-shell nanoparticle. The
scatter plots are categorised for core Cobalt [grey], surface Cobalt
(atoms with less than 12 nearest neighbours [blue]), and Silver
atoms [orange]. The lines are guides to the eye. The graph shows
that all the Ag is ejected to the surface of the particle, while all the
core Co has a mean atomic spacing very close to the bulk value of
2.51 Å. The surface Co has an increased mean lattice spacing due
to the presence of the Ag coating, which has a higher equilibrium
lattice constant.

As can be seen, the compression at the centre of the pure cobalt particle, as
shown in Figure. 4.4, is not present in the CoAg particle. Also the equilibrium
atomic spacing of the silver is much larger than that of Cobalt, causing the
compression of the surface cobalt to be replaced with a surface expansion.

The most profound effect of the addition of silver is to alter the internal
structure of the Cobalt core. The silver coating optimises the surface potential
of the Cobalt, inducing the formation of close packed stacking within the cobalt
core. Since the two types of close packed stacking can be locally defined, based on
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the arrangement of atomic neighbours, it is possible to show the stacking order
within the particle, as illustrated in Figure. 4.11.

!CCCC  CCoobbaalltt

HHCCPP  CCoobbaalltt

SSiillvveerr

SSuurrffaaccee  CCoobbaalltt

Figure. 4.11: Visualisation of the local close packed stacking order in a CoAg
nanoparticle. The different colours indicate whether the stacking is
hcp (white) or fcc (black). The blue colouring indicates cobalt atoms
with less than 12 nearest neighbours, while the silver atoms are fully
migrated to the surface of the particle.

As can be seen, the stacking is approximately 50% fcc and 50% hcp. It is also
interesting to note that the stacking is totally consistent within the layers, so that
there are no in-plane stacking faults. In order to assess the effect of the alternating
stacking on the anisotropy energy, it was assumed that the anisotropy is entirely
local in origin, and depending on the local atomic arrangement, a particular atom
was attributed bulk cubic (fcc) or bulk uniaxial (hcp) anisotropy. The surface
atoms have no crystal symmetry and so were treated as having Néel surface
anisotropy. The effects of surface anisotropy are many and varied, and will be
considered in much more detail in the next chapter. For the purposes of this
calculation the effects of surface anisotropy were assumed to be small and so
the strength of the surface anisotropy constant, Ks, was set to the same value as
the bulk uniaxial constant for Cobalt. Due to symmetry, the surface anisotropy
contributes virtually nothing to the effective anisotropy energy. Since the uniaxial
anisotropy is an order of magnitude larger than the cubic anisotropy, the overall
anisotropy energy density for the particle was found to be ∼ 2.5 times larger
than that of an equivalently sized particle made of bulk fcc Cobalt, calculated
by measuring the difference in configuration energy along the magnetically hard
and easy axes. This anisotropy energy is an order of magnitude higher than the
value reported for a single 4 nm cluster by Jamet et al [57]. In these simulations
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the increased anisotropy arises from the hcp contribution of the core rather than
the surface. Since the actual number of hcp layers probably depends on the
particle fabrication methods employed, it is not unreasonable to suggest that
some discrepancy between results is likely.

4.4 Conclusion

In this chapter the effects of atomic structure and surface geometry on the
magnetic properties of nanoparticles have been investigated. In general it has
been found that the atomic structure of nanoparticles is considerably different
than that of bulk material, featuring dislocations, faceting, and other phenomena.
Each of these structural differences contributes to a change in the Curie temperature,
dependent on the nature of the exchange interaction. The addition of silver
to a small cobalt particle was found to change the internal structure so that
regular close packed stacking was formed. The influence of this stacking on
the anisotropy energy is significant, suggesting an alternative origin for high
anisotropy in core-shell nanoparticles.



5. The Influence of Surface Anisotropy on
the Magnetic Properties of Nanoparticles

Traditionally, when calculating the energy barrier in single domain particles for
the purposes of assessing magnetic stability, the particle has been assumed to
have a magneto-crystalline anisotropy equivalent to a block of bulk material
of the same size. The anisotropy energy essentially determines the thermal
stability of a single domain particle through the Arrhenius-Néel law[9, 10].
The Arrhenius-Néel law relates thermal fluctuations of the magnetisation in a
minimum energy state to a characteristic attempt frequency, fo. Given an estimate
of fo (usually assumed to be around 109 Hz), it is possible to estimate the time
over which a magnetisation state is stable, τ, given by:

τ−1 = fo exp
�

KuV
kBT

�
(5.1)

where Ku is the anisotropy energy density, V is the particle volume, kB is the
Boltzmann constant, and T is the absolute temperature. As the particle volume
is decreased, this leads to a reduction in the thermal stability. However, for
very small particles of a few nanometres in diameter, surface effects can begin to
play a significant, sometimes dominant, part in determining the overall magnetic
stability of nanoparticles.

Significant research has been conducted investigating the magnetocrystalline
anisotropy at interfaces between different materials in thin films [58, 59], where a
special surface anisotropy has been found. Magnetocrystalline anisotropy arises
from the crystal symmetry in the lattice, but at the surface this atomic symmetry
is broken leading to a surface anisotropy arising from the reduced coordination at
the atomic surface. Since the fundamental origin of surface anisotropy is the same
as magnetocrystalline anisotropy, it is possible to model the effects of surface
anisotropy by taking into account the local atomic environment.

In thin films, the surface anisotropy generally gives a strong preference for
the surface magnetic moments to lie either in the film plane, or perpendicular
to the film, dependent on the materials used, growth methods, and crystal
orientation. In some cases, usually in ultrathin films, the surface anisotropy can
be so strong that the magnetisation of the film is forced to lie perpendicular to the
film plane in competition with the demagnetising field, which usually orientates
the magnetisation in plane. Understanding surface anisotropy is particularly
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important for any applications utilizing ultra thin magnetic films, such as layers
in a read head element in a hard disk. The contribution of the surface anisotropy
in thin films is established experimentally by varying the thickness of the film and
measuring the resultant anisotropy energy. The total anisotropy energy, Keff is
then described as a summation of the volume, Kv, and surface, Ks, contributions,
given by:

KeffV = KvV + KsS (5.2)

where V is the system volume, and S is the surface area of the film. Dividing
through equation 5.2 by the system volume, V, gives:

Keff = Kv +
Ks

t
(5.3)

where t is the film thickness. By plotting the effective anisotropy against the
inverse of the film thickness it is straightforward to extract the surface (gradient)
and volume (intercept) contributions to the overall anisotropy energy. While the
effect of surface anisotropy in thin films is easy to quantify, though limited to a
specific case, the effect on nanoparticles is substantially more complex due to the
geometry. A similar scaling behaviour is often used for nanoparticles, though as
the following chapter aims to illustrate, the use of such a formula is only valid for
a very particular case.

In the following chapter the Néel model of surface anisotropy is introduced.
This model is then applied to investigating the effects of surface anisotropy
on the magnetic properties of nanoparticles for a number of different particle
topologies and crystal structures. The effects of each on the thermal stability
of the nanoparticles is then evaluated using the established Lagrange Multiplier
technique by giving an estimate of the zero-temperature energy barrier between
magnetic states.

5.1 Theoretical Background

The origin of magneto-crystalline anisotropy is the spin-orbit coupling between
electron orbitals of atoms within a crystal. This coupling gives a preferred
directionality for the electron orbit, aligning the spin moment. Ab-initio calculations
[60, 61] and experimental results [57, 62] on clusters of atoms at a surface have
shown that the electronic structure is significantly different at the surface when
compared with a bulk crystal. This results in a different anisotropy, known
generally as surface anisotropy. The specifics of surface anisotropy depend on
the material at the surface, for example an inert metal coating would give very
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different results from surfactant coating or vacuum for example. There are two
significant models for surface anisotropy, namely transverse and Néel. In the
transverse model the surface anisotropy is assumed to be uniaxial (or easy plane,
depending on the sign of the anisotropy constant) perpendicular to the surface.
This is often acceptable for thin films in micromagnetic modelling since the
surface plane is usually well defined. For an atomic discretisation however, the
surface roughness means the definition of a flat surface is problematic. The Néel
model varies the direction and magnitude of the anisotropy based on the local
atomic geometry at the surface and also the local spin configuration, and thus is
more suitable for atomistic scale modelling of surface anisotropy. A study also
showed that in general the Néel model is the more realistic [63] of the two, and is
described in detail below.

Néel Model of Surface Anisotropy

The Néel surface anisotropy (NSA) model is formed by a pairwise interaction
between two surface atoms, i and j, given by:

Eanis
surface = LN(Si · rij)2 = LN cos2 ϕ, (5.4)

where Si is the atomic spin, rij is the unit vector between atomic sites i and j,
and LN is the Néel surface anisotropy constant. LN depends on the interatomic
distance r according to the following expression:

LN(r) = LN(r0) +
�

∂LN
∂r

�

r0

r0η, (5.5)

where r0 is the bulk unstrained bond length and η the bond strain. In the simple
case of a perfect crystal, with no change in the bond length at the surface, the
surface anisotropy energy reduces to:

Eanis
surface = LN(r0)(Si · rij)2 (5.6)

Taking a sum over all neighbouring atoms, and replacing the Néel constant
with an effective surface anisotropy constant, KNéel, the on site surface anisotropy
energy is:

Eanis
surface =

1
2

KNéel

nNN

∑
j=1

(Si · rij)2 (5.7)

where nNN is the number of nearest neighbours. In general for an atom located
within a bulk crystal structure the contributions rij from all the neighbouring
atoms cancel, resulting in a zero contribution to the anisotropy. Interestingly
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for some materials, such as hcp Cobalt, there is some compression along the
easy axis. Taking this compression into account within the NSA the asymmetry
induces a uniaxial anisotropy along the c-axis, as is seen in bulk hcp Cobalt.
At the surface, however, there are missing neighbours from the bulk magnetic
material and this always gives a non-zero contribution to the surface anisotropy.
Due to the wide variety of surface atomic arrangements, understanding the
nature of the surface anisotropy is somewhat complex. For simple geometries
however it is possible to determine explicitly the local anisotropy for a given
atomic arrangement. The simplest case to is to take a particle with a simple cubic
crystal structure cut in the shape of a cube. This yields three distinct surface
geometries which, with their corresponding surface anisotropy energy surfaces,
are illustrated in Figure. 5.1. Each of the different geometries yields a different
surface anisotropy, dependent on the on-site spin direction. The energy surface
for each configuration is displayed as a function of the polar and rotational angle
of the atomic spin direction from the z and x axes respectively.
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Figure. 5.1: Visualisation of a simple cubic system with surface anisotropy. The
arrows relate a particular local geometry to a different single-spin
anisotropy surface, shown below. The edges and faces yield easy axis
and easy plane anisotropies, while the corner site has no preferential
magnetisation axis. The energies are normalised for a positive value
of the surface anisotropy constant, Ks.

As can be seen, the three cases induce different forms of anisotropy. The
edge and face cases show a uniaxial or easy plane anisotropy with opposite
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signs, while the corner arrangement yields an isotropic zero contribution to the
anisotropy energy. Of course for more complex surface arrangements and crystal
structures the situation becomes more complicated. In these cases the precise
contribution of the surface anisotropy is difficult to identify.

By convention the strength of the surface anisotropy is given relative to that
of the core uniaxial anisotropy Ku or mean inter-atomic exchange energy, J. For
some materials the magnitude of the surface anisotropy is several times that of the
core anisotropy. In this case the surface anisotropy can begin to truly dominate
the energetics of the magnetic system. Extracting an exact value for KNéel from
experimental results for a given material is problematic due to the complex non-
linear effects of surface anisotropy, as will be illustrated in the following sections.
As a result we usually assume the magnitude of the surface anisotropy to be a
parameter in the simulations.

Constrained Minimisation

Having a description for anisotropy both in the core and surface of a nanostructure
it is then possible to investigate the effects of surface anisotropy on the thermal
stability of nanoparticles. In a simple uniaxial system below the Stoner-Wohlfarth
size limit (so that there are no domains) and neglecting surface effects there are
two stable magnetic states, spin up and spin down. These two magnetic states
are separated by an energy barrier, preventing the magnetisation from reversing.
In this situation this energy barrier is well defined since it is entirely symmetric.
In the case of cubic anisotropy the energy barrier is less well defined since there
is the usual energy barrier associated with reversal along the cubic easy axis, but
additionally there is a barrier to reversal around the easy axis, otherwise known
as a rotational energy barrier.

The introduction of surface anisotropy, however, can contribute to the energy
barrier in a complex way so it is necessary to use a special technique to study the
energy surface which can assess its impact on the energy barrier.

Lagrange Multiplier Technique

The Lagrange Multiplier Technique is an energy minimisation scheme which uses
a constraint method to calculate the configuration energy of a magnetic state [64].
The average magnetisation of the system is constrained to point along a certain
direction νo by the addition of an additional energy term to form the following
amended spin Hamiltonian:

F = H−Nλ · (ν− νo) (5.8)



5. Theoretical Background 62

where F is the total energy of the system, H is the standard Hamiltonian for
a magnetic system, N is the number of spins, ν is the instantaneous direction
of the macrospin magnetisation, and λ is the Lagrange Multiplier. The method
essentially works by forcing the system magnetisation to lie along νo with a large
Lagrange field, calculated as the derivative of F with respect to S. The system
is solved using the relaxational component of the LLG equation (Ṡ = αS× (S×

H)). The time evolution of the Lagrange multiplier is given by:

λ̇ =
∂F

∂λ
= N (ν− νo) (5.9)

and is solved iteratively for the instantaneous system conditions. The system is
initialised such that ν = νo and λ = 0, and then solved until the total torque (S×

H) is zero with some tolerance, typically 10−5. When the intended and actual
system magnetisation directions are aligned then the second term of equation
5.8 becomes zero, leaving the original Hamiltonian for the system. Although the
system magnetisation is constrained to point along a certain direction, individual
spin moments are allowed to choose their direction freely provided the global
constraint is preserved. This permits the existence of canted spin structures and
deviation from a fully aligned state which can often be caused by strong values
of surface anisotropy.

The Lagrange Multiplier technique is used to generate energy surfaces,
showing the variation of the system energy as a function of the azimuthal (θ)
and rotational (φ) angles of the system magnetisation from arbitrary vectors in
spherical polar coordinates. If the system possesses a bulk easy-axis anisotropy,
then the azimuthal angle is usually measured from the easy axis.

Calculation of Energy Surfaces

Energy surfaces are calculated by initialising all spins along the desired direction,
νo. The system is then allowed to relax to a minimum energy state given the
constraint, where the final configuration energy normalised to the exchange
energy is measured. This is repeated for values of θ and φ in spherical
polar coordinates over the whole particle generating a plot of the “energy
landscape”[65]. Examples of energy landscapes for a particle with purely z-axis
uniaxial anisotropy (a) and cubic anisotropy (b) as seen in Fe are shown below in
Figure. 5.2.

The energy landscape for the uniaxial case Figure. 5.2(a) shows that there is an
increase in energy as the azimuthal angle θ increases, which reaches a maximum
at θ = 90◦, as expected for uniaxial anisotropy. The particle also shows no
rotational anisotropy, ie the energy for all values of the rotational angle φ are
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(a) Energy landscape for uniaxial
anisotropy.

(b) Energy landscape for cubic anisotropy.

Figure. 5.2: Energy landscapes for purely uniaxial (a) and cubic (b) forms of
anisotropy.

the same. In contrast, the energy landscape for the cubic anisotropy case in
Figure. 5.2(b) shows both azimuthal and rotational anisotropy. The global energy
maxima for this case lie at θ = 54.74◦, φ = 45◦ [111], while there is also a saddle
point at θ = 90◦, φ = 45◦ [110], corresponding to the very hard and hard axes
respectively. The easy axis appears along the principal [001] axes, having the
lowest energy states. It should be noted that a change in the sign of the anisotropy
constant has the effect of inverting the energy surface along the energy axis, so
that peaks become troughs and vice versa. In the case of uniaxial anisotropy with
a negative constant, the energy surface yields an easy plane anisotropy, while for
cubic anisotropy the [111] axis becomes the easy axis.

Energy Barriers

In order to estimate the thermal stability of these particles, one must evaluate
the energy barrier to the system magnetisation escaping from the deepest
energy minimum of the energy landscape. Depending on the azimuthal and
rotational anisotropy, the reversal path can trace complex routes via intermediate
metastable states. If one assumes that the energy barriers are large with respect to
the thermal energy, kBT, then the only barrier of interest is the lowest. The lowest
energy barrier, ∆E, is obtained by evaluating the expression from the calculated
energy landscape:

∆E = min(Emax)−min(Emin) (5.10)

where min(Emax) is the minimum energy of the local energy maxima, and
min(Emin) is the minimum of the local energy minima, or the global energy
minimum. In the case of uniaxial anisotropy, the only energy barrier is to reversal
along the azimuthal direction, which separates the two stable states of spin up
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and spin down. For cubic anisotropy, the energy barrier is between the easy and
hard directions, while the very hard anisotropy direction plays no part in the
thermal stability of the particle.

In the following section the above techniques will be used to investigate the
effect of various physical variables, specifically crystal structure, particle size, and
particle volume on the energy surfaces and thermal stability of nanoparticles with
surface anisotropy.

5.2 Results

Shape Dependance of the Energy Barrier

Figure. 5.3: Visualisation of cuboid, sphere, and truncated octahedron particle
shapes with a face-centred cubic crystal structure simulated using
surface anisotropy. Each of the different shapes shows very different
faceting, which in turn influences the effect of surface anisotropy on
the energy barrier.

The simplest case to consider first is the effect of different particle geometries
on the energy barrier. Normally one would expect this effect to be small, but for
strong values of the surface anisotropy constant the particular surface topology
can become important. In order to investigate the effects of changing the particle
shape, similarly sized particles of around 2000 atoms were created using the same
face-centred-cubic crystal structure. For comparison, particles in the shape of a
cube, sphere, and truncated octahedron were generated, as shown in Figure. 5.3.

A uniaxial anisotropy was assumed for the non-surface atoms, ie those with
the full 12 nearest neighbours, in order to ascertain the influence of the surface
anisotropy on a pre-existing energy barrier. The bulk uniaxial easy axis in all
cases was chosen to be along the z-axis. The energy surfaces are plotted relative
to the z-axis, so the easy axis angle is the angle from the z-direction, while the
rotational angle is taken from the x-axis. Due to the small size of the particles,
around 40 % of atoms are on the surface which means that surface effects can be
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quite significant. Since the strength of the surface anisotropy constant is specific
to particular cases, the magnitude of KNéel is varied for each particle shape to
investigate its effect on the energy barrier. The variation of both the easy axis
energy barrier and the rotational barrier between local minima, normalised to the
equivalent bulk energy barrier, with increasing strength of the surface anisotropy
for a cube, sphere, and truncated octahedron are plotted in Figure. 5.4. Note that
the effects on the energy barrier of both signs of KNéel have been investigated,
since the effects can be quite different for the two cases.























          






























Figure. 5.4: Plot of the energy barriers of different FCC particle geometries
as a function of the normalised strength of the surface anisotropy
constant. For analysis see accompanying text.

As can be seen the effects of surface anisotropy can be complex and so what
follows is a detailed analysis of this graph. The first result to note is the effect
when the surface anisotropy constant is zero. All the particles show a reduction
in the energy barrier, which is equal to the fraction of surface atoms in the
particle. This is due to the surface atoms having no anisotropy and so the
effective anisotropic volume is decreased. If all atoms had a bulk anisotropy,
then the magnitude of the energy barrier would be 1. This effect can be seen
experimentally for some nanoparticle preparation methods, where a magnetic
core can be surrounded by a magnetically dead layer with no anisotropy.

The next case to consider is that of small values of KNéel. For the spherical
and truncated octahedron particles, the effect of increasing KNéel on the energy
barrier is very small. This is due to the almost continuous variation of the surface
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normal, leading to a continuous variation of surface easy axis. This effect can
be seen for the spherical particle in the energy landscape plotted in Figure. 5.5
(point a in the graph in Figure. 5.4), showing a weak angular variation in the
system configuration energy in the energy maximum at θ = 90◦.

Figure. 5.5: Energy landscape for a spherical particle for KNéel = 50Ku showing
a weak angular variation of the configuration energy in the energy
maximum at φ = 90◦.

Even for small values of KNéel, spin non-collinearities due to surface pinning
can begin to influence the form of the energy surface. Due to the near radial
symmetry of the spherical and truncated octahedron particles, the underlying
cubic crystal structure begins to influence the energy surface by forming a cubic
surface energy potential. The breakdown of the regime where the energy barrier
changes very little with increasing KNéel occurs at a lower value of KNéel for
the truncated octahedron due to the surface faceting - essentially creating edges.
Edges are important since they form discontinuities in the direction of the local
spin easy axis between adjacent facets. This effect is illustrated by the cube
shaped particle even at low values of KNéel, where the energy barrier decreases
sharply with increasing KNéel. This is caused by the strong directionality in the
surface facets and edges. For both signs of KNéel the minimum surface energy
state exists where the system magnetisation lies along the cube edges. This causes
a marked reduction in the configuration energy when the system magnetisation
lies along these edges, which in turn lowers the energy barrier between the two



5. Results 67

states induced by the core uniaxial anisotropy. The effect of barrier lowering can
be clearly seen in the energy landscape plotted in Figure. 5.6 (point b in the graph
in Figure. 5.4). The lowering of the energy barrier is periodic, arising from the
surface geometry, where the cube edges lie at 45◦ to the principal axes.

Figure. 5.6: Energy landscape for a cubic particle for KNéel = −50Ku showing
lowering of the energy barrier along the cube edges.

It is interesting to note that the energy barriers for the spherical and truncated
octahedron particles only increase, rather than exhibit a barrier lowering as seen
for the cube. For the truncated octahedron, this is due to the particular surface
faceting, where the alignment of the system magnetisation with the square faces
forms a minimum energy state, deepening the energy barrier arising from the
core anisotropy. This can be seen in the energy surface by looking in the region
of the energy maximum at θ = 90◦, as plotted in Figure. 5.7 (point c in the graph
in Figure. 5.4). The square facets lie at φ = 0◦, where a visible reduction in the
configuration energy can be seen when compared with the edge configuration
energy at φ = 45◦. Due to symmetry, a similar reduction in energy occurs in
the global energy minimum, deepening the minimum energy well, leading to
an effective increase in the energy barrier. The effect of edges in the case of the
truncated octahedron is somewhat different to that of the cube edges, actually
causing an increase in the system configuration energy.

The final case to consider is that of large values of KNéel, where the energy
barrier increases rapidly for all particle shapes with increasing KNéel. For such
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Figure. 5.7: Energy landscape for a truncated octahedron particle for KNéel =
100Ku, showing lowering of the configuration energy at the square
facets at θ = 90◦, φ = 0◦.

large values of KNéel, approaching a sizeable fraction of the exchange energy,
the energy landscapes become highly distorted, as shown in Figure. 5.8 (point
d in the graph in Figure. 5.4). Here the energy landscape represents a cubic
energy surface, with deep global minima away from the original easy axis. The
reason for the huge increase in the energy barrier comes entirely from the spin
non-collinearity. In the fully collinear magnetic state, the surface anisotropy
makes an isotropic contribution to the configuration energy due to the symmetric
nature of the particles. Allowing for deviations from the collinear state, however,
adds a direction dependent contribution to the configuration energy caused by a
reduction in the system magnetisation along the cube edges [64]. Even though
the reduction in magnetisation is less than 0.1%, the strength of the exchange
interaction means that this small change in the magnetisation can make a large
contribution to the effective energy surface, and thus the energy barrier. This
spin non-collinearity effect gives rise to the cubic energy surface in Figure. 5.8,
and relates to the underlying cubic crystal lattice, although the effect originates
at the surface.
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Figure. 5.8: Energy landscape for a cubic particle for KNéel = 200Ku, showing
a form of cubic anisotropy landscape, arising from the underlying
crystal symmetry.

Elongation Dependence of the Energy Barrier

One geometric effect not yet discussed is that of elongating particles along one
axis. Elongation of particles is known to give the magnetisation a preferential
orientation along the elongation axis due to the shape anisotropy. In order to
investigate the effects of elongation on the energy barrier, a spherical particle
with an FCC crystal structure and uniaxial core anisotropy is elongated along the
magnetic easy axis by 50%. The energy barrier is then evaluated for increasing
positive and negative values of the surface anisotropy constant, KNéel. Note that
no dipolar fields are included in these calculations, which in reality would give a
small demagnetising effect with the magnetisation lying along the long axis. This
is for computational efficiency reasons, and the effect is nevertheless very small.
Compared to the strength of the core anisotropy, the strength of the dipolar fields
is small and so can be neglected. Figure. 5.9 shows a plot of normalised easy axis
and rotational energy barriers for the elongated nanoparticle for different values
of KNéel. A visualisation of the particle is inset.

The first point to note is that, as with the non-elongated particle shapes
discussed above, there is a reduction in the energy barrier for KNéel = 0,
arising from a reduction in the anisotropic magnetic volume due to the surface
atoms. What is very noticeable for elongated particles is the effect of the surface



5. Results 70















          















Figure. 5.9: Plot of easy axis and rotational energy barriers as a function of the
normalised surface anisotropy constant for a 1964 atom FCC elliptical
nanoparticle (inset). The core magnetic easy and elongation axes are
both aligned along the z-direction. For negative values of KNéel the
principal easy-axis energy barrier increases near-linearly to values
much greater than one, while for positive values the easy axis energy
barrier disappears, leaving only a rotational barrier within the easy
plane.

anisotropy on the energy barrier for different signs of KNéel. For the case of
negative KNéel, the uniaxial energy barrier shows an almost linear increase with
|KNéel|. This can be explained by the fact that a negative surface anisotropy
constant yields an easy plane configuration with respect to the surface normal.
When the particle magnetisation is aligned along the easy axis, the side faces
are all in a minimum energy state, while the top and bottom faces are not.
Conversely, when the particle magnetisation is orientated along the core hard
axis, two side faces are in a maximum energy state, while the other two side faces
and the top faces are in a minimum energy state. Due to the elongation of the
particle, the surface area of the side faces is greater than that of the top faces,
leading to a large difference in energy between the two different orientations of
the magnetisation. This adds to the anisotropy due to the core, and leads to a
much increased energy barrier which is linear in KNéel.
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For the case where KNéel is positive, the influence on the energy barrier is
markedly different. The different sign leads to a local easy axis parallel to the
surface normal. The effect of this on the overall energy surface is qualitatively the
same as for negative KNéel, except that the minimum energy surface configuration
is now in the plane of the core anisotropy axis, as can be seen in the energy surface
plotted in Figure. 5.10 for KNéel = 150Ku. Since the overall energy surface is an
easy plane, there is no longer a large easy axis energy barrier separating two
energy states, although the strength of the easy plane anisotropy is considerable.
The spin non-collinearities caused by the surface faceting and underlying cubic
symmetry give rise to a small rotational energy barrier in the plane, which forms
the only energy barrier in the case of the easy plane system. For smaller values
of positive KNéel, the surface contribution is insufficient to overcome the core
contribution, but works in direct competition with the core anisotropy. This
yields to a rapid reduction in the energy barrier for increasing KNéel, until the
surface contribution begins to dominate.

Figure. 5.10: Energy landscape for an elliptical particle for KNéel = 150Ku,
showing an easy plane configuration with respect to the core easy
axis. The surface faceting still gives rise to a small rotational energy
barrier in the energy minimum.
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Crystal Structure Dependance of the Energy Barrier

The next effect to consider is that of the crystal structure dependence of the
energy barrier. At first sight it might seem somewhat strange that the crystal
structure has much effect on the energy at all, particularly since the models used
here are somewhat simplified. However, as the following section will show, the
effect of the crystal structure can be significant. The effect of crystal structure
on the energy barrier has been investigated by generating energy surfaces for
spherical particles with simple cubic (sc), face centred cubic (fcc), and hexagonal
close packed (hcp) crystal structures. Figure. 5.11 below shows the normalised
energy barriers for the particles with different crystal structures as a function of
the strength of the surface anisotropy constant, KNéel.











          













Figure. 5.11: Plot of easy axis energy barriers as a function of the normalised
surface anisotropy constant for spherical particles with different
internal crystal structures. The effect of increasing KNéel is largely
symmetric for all the particles. See text for further analysis.

Each of the particles has an approximately equivalent fraction of surface
atoms, but, as can be seen, the different crystal structures respond very differently
to increasing KNéel. The plots are also largely symmetric for both positive and
negative values of KNéel. The first case to consider is that of the particle with
hcp crystal structure. The energy surface for the particle with an hcp structure is
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plotted in Figure. 5.12.

Figure. 5.12: Energy landscape for a spherical hcp particle for KNéel = −250Ku
showing six fold symmetry arising from the underlying crystal
structure.

The energy surface shows a six fold symmetry which comes from the underlying
crystal symmetry. Note that this result illustrates that the spin non-collinearities
follow the crystal symmetry, and are not necessarily cubic as suggested by
Garanin et al [64]. Also, the global energy minimum moves to an angle of θ = 30◦

from the core easy axis, in alignment with the principal crystal axes. This is
one situation where the particular surface faceting is of secondary importance
to the underlying crystal symmetry. The influence of the hcp crystal structure
on the energy barrier in this case is to reduce it which is in contrast with the fcc
structure where the opposite occurs. Qualitatively the same effect occurs with
the simple cubic crystal structure, though due to the increased coordination in
the hcp structure the relative strength of KNéel is much smaller.

The final case to consider is that of particles with a simple cubic crystal
structure. From a practical perspective the simple cubic structure is less important
since there are no real ferromagnetic materials with this crystal structure. However,
it is common to use this structure for “toy” models which illustrate the underlying
physics without being tied to a particular magnetic material. This is one situation,
however, where the specific crystal structure is important. Increasing KNéel for the
simple cubic structure initially causes a reduction in the energy barrier, while at
a value of |KNéel| ≈ 125 the effect becomes very large, strongly enhancing the
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energy barrier. The reason for the strong effect of increasing KNéel partly comes
from the reduced coordination number of 6 compared to 12 for bulk structures
when comparing simple cubic and face-centred cubic structures. This reduces the
effective exchange coupling on the surface, which in turn enhances the relative
strength of the surface anisotropy due to spin non-collinearities. The cubic nature
of the lattice introduces a highly cubic potential energy surface even for relatively
low values of KNéel, as plotted in Figure. 5.13. It is this cubic energy surface
induced by spin non-collinearities which causes the rapid increase of the energy
barrier at high values of KNéel.

Figure. 5.13: Energy landscape for a spherical particle with a simple cubic crystal
structure for KNéel = 95Ku. The energy surface is highly cubic,
reflecting the underlying cubic symmetry and the effect of reduced
coordination number.

Size Dependance of the Energy Barrier

One important implication of surface anisotropy, with respect to nanoparticles,
is the scaling of the energy barrier with size. Experimental measurements by
Bødker et al on Fe nanoparticles [66] showed a linear scaling of the energy
barrier with inverse particle diameter. They assumed that the particles were
spherical but, as has been shown in the above sections, an enhancement of
the energy barrier only occurs when the surface anisotropy is very strong
and an appreciable fraction of the internal exchange energy. Such strong
surface anisotropy induces a cubic energy surface, where the energy barrier
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increases primarily with increasing surface area, which is inconsistent with the
experimental results. The only situation where the correct scaling occurs is
specifically limited to elongated particles with a negative value for the surface
anisotropy constant, KNéel. In order to investigate the size scaling of the energy
barrier for this situation, elliptical FCC nanoparticles with a 50% elongation and
KNéel � J for a range of particle sizes have been simulated. The elongation
of 50 % has been chosen so that the surface contribution to the energy barrier
is relatively large, while the choice of KNéel � J ensures that there are no
visible cubic effects in the energy surface, and so the anisotropy remains uniaxial.
The results for these simulations are plotted in Figure. 5.14(a) alongside the
experimental results from Bødker et al [66] in Figure. 5.14(b).

(a) Plot of normalised energy barrier
against inverse number of atoms for
simulated elliptical nanoparticles with
surface anisotropy.

(b) Plot of Keff against inverse particle
diameter from [66].

Figure. 5.14: Comparison between simulation (a) and experimental results (b)
for size scaling of the energy barrier in nanoparticles with surface
anisotropy. Although the units for the two plots are slightly
different, they both measure the same physical effect. Both plots
show a convergence of the energy barrier to the bulk value for
increasing particle size (bulk Keff for Fe is around 0.5 MJ/m3).
The qualitative results from (a) and (b) agree well, showing a
general enhancement of the energy barrier above the bulk value for
decreasing particle size.

Qualitatively the plots show the same behaviour - a decrease in the particle
size gives an increase in the energy barrier. Also both plots converge in the limit
of very large particles, where the energy barrier tends to the bulk value. The
large scatter in the data points from the simulated particles arises purely from the
stepped rearrangement of the atomic surface faceting with changing particle size,
and is not at all statistical in nature. This is because particles of this size are not
smooth and have rough atomic surfaces, leading to magic numbers of atoms as
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the size is gradually increased. Such an effect would not be seen in experimental
data due to the size dispersion of the particles and the fact that measurements
are usually averaged over several particles. In the experimental paper and in the
literature in general [67], it is assumed that, if the volume and surface easy axes
are aligned, the energy barrier, ∆E, can be described as a combination of surface
and volume contributions, where

∆E = KeffV = KvV + KsS (5.11)

where Kv is the volume anisotropy, Ks is the surface anisotropy, V is the
particle, S is the surface area, and Keff is the effective anisotropy constant.
Assuming the particles are spheres with diameter d, the effective anisotropy
constant can be described by:

Keff = Kv +
6Ks

d
. (5.12)

By plotting the measured effective anisotropy constant against 1/d one can
obtain the volume and surface contributions to the energy barrier. Unfortunately
the assumption that the particles are spherical is almost certainly incorrect.
Assuming that the particles are elongated along the easy axis does, however,
provide the correct condition where in principle equation 5.11 would apply.
The key difficulty in the case of ellipses is accurately determining the extent
of the elongation, since this is directly proportional to the surface contribution
to the anisotropy. Another issue is ensuring that the elongation occurs only
along the magnetic easy axis, since any misalignment will cause the core and
surface anisotropy contributions to compete. For these reasons it is difficult, if not
impossible, to determine a reasonable estimate of the surface anisotropy constant
from nanoparticle measurements. A much more reliable approach is to use a
thin film arrangement with very tightly controlled interfaces. In the case of a
perfectly flat interface the surface anisotropy always yields an easy plane or easy
axis contribution to the anisotropy energy which is relatively easy to extract by
variation of the the film thickness.

Nevertheless, it is interesting to consider the case of elongated particles since
in principle it is at least possible to extract the surface anisotropy constant from
experimental measurement of the size scaling of the anisotropy energy. In order
to simplify the analysis the following calculations simulate simple cubic cuboids
extended by 50% along the easy axis. The reason for the somewhat arbitrary
choice of system is that the contribution of individual surface atoms to the surface
anisotropy is simple to evaluate. One could also do the same for face-centred
cubic ellipses, though the analysis would be much more involved. It is also
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interesting to relate the on-site Néel surface anisotropy constant, KNéel to the
macroscopic surface anisotropy constant Ks taken from the calculation of the
energy barrier.

The first issue to address is that of the surface and volume contributions
assumed in equation 5.12. In arriving at the results they assumed that the
surface area and volume are related empirically for mathematical spheres,
neglecting that in fact the magnetic contributions come from discrete atoms.
The principal consequence of this is that the surface is in fact a layer of atoms
with a certain thickness, which for very small particles significantly increases
the surface/volume ratio. It also has the consequence that the core contribution
to the energy barrier, having bulk anisotropy, is overestimated. The fraction
of core atoms can be represented by a fractional volume contribution, V�,
which takes into account the fact that surface atoms do not possess a bulk
anisotropy. Equation 5.12 also assumes that the whole surface area, S, contributes
to the surface part of the energy barrier, which generally is only true for thin
films. For non-elongated nanoparticles and small values of Ks, the surface
anisotropy typically has an insignificant effect on the energy barrier due to the
particle symmetry. In elongated particles, some fraction of the surface area,
S� contributes to the energy barrier, although the actual value of S� is highly
geometry dependent.

With this in mind, it is possible to formulate an expression for the size
dependence of the energy barrier for elongated particles along similar lines to
equation 5.11, given by:

∆E = KeffV = KuV� + |Ks|S� (5.13)

where V� and S� are the fractional volume and surface contributions to the energy
barrier. Normalising equation 5.13 with respect to the bulk volumetric energy
barrier, KuV, gives the general expression for an elongated particle for Ks � J
and Ks < 0:

∆E
KuV

=
Keff
Ku

=
V�

V
+
|Ks|

Ku

S�

V
. (5.14)

In order to utilize equation 5.14 to extract the surface anisotropy constant
from energy barrier measurements or calculations, one must first evaluate the
constants V� and S�. The fractional volume constant, V�/V, is relatively easy to
calculate by assuming a surface shell of thickness a, where a is the interatomic
spacing, essentially defining the thickness of the surface layer. The volume
fraction is then the inverse ratio between the total surface volume for a particle of
length L and the core volume of length L− 2a. Assuming the cuboid particle is
extended by a constant δ, then the analytic expression for the volume fraction is
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V�

V
=

(L− 2a)2(δL− 2a)
δL3 . (5.15)

Interestingly, exactly the same formula applies for elongated ellipses, replacing
the length L with the equatorial particle diameter, D. For simple cubic cuboid
particles the above expression is exact, though for very small elliptical nanoparticles
with less than ∼ 1000 atoms the mathematical expression becomes a poor
approximation for the volume fraction.

The effective surface fraction, S�, is much harder to evaluate even for the
simplest of particles, as it is primarily dependant on the surface faceting. For the
simplest case of a simple cubic cuboid with angular facets, however, the situation
is relatively easy to understand. A visualisation of a simple cubic cuboid in two
different magnetic configurations is shown in Figure. 5.15.

!

(a) Energy configuration of surface spins
when the system magnetisation is aligned
along the core easy axis.

!

(b) Energy configuration of surface spins
when the system magnetisation is aligned
along the core hard axis.

Figure. 5.15: Visualisation of an elongated cuboid where the system
magnetisation is oriented along the core easy axis (a) and core
hard axis (b). Red colouring of the spins indicates local maximum
energy state, while blue indicates a local minimum energy state.
Only the central band of atoms contribute to the energy barrier due
to symmetry. See text for further details.

As was shown previously for cube shaped particles, the surface anisotropy
makes no contribution to the energy barrier due to symmetry. For elongated
particles, however, the side contributions are no longer equal to the end contributions,
and so the surface anisotropy then contributes to ∆E. Nevertheless, the symmetric
part of the surface can be discounted, and so only the central band of the surface
(effectively the elongated part) contributes to the energy barrier, indicated by the
coloured spins in the figure. When the system is aligned along the core easy
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axis, as illustrated in Figure. 5.15(a), all the spins on the side and edge faces
lie in their local easy axis direction, indicated by the blue colouring. When the
system magnetisation is aligned along the core hard axis direction, as shown in
Figure. 5.15(b), the spins on two faces are in a minimum energy state. However,
the edge spins and the spins on two faces are in a maximum energy state, since
their spins, indicated in red, are forced into a high energy state by the exchange
energy.

Using this information it is possible to express the fraction of surface atoms
that contributes to the energy barrier analytically. Contributing atoms are those
which change their energy state between the system magnetisation lying in the
core easy and hard axis directions. As can be seen from Figure. 5.15 above, this
consists of the edge spins, and spins from two of the side faces. Using the same
terminology as before when considering a system of length L, elongation δ, and
atomic spacing a, we have:

S� = 4La(δ− 1) + 2L(δ− 1)(L− 2a)

= L(δ− 1)[4a + 2L− 4a]

S� = 2L2(δ− 1) (5.16)

The total volume of the particle is given by δL3, which gives the volume fraction
of contributing surface atoms:

S�

V
=

2L2(δ− 1)
δL3 =

2(δ− 1)
δL

(5.17)

For the case of a cuboid particle with δ = 1.5, this gives:

S�

V
=

1
3L

(5.18)

In order to test the analytical solution, the energy barrier of particles of different
sizes were calculated for three different values of the surface anisotropy. A plot of
the normalised energy barrier, taking into account the changing volume fraction,
V/V�, against 1/3L is shown in Figure. 5.16.

As can be seen, the effective measured Ks per atom, taken from the gradient of
the line, is very close to the Néel constant used as an input parameter, suggesting
that, in principle at least, it is possible to extract the Néel surface anisotropy
constant from experimental measurements of the size scaling of the energy
barrier in nanoparticles. Of course the system used for the calculations here is
largely artificial in terms of its crystal structure and surface geometry. Ideally one
would prefer to do the analysis for slightly elliptical, or properly faceted particles
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Figure. 5.16: Plot of normalised energy barrier vs inverse cube length for simple
cubic cuboidal nanoparticles for different strengths of the surface
anisotropy constant, Ks.

with a more realistic crystal structure. However, this significantly complicates the
analysis and the analytical expressions can become a little woolly since accurately
determining the volume fraction V�/V and surface contribution S�/V is difficult.
In general the best method of determining the surface anisotropy constant is
with very good thin film interface measurements, since the surface anisotropy
contribution is always easy plane or easy axis.

5.3 Conclusion

As has been illustrated in this chapter, the effects of surface anisotropy in
nanoparticles can be many and varied, even in the case of weak surface anisotropy.
For strong surface anisotropy, the situation is far more complex, with spin non-
collinearities inducing a high order energy surface depending on the underlying
crystal lattice and surface faceting. However, as KNéel approaches an appreciable
fraction of the exchange energy one must begin to question whether such values
are realistic.

The volume scaling of elongated particles with surface anisotropy has also
been investigated, showing that, in general, experimental measurements of high
anisotropy in small nanoparticles is likely due to en elongation effect. The
connection between the macroscopic surface anisotropy constant, Ks, and the
microscopic Néel surface anisotropy constant, KNéel, has also been determined
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for elongated particles and weak surface anisotropy.. One significant limitation
of the Lagrange multiplier technique is that, strictly speaking, it is only applicable
for zero temperature, since there is no account of thermal fluctuations in the
magnetisation. Given that the surface anisotropy is a surface effect, the reduced
surface coordination leads to a reduced criticality in the surface magnetisation,
which in principle leads to a more rapid temperature dependence of the surface
when compared to bulk anisotropy. In order to investigate this effect one must
develop new techniques which use a constraint method with temperature. In
the next chapter such a new method is derived and used to investigate the
temperature dependence of anisotropy in general, as well as a simple case of a
thin film with surface anisotropy.



6. Constrained Monte Carlo Algorithm

A conventional Monte Carlo algorithm is often used to determine equilibrium
properties in a wide variety of physical systems, such as the equilibrium magnetisation.
Sometimes, however, it is desirable to investigate magnetic systems in quasi-
equilibrium situations. One such situation is the temperature dependence of
the magnetocrystalline anisotropy energy. In true thermal equilibrium the
magnetisation lies along the easy axis (in the case of uniaxial anisotropy). In
order to determine the strength of the anisotropy constant, however, one must
somehow force the magnetisation to lie along the hard axis. The usual method
in this case is to apply a large external field along the magnetic hard axis,
forcing the magnetisation along the field direction. This forces the system into
a quasi-equilibrium state, so that, by taking into account the effect of the external
constraint field, the strength of the anisotropy energy can be estimated. However,
the influence of the external field on the thermodynamics is not always clear,
and so an alternative constraint method is needed. In collaboration with Dr. P.
Asselin, during an internship at Seagate Research, a constrained Monte Carlo
approach was developed as outlined in the following.

6.1 Constraint Method

The principal requirement of our constrained Monte Carlo method is to constrain
two spatial components of the system magnetisation to be zero, while allowing
the other component to vary in magnitude. This essentially conserves the
direction of the system magnetisation but the directions of individual spin
moments are allowed to vary. For simplicity the following describes the conservation
of the z-component of the magnetisation but the method can, of course, be
generalised to three dimensions. The method uses a single spin move followed
by a corrective move of another spin so that the components of magnetization
perpendicular to the z-axis are conserved. The moves are performed as follows:

1) Randomly move spin Si to S
�
i and speculatively accept the move with no

conditional change in energy.
2) Move a second spin Sj, where i �= j to S

�
j, to compensate for the change in

the perpendicular components of magnetization, in this case Mx and My, such
that:

Sj
�

x = Six + Sjx − Si
�
x (6.1)
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Sj
�

y = Siy + Sjy − Si
�
y (6.2)

Sj
�

z = sign(Sjz)
�

1− Sj
2
x − Sj

2
y (6.3)

As one can see the x and y spin components are forced to remain zero. If
Sj

2
x + Sj

2
y > 1 then the moves of both spins are rejected as unphysical. If the

second move is not rejected this way then it is accepted speculatively. The change
in energy for both moves, ∆Ei and ∆Ej are then evaluated as follows:

∆Ei = E(S�i, Sj)− E(Si, Sj) (6.4)

∆Ej = E(S�i, S�j)− E(S�i, Sj) (6.5)

Note that the change in energy for the second move is calculated assuming
the first move is accepted. The total energy, ∆Eij, for the combined moves is then
calculated as follows:

∆Eij = ∆Ei + ∆Ej (6.6)

It is essential for a Monte Carlo algorithm to obey the principle of detailed
balance, that is to be time reversible. By constraining the direction of the
magnetisation, the probability of transitions away from the constraint direction
is greater than the converse due to the increase in the number of available states.
In order to correct for this, one must find the relationship between a spherical
surface element and its projection in the xy plane. This relationship leads directly
to a Jacobian prefactor, J , which modifies the acceptance probability to retain
ergodicity in the constrained algorithm, given by:

J =
�

M�
z

Mz

�2
�����
Sjz
Sj
�

z

����� (6.7)

where M�
z is the z-component of the magnetization after moving both spins, and

Mz is the z-component of the magnetization before. In order to constrain Mz to
point along +z an additional condition that M�

z >0 is implemented. The total
probability of both moves, p, being accepted is now given by:

p = max(1,J e−
∆Eij
kBT ) (6.8)

Since only one move is random (the other being deterministic), each pair of
moves is classed as a single Monte Carlo step. As with the conventional Monte
Carlo algorithm, the absolute conservation of total energy leads to the generation
of the Micro-canonical thermodynamic ensemble.
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Outline

As the constrained Monte Carlo method is new, this chapter will firstly investigate
physical situations for which the solution is known, in order to assess the
correctness of the method. One test which the constrained Monte Carlo method
can compute is the temperature dependence of the magnetocrystalline anisotropy
energy (MAE). The temperature dependence of the MAE for both single-ion
uniaxial and cubic anisotropies was investigated fully by Callen and Callen in
the 1960’s [68] and so provides an ideal test of the constrained Monte Carlo
method. Since we are dealing with thermodynamic variables, one must take care
when calculating an ‘energy’. At finite temperatures, due to the entropy, one
must compute the free energy of the system, which is generally not equal to the
internal system energy. One method of calculating the free energy is to calculate
the thermodynamic average of the restoring torque on the system magnetisation,
the details of which are described in the next section.

The second part of this chapter applies the constrained Monte Carlo method
to situations without known solutions. The first of these, already mentioned
previously, is the temperature dependence of the Néel surface anisotropy for
the case of a thin film. The second is the temperature dependence of the
micromagnetic exchange energy, which is a fundamental input parameter for
micromagnetic simulations.

6.2 Calculation of Free Energy via Restoring Torque

When a calculation of a system is performed one usually wants to assess the
variation of the energy of the system with spatial direction or temperature for
example. At temperatures above zero however, the required parameter is the free
energy, F , which is the total amount of energy in a physical system which can be
converted to do work. The free energy of the system can be expressed as:

F = U − TS (6.9)

where U is the internal energy, T is the absolute temperature and S is the entropy.
The total differentiation of equation 6.9 is given by:

dF = dU − TdS− SdT (6.10)

Applying the first and second laws of thermodynamics, where dU = δQ + δW
for isolated systems, and δQ = TdS for reversible processes, we have:

dF = δW − SdT (6.11)
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where δW is the reversible work done by the system. If the work done by the
system is performed at constant temperature then dT is zero. Integrating over
the total work done moving between two states a and b yields the difference in
free energy between those states, ∆F , given by:

∆F =
� b

a
dW =

n

∑
i

Wi∆W (6.12)

where Wi is the work done in moving from the initial state a to an intermediate
state i of n intermediate states [69].

In magnetic systems one generally deals with the influence of magnetic fields
of force on the magnetic state of a system. In such a case the work done on the
system is equivalent to the torque on the system as a whole. In a spin system the
magnitude of the torque is defined by the first derivative of the free energy with
respect to θ, the angle from the z-axis, and given by:

|T | = −
∂F

∂θ
= |S× H| (6.13)

A schematic of a spin system under the influence of an external applied field is
shown in Figure. 6.1. The effect of the field is to induce a torque perpendicular
to both S and H. In general external and anisotropic fields have an angular
dependence with respect to the z-direction, that being the easy axis or external
field direction respectively. The magnitude of the torque is directly proportional
to the derivative of the free energy.

!!!

"

Figure. 6.1: Schematic diagram of the torque on a spin induced by an external
field along the z-direction. External and anisotropic fields have an
angular dependence with respect to the field direction, indicated by
θ.

In order to calculate the free energy from the relationship given in equation
6.12, one must relate the element of work done, δW, to the torque. The element
of work done is given by the inexact differential:

δW = F · ds (6.14)
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and so one must find the effective force analogous to a mechanical system. For
a spin system the generalised force is always perpendicular to the spin vector, r,
and so one can make the following substitution:

T = r× F = |r||F|n̂ sin φ = Frn̂ (6.15)

where F and r are the magnitudes of the force and spin vector respectively. The
magnitude of the torque, |T | = Fr, can be used to obtain the magnitude of the
generalised force, which can then be substituted into equation 6.14. Finally an
expression for the position vector is required, which is given simply by the arc
subtended by the spin, ds = rdθ. Substituting expressions for F and ds into
equation 6.14 then gives:

δW =
|T |

r
· rdθ = |T |dθ (6.16)

showing the equivalence of an element of work and the magnitude of the torque
for a spin system. The equivalent relationship for equation 6.13 for the difference
in free energy is then found by integration of the total torque between two states
a and b, and given by:

∆F = −

� b

a
|T |dθ (6.17)

In order to calculate the total vector torque in an atomistic magnetic system,
the total torque, T , is given by a summation of the microscopic torques for all
atoms , Ti:

T = ∑
i
Ti = ∑

i
Si × H i (6.18)

where H i is the net field and Si the spin moment at site i. Due to the vectorial
nature of the torque, the thermodynamic average of the torque is computed
while maintaining the vector components of torque, Tx,Ty and Tz as separate
summations. The magnitude of the total torque is then calculated from the
thermodynamic average of the vector components, ie. |T | = | < T > |.

By calculation and integration of the system torque one can obtain the free
energy difference between two states by the relationship given in equation 6.18.
In some situations the variation of a physical parameter with temperature can
be consistent, and so the integral over elements of work can be replaced with a
one-point Gaussian quadrature rule, namely that a single physical state is exactly
representative of the entire integral1. The use of the quadrature rule must be

1 The one-point Gaussian quadrature rule allows the representation of a finite integral by a
single value of the integrated function [70].
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exercised with caution, however, as is is not applicable to all systems.

6.3 Temperature Dependence of the
Magnetocrystalline Anisotropy

Magnetocrystalline anisotropy is of critical importance in magnetism, defining
domain structures within bulk material and having a direct application in the
stability of magnetic recording media. Calculating the temperature dependence
of the magnetocrystalline anisotropy provides an ideal test of the constrained
Monte Carlo method since the physical origin is at the atomic level and there
is a well established analytical theory by Callen and Callen [68] describing the
temperature variation for single-ion uniaxial and cubic forms of anisotropy for
all temperatures.

Since we are only interested in the fundamental physics of the temperature
dependence of the anisotropy energy, a generic atomistic model system with
a face-centred cubic crystal structure and a Curie temperature of 1000K has
been chosen. As the anisotropy is a bulk property a relatively large system of
around 16000 atoms, with periodic boundary conditions, was used to minimise
the possibility of finite size effects and eliminate surface effects.

Uniaxial Single-ion Anisotropy

Single-ion uniaxial anisotropy arises from the interaction of localised electrons
within a magnetic metal with the local atomic crystal environment through spin-
orbit coupling. In some materials this induces a single axis along which the
atomic magnetic moment prefers to orientate, known as uniaxial anisotropy. In
order to calculate the uniaxial free energy for a given temperature, one must
compute an integral of work, as described by equation 6.12. Since the uniaxial
anisotropy energy at the atomic level is dependent on the angle of the atomic spin
from the easy axis, θ, this provides a good variable over which to integrate. The
integral is computed by taking the thermodynamic average of the torque from
an angle of θ = 0◦ to θ = 90◦, generating a so-called torque curve. Plots of the
restoring torque as a function of angle from the easy axis at temperatures of 10 K,
100 K and 500 K are shown in Figure. 6.2. For comparison, the system anisotropy
energy as a function of angle is also plotted alongside the torque curves. The
anisotropy energy is calculated as a sum over all atoms of the on-site anisotropy
energy.

The first point to note regarding the torque curves is that both the x and
z components of the torque are effectively zero for all temperatures. This
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(a) Plot of system torque normalised to the system uniaxial
anisotropy as a function of angle from the easy axis at 10 K.



















    




















(b) Plot of system torque normalised to the system uniaxial
anisotropy as a function of angle from the easy axis at 100 K.



















    




















(c) Plot of system torque normalised to the system uniaxial
anisotropy as a function of angle from the easy axis at 500 K.

Figure. 6.2: Plots of system torque and anisotropy energy for a system with
uniaxial anisotropy as a function of angle from the easy axis for 10
K, 100 K, and 500 K.
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is expected since the torque acts perpendicular to the net field (along the z-
direction), so Tz is zero. Similarly, the x-component of the torque, Tx, is zero since
the system magnetisation is constrained to point along the x-axis. This leaves
only the y-component of the torque, which varies sinusoidally with increasing
angle from the easy axis. It is interesting to note that the sin (2θ) shape of the
torque curve is independent of temperature, while the increased temperature
simply reduces the amplitude of the torque curve. In order to calculate the
free anisotropy energy difference at each temperature, one needs to calculate an
integral of the torque from θ = 0, 90◦. At zero temperature the torque is given
by the derivative of the total internal energy, U, which for the case of uniaxial
anisotropy is:

U = Ku sin2 θ + J(φ) (6.19)

where Ku is the uniaxial anisotropy constant. Taking the derivative with respect
to the angle from the easy axis, noting that the exchange contribution is isotropic
in φ, gives:

|T | = −
∂U
∂θ

= −2Ku sin θ cos θ = −2Ku
1
2
(sin 2θ + sin 0) = −Ku sin 2θ (6.20)

If the above relationship extends to all temperatures, then one would expect that
the amplitude of the anisotropy energy function and that of the torque curve are
the same, which is indeed seen in Figure. 6.2. The data for all three plots show that
the torque at θ = 45◦ is exactly equivalent to the difference in anisotropy energy
between θ = 0◦ and θ = 90◦, which essentially defines the effective anisotropy
constant for the system. This means that the change in free anisotropy energy
can be represented by a one-point Gaussian quadrature rule by calculating the
restoring torque at an angle of θ = 45◦. A final point to note is the evident
barrier lowering of the anisotropy energy with elevated temperatures, since the
anisotropy energy no longer goes to zero at θ = 90◦. This comes from the
statistical contribution of the spin dispersion at elevated temperatures, and has
the effect of increasing the energy minimum and reducing the energy maximum
equally.

Having established that the one-point quadrature rule applies to uniaxial
anisotropy, one can then go and easily calculate the temperature dependence of
the uniaxial anisotropy constant, as shown in Figure. 6.3.

As can be seen, the calculated value of the uniaxial anisotropy constant at
low temperatures converges very well towards the zero temperature value. The
temperature dependence of Ku is much stronger than that of the magnetisation.
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Figure. 6.3: Plot of temperature dependence of normalised magnetisation
and uniaxial anisotropy calculated from the torque method. The
anisotropy constant is much more temperature dependent than the
magnetisation.

In order to investigate the temperature dependent scaling of the uniaxial anisotropy
with magnetisation, a plot of the natural logarithm of Ku/Ku(0) against M/Ms is
shown in Figure. 6.4. This shows the exponent of K with M, which can be directly
compared with the Callen-Callen theory for uniaxial anisotropy described earlier.
Also plotted is the expected low temperature exponent of K ∝ M3.

As can be seen at low temperatures, the data show excellent agreement with
the theory, showing a temperature scaling of K ∝ M3. At higher temperatures
(lower M/Ms) the anisotropy energy varies less rapidly with the system magnetisation,
in qualitative agreement with the Callen-Callen theory. The discrepancy between
the calculated data and theory could come from the fact that the theory assumed a
mean-field approach, where the exchange interactions are equal and long ranged.
In the simulations exchange interactions were limited to nearest neighbours only.

Having calculated the temperature scaling of uniaxial anisotropy, the next
section does the same for cubic anisotropy. Here the nature of the cubic
anisotropy energy surface means that its temperature dependence is substantially
different.

Cubic Anisotropy

Another form of anisotropy is cubic anisotropy, commonly seen in Fe and Ni
magnets. Generally cubic anisotropy is much weaker than uniaxial anisotropy
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Figure. 6.4: Plot of magnetisation dependence of normalised uniaxial anisotropy
calculated compared with Callen-Callen theory and low temperature
limit of Ku ∝ M3.

due to the symmetry of the lattice [71]. Callen and Callen also studied the
temperature dependence of cubic anisotropy and derived an M10 dependence
for low temperatures. The cubic nature of the energy surface means that the
restoring torque depends on the azimuthal and rotational angles, unlike uniaxial
anisotropy where only the angle from the easy axis was important. However,
due to symmetry, only two rotational angles are important for the determination
of the temperature dependence of cubic anisotropy, namely φ = 0◦ and φ = 45◦.
Torque curves and the corresponding anisotropy energies for these two angles
are plotted in Figure. 6.5.

As can be seen, the two different rotational angles each give a different
torque curve due to the cubic nature of the anisotropy energy. For φ = 45◦,
the x and y components of the torque are equal, since the restoring torque acts
perpendicularly to the constraint direction. In this case the anisotropy energy
is extracted from the magnitude of the total torque vector. As in the case of
uniaxial anisotropy the shape of the torque curves do not change their shape
with temperature; they are only scaled. Thus in the same way as before, one can
represent the whole torque integral by calculating the torque at a single point.
This point was chosen at the maximum of the torque curve, where θ = 22.5◦ and
φ = 0◦, where the anisotropy energy is given by:

Kcubic =
Ty(22.5, 0)

2
. (6.21)
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Figure. 6.5: Plot of normalised torque and anisotropy energy as a function of
azimuthal angle, θ for rotational angles of φ = 0◦ [black] and φ = 45◦
[red]. The cubic nature of the energy surface gives two different
torque curves. The maximum torque for φ = 0◦ is related to the
cubic anisotropy energy by a factor 2, allowing the use of a one-point
quadrature rule to represent the entire torque integral.

This result can also be derived by taking the negative first derivative of the
zero temperature anisotropy energy with respect to the azimuthal angle. Using
this approach the temperature dependence of the cubic anisotropy and system
magnetisation for the same simulation is plotted in Figure. 6.6.

As can be seen, the cubic anisotropy constant is much more strongly temperature
dependent compared to uniaxial anisotropy. As before, the temperature scaling
of the cubic anisotropy with system magnetisation is shown in Figure. 6.7.
Again this shows excellent agreement with the Callen-Callen theory of a low
temperature scaling exponent of Kc ∼ M10.

Having now validated the constrained Monte Carlo method by calculating
the known temperature dependencies of bulk anisotropy constants, the next
section will investigate the temperature dependence of the surface anisotropy for
a perfect thin film.

Surface Anisotropy

As illustrated previously in Chapter 5, the effects of Néel surface anisotropy can
be many and varied, due to the complex interaction between the underlying
crystal lattice and surface faceting. Calculating the temperature dependence
of the surface anisotropy in nanoparticles presents a significant challenge in
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Figure. 6.6: Plot of temperature dependence of normalised magnetisation and
cubic anisotropy calculated from the torque method. Compared
with uniaxial anisotropy cubic anisotropy is considerably more
temperature dependent.



















     

















Figure. 6.7: Plot of magnetisation dependence of normalised cubic anisotropy
calculated compared with Callen-Callen theory for the low
temperature limit of Kc ∼ M10.
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terms of methods and in computational effort. For materials with a cubic
lattice, where the surface anisotropy is very large, the spin non-collinearities
induce cubic energy surfaces. The “cubicness” of these surfaces will be very
strongly temperature dependent since the anisotropy arises from surface atoms
with reduced coordination and thus reduced effective Curie temperature. A full
treatment of this problem would require significant computer resources since,
in order to calculate the surface anisotropy, one must calculate the entire torque
surface for each temperature, rather than using the Gaussian quadrature rule to
calculate a single point. Nevertheless, a special case where the surface anisotropy
can be studied in nanoparticles arises for FePt, where the layered nature of the
material yields a purely uniaxial or easy plane anisotropy for weak values of
KNéel. This is covered in more detail with reference to the simulation of Heat
Assisted Magnetic Recording in Chapter 7.

There is one common situation where the temperature dependence of surface
anisotropy can be studied in detail, namely that of thin films. Thin films have
attracted a great deal of research interest over the past 50 years and so a large
body of experimental data exists. Nevertheless, achieving good experimental
data on the temperature dependence of surface anisotropy requires the creation
of very thin films with very sharp interfaces, which has only been technologically
feasible within the last decade. This is because the influence of surface anisotropy
is usually determined by varying the thickness of the magnetic layer, so that
volume and surface contributions can be separated. For thick films the volume
component strongly dominates the overall anisotropy, leading to a large degree
of uncertainty in the strength of the surface contribution. Another problem arises
with temperature dependent atomic migration, structural changes and interface
mixing, which cause a change in the surface properties [72]. Taking proper
account of all these temperature dependent effects would require a combined
molecular dynamics and magnetic model similar to that described in Chapter 4,
where the structural changes of the magnetic and interface materials are included
explicitly. Nevertheless, one can still investigate the idealistic case where a perfect
interface remains at all temperatures, and thus garner an understanding of the
temperature dependence of the Néel surface anisotropy.

In the case of a perfect single crystal magnetic film with a face-centred-cubic
crystal structure with interfaces cut along the [001] direction, the on-site Néel
surface anisotropy yields a purely uniaxial anisotropy, as shown in Figure. 6.8.
A visualisation of the surface atomic arrangement is inset. Since the surface
anisotropy is purely uniaxial, the torque method described above can be used.
Thus the overall anisotropy energy for the system can be obtained by calculating
the restoring torque when the system magnetisation is held at 45◦ to the easy axis.
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Figure. 6.8: Plot of normalised anisotropy energy for the fcc [001] surface. A
visualisation of the atomic surface arrangement is inset. The energy
surface is entirely uniaxial, allowing the temperature dependence of
the surface anisotropy contribution to be easily studied.

In order to simulate a section of thin film, a generic magnetic material with
an fcc crystal structure and a Tc of around 1300 K was chosen, as shown in
Figure. 6.9. The surface atoms are coloured in copper, while the bulk atoms
are coloured silver. In order to eliminate edge effects within the film, periodic
boundary conditions in the film plane were used.

Although the material has an fcc crystal structure, a uniaxial bulk anisotropy
was chosen in order to better reflect experiments. The symmetry of the lattice also
allows the choice of either an in-plane or out-of-plane easy axis. For the purposes
of these simulations only the case where the surface and bulk anisotropy
directions are aligned in the perpendicular direction was investigated. Generally,
surface anisotropy is found to be much stronger than bulk-type anisotropy, and
so a value of Ks = 10Ku was chosen. Since the surface atoms must be identified
in order to calculate the Néel surface anisotropy, it is trivial to separate the
surface and core components of anisotropy and magnetisation. This allows the
investigation of the temperature scaling of the surface anisotropy separately with
respect to the surface magnetisation, Msurface, and core magnetisation, Mcore.

Since the energy surface for surface atoms is uniaxial in nature, one would
expect that the scaling of the surface anisotropy with respect to the surface
magnetisation should follow Ks ∼ M3

surface, as was found in the bulk case. In
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Figure. 6.9: Visualisation of a section of a thin film system with an fcc
crystal structure containing around 45,000 atoms. Surface atoms are
indicated by the copper colouring, while silver indicates the bulk
atoms. The bulk edges have periodic boundary conditions in order
to eliminate edge effects.

principle this effect could be measured experimentally using a monolayer of
magnetic material, though such a structure is generally unstable at anything other
than cryogenic temperatures. However, a thicker layer of magnetic material,
with more bulk-like properties, should show a different scaling of the surface
anisotropy with the core magnetisation. The scaling of the surface anisotropy
with core magnetisation is unknown a-priori, and is coordination number and
material dependent. Nevertheless, it is this scaling which would be measured
experimentally.

A plot of the normalised system magnetisation and surface anisotropy calculated
via the torque method as a function of temperature is plotted in Figure. 6.10.
The surface, core and volume average magnetisation are plotted, each having the
same Curie temperature but with a different criticality, as previously reported by
Binder et al [44].

The stronger criticality in the surface magnetisation arises from a reduction in
coordination number. An isolated surface layer would also have a reduced Curie
temperature, but due to the thickness of the magnetic material the surface layer
is polarised by the core and thus has the same Tc as the core of around 1300 K.

Figure. 6.11 shows the temperature scaling of the surface anisotropy with the
surface and average system magnetisation. Inset is a linear regression fit of the
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Figure. 6.10: Plot of normalised magnetisation and surface anisotropy against
temperature for a small section of thin film. The surface
magnetisation shows stronger criticality than the core and average
magnetisation.

low temperature scaling of the surface anisotropy with surface magnetisation,
giving a low temperature exponent of Ksurface ∼ M3

surface, in excellent agreement
with the Callen-Callen theory for single ion uniaxial anisotropy.

The scaling of the surface anisotropy with average system magnetisation
shows an exponent of Ksurface ∼ M4.57

average, which is somewhat rapid compared
to bulk uniaxial anisotropy. This arises due to the increased criticality of
the surface magnetisation, and thus the result is quite expected. In contrast,
experimental results for Gd show a largely linear temperature dependence of
surface anisotropy[73]. The origin of the discrepancy could be due to a number
of factors, including structural changes with increased temperatures or a lattice
mismatch which could be influencing the bulk-type anisotropy. One other
possibility is that of an enhanced exchange interaction at the surface of the
material [74]. An increased exchange interaction would lead to a reduction in the
criticality of the surface layer and similarly the temperature scaling of the surface
anisotropy.

The temperature dependence of the surface anisotropy also leads to a number
of interesting effects, such as a temperature dependent re-orientation of the
magnetisation direction from in plane to out-of plane [72]. Such an effect can
occur when the easy directions of the surface and core anisotropies compete.
At low temperatures the magnetisation lies along the surface easy axis. As
the temperature is increased the surface contribution to the anisotropy energy
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Figure. 6.11: Plot of temperature scaling of surface anisotropy with surface and
average system magnetisation. Inset is the low temperature scaling
of the surface anisotropy with surface magnetisation, showing
excellent agreement with the Callen-Callen theory. Compared with
the average magnetisation the surface anisotropy varies with an
exponent of M4.57 for a wide range of temperatures.

rapidly decreases, so the system magnetisation lies along the bulk easy axis.
The final section of this chapter describes the application of the constrained

Monte Carlo algorithm to calculate the temperature scaling of the micromagnetic
exchange constant.

6.4 Temperature Scaling of the Micromagnetic
Exchange Constant

The micromagnetic exchange constant, A, is a key parameter for micromagnetic
simulations, describing the strength of magnetic correlations in neighbouring
micromagnetic cells. Generally such simulations do not explicitly take account
of temperature effects, but simply use effective parameters for exchange and
anisotropy at elevated temperatures. At zero temperature, the micromagnetic
exchange constant is related to the atomistic Heisenberg exchange for a simple
cubic system by the expression:

A =
∑ij Jij

2a
=
J

2a
(6.22)
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where a is the interatomic spacing. In order to account for elevated temperatures,
an effective Heisenberg exchange constant, J is used instead of Jij with an
assumed temperature dependence from experimental measurements. This temperature
dependence is of course material specific, depending on the range and form of the
exchange integral.

However, it is not clear from a theoretical perspective that the temperature
dependence of the micromagnetic exchange constant is the same as that of the
microscopic exchange interaction, J , which scales with the square of the system
magnetisation. Indeed, the micromagnetic exchange describes correlations in
atomistic spin direction over a certain length scale. Clearly, at elevated temperatures,
thermal fluctuations produce some degree of disorder on the atomic scale, which
are not present at the micromagnetic scale. These extra degrees of freedom
at the atomic level suggest that the temperature scaling of the micromagnetic
exchange constant should be different from the atomistic temperature dependence
of the exchange. In order to accurately determine the temperature dependence
of the micromagnetic exchange, one must replicate the effect of long-range spin
correlations within an atomistic spin model. The strength of these correlations
can then be calculated directly, which equates to the micromagnetic exchange
constant.

Statement of the Problem

The simplest possible case is to consider a simple material with no anisotropy
or demagnetisation fields and with no external field, essentially only having an
internal exchange field. On the micromagnetic level, we then assume we have
two adjacent magnetic cells of this material, whose magnetisation directions are
M1 and M2. The internal energy for this system is then given by:

U = AM1 · M2 = A|M1||M2| cos ϕ (6.23)

where ϕ is the angle between the adjacent micromagnetic spins, as illustrated in
Figure. 6.12.

At the atomic level, the angle between the two micromagnetic spins is
represented by a continuous spin spiral, as shown in Figure. 6.13(a). The blue
colouring indicates spins which are orientated in the positive z-direction, the
green colouring indicates spins pointing in the y-direction, and the red colouring
indicates spins pointing in the negative z-direction.

At zero temperature the spins in each plane are aligned in parallel, and so this
can be represented as a series ofNplanes atomic planes, as shown in Figure 6.13(b).
Each plane has a magnetisation vector �m which lies at an angle of θ to each of the
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Figure. 6.12: Visualisation of two interacting micromagnetic cells, M1 and M2,
separated by an angle ϕ.

(a) Visualisation of an atomistic spin
spiral, showing surface spins only. This
represents the micromagnetic cell model
in Figure. 6.12 at the atomic level, with an
angle of separation of π radians.

!

!---111

!+++111

(b) Schematic diagram showing planes
of atoms with magnetisation m. The
neighbouring planes lie at an angle ±θ.

Figure. 6.13: Visualisation of an atomistic spin spiral (a) and schematic diagram
of neighbouring atomic planes within the spin spiral (b). The
spin spiral represents the atomic level spin configuration at zero K,
showing planes of parallel spins. This can be represented by a series
of atomic planes, with each plane separated by an angle ±θ.
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neighbouring planes. The angle between neighbouring planes is given by:

θ =
ϕ

Nplanes − 1
. (6.24)

Since all the spins within the plane are aligned in parallel, and assuming that
θ is a small angle, then the internal energy of each plane is defined by its two
neighbouring planes and given by:

U =
J

2
(mi ·mi+1 + mi ·mi−1) = J cos θ (6.25)

Note that the factor 2 arises from the double sum, since the energy between planes
is added twice for each plane. Given the above expression for the energy of each
plane, and noting that θ is the same for all planes, one can calculate the difference
in energy between a system with and without a spin spiral. For a system without
a spin spiral, essentially the minimum energy configuration, the angle between
planes is zero. Thus the total increase in internal energy caused by the insertion
of a spin spiral is given by:

∆U = JNplanes (cos θ − cos 0) = JNplanes (cos θ − 1) (6.26)

If it is assumed that the thermodynamic average of the magnetisation within a
plane is the same for all planes, and that the angle between all planes is the same,
then this idea can be extended to higher temperatures, where the internal energy
is replaced by the free energy. Thus an effective exchange parameter, J (T), can be
calculated as a function of the system temperature, and through Equation. 6.22
related to the micromagnetic exchange constant, A.

Calculation of the Free Energy of a Spin Spiral using the Torque Method

In order to calculate the effective exchange parameter, one must first compute
the free energy of the system. The torque, —T —, is defined as the negative
first derivative of the free energy with respect to some generic thermodynamic
variable, as previously described in Section. 6.2. In this case the variable was
chosen to be the angle between adjacent planes, θ. Thus we have:

|T | = −
∂F

∂θ
= −

∂�U�
∂θ

(6.27)

Taking the derivative of equation. 6.25 with respect to θ then gives:

|T | = J sin θ � J θ for small angles (6.28)
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In order to check that the torque yields the system energy at zero temperature,
one can integrate with respect to the angle between planes, so that:

∆Utorque = −

� θ

0
JNplanes sin θdθ = JNplanes (cos θ − 1) (6.29)

which is indeed the same expression as derived in equation 6.26.

Simulation Method

The micromagnetic exchange constant is calculated using a simple cubic atomic
system of size 40× 20× 20 atoms with periodic boundary conditions, as shown
in Figure. 6.14. The Hamiltonian for the system is formed purely of the
Heisenberg exchange interaction, which is limited to nearest neighbours only
with an exchange constant of Jij = 6.82 × 10−21 Joules/link, giving a Curie
temperature of 750 K.

Figure. 6.14: Visualisation of the atomistic system used to calculate the
micromagnetic exchange constant. Two of the planes are
constrained to point along different directions, while the other
planes are equilibrated using the standard Monte Carlo algorithm.
The constrained spins at the centre of the system are set at an angle
ϕ to the z-axis.

In order to force a spin spiral into the system, two constraints must be used,
holding the magnetisation of one plane along the z-axis, and the magnetisation
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of another plane at an angle of ϕ to the z-axis. In order to eliminate surface effects
arising from reduced coordination number at the constrained planes, the system
is constructed to be double length, where the sense of rotation of the spin planes
is opposite at either side of the constrained planes. The remaining planes do not
need to be constrained and so they are minimised using a standard Monte Carlo
Metropolis algorithm. The system is initialised in a spin spiral between the two
constrained planes, which is the ideal configuration at zero temperature.

The restoring torque is the same for all the planes in the system due to
symmetry, and so one could calculate the torque for a single plane and multiply
by the number of planes. Since the algorithm requires identification of the
constrained planes anyway, these planes were used to calculate the restoring
torque. Since the sense of rotation is opposite for the two constrained planes,
the torque also has a different sign for each plane, though the magnitude is the
same.

In order to calculate the difference in free energy between a system with
and without a spin spiral, the total angle between the constrained planes is
varied from ϕ = 0 and ϕ = π. From equation 6.28, the restoring torque as a
function of the angle between planes (θ = ϕ/[Nplanes− 1]) should approximately
be a straight line. The difference in the free energy of the system between
ϕ = 0, π is given by the integral of the torque between those limits. Due to
thermal fluctuations, especially at high temperatures, the error associated with
the restoring torque for a particular angle of θ can be quite large. Consequently
it is more accurate to perform a linear regression on the torque line and compute
the area under the line analytically. Where the gradient of the torque line, mT , is
given by mT = ∂|T |/∂θ and the torque is given by |T | = mT θ, the difference in
free energy between ϕ = 0, π is:

∆F =
� θ

0
mT θdθ =

�
mT θ2

2

�θ

0
=

mT θ2

2
(6.30)

A plot of a typical torque line is plotted in Figure. 6.15 for a system temperature
of 500K. The figure shows that the torque is linear in ϕ, since the angle between
neighbouring planes is very low. The small scatter of the points about the
regression line at such high temperature is indicative of the robustness of the
method. It should be noted that it is possible to use a one-point quadrature rule
as for the anisotropy calculations. However, the errors associated with a single
date point are much larger, and so calculating the entire torque integral is a more
reliable method in this case.

The temperature dependence of the free energy is calculated from torque lines
at 10 K increments. In order to extract the effective exchange parameter, J , it is
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Figure. 6.15: Plot of restoring torque against angle between constrained planes, ϕ,
at a temperature of 500 K. The gradient of the torque line is shown
by the black line.

necessary to take into account its angular dependence. If it is assumed that the
angular dependence of J is independent of temperature, then from equation 6.26
we have:

J =
∆F

cos θmax − 1
(6.31)

where θmax is the maximum angle between adjacent planes.
The reduced exchange energy, J /Jij, is plotted as a function of temperature

compared with the system magnetisation in Figure. 6.16(a), while a plot of the
scaling of J /Jij with reduced magnetisation is plotted in Figure. 6.16(b).

The micromagnetic exchange constant is more strongly temperature dependent
than the system magnetisation, showing that long range spin correlations do
not exist at high temperatures. Also the error in the results is still quite visible,
since the exchange values fluctuate quite strongly. The temperature scaling of the
micromagnetic exchange for temperatures up to 200 K shows a low temperature
exponent of J /Jij ∼ M1.71. This result is close to that of other methods [75],
where the exponent was found to be J /Jij ∼ M1.66. The slight discrepancy
between the results is due to the sensitivity of the exchange scaling and the scatter
in the calculated data points. The reason for the scaling behaviour of M∼1.66 is not
yet understood, and a more detailed investigation of this phenomenon is needed
to fully determine the source of the strange exponent.
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Figure. 6.16: Temperature dependence (a) and scaling (b) of the reduced effective
micromagnetic exchange constant, J /Jij. The temperature scaling
of the micromagnetic exchange shows a low temperature exponent
of J /Jij ∼ M1.71.

6.5 Conclusion

This chapter has presented a new constrained Monte Carlo method which
has been applied to investigate the temperature dependencies of a number of
magnetic properties. A method for calculating the change in free energy of a
system by integration of the system torque has also been shown. The results
for the temperature dependence of uniaxial and cubic anisotropies show good
agreement with the analytical theories, showing M3 and M10 scaling at low
temperatures respectively.

The method has also been used to investigate the temperature dependence of
the surface anisotropy in thin films of Cobalt. Due to the flat surfaces the surface
anisotropy yields either an easy plane or easy axis configuration for the surface
spins. This characteristic avoids the complicated cubic energy surfaces seen in
Chapter 5, and thus allows the simple calculation of the temperature dependence
of the surface anisotropy. This calculation showed that the surface anisotropy
free energy scales with the surface magnetisation.

Finally the temperature scaling of the micromagnetic exchange parameter,
A was calculated, by creating a spin spiral using the constrained Monte Carlo
method. This calculation shows that the micromagnetic exchange parameter
scales with the system magnetisation as M1.71, which is different from the
assumed mean field temperature dependence.

The final chapter of this thesis will apply the techniques and methods
developed so far to investigate a more practical problem, that of Heat Assisted
Magnetic Recording.



7. An Atomistic Media Model for Tbit/in2

Heat Assisted Magnetic Recording

At the time of writing the highest areal density in commercial hard disk drive
products is around 240 GBit/in2 [76]. In order to increase the performance and
capacity of disk drives in the future it is necessary to increase the storage density.
This presents a number of unique engineering and physical challenges [77].

A critical problem for increased data density is the thermal stability of the
written information. The principle of magnetic recording is to write a magnetic
bit in one of two magnetic states, each separated by an energy barrier. The size
of the energy barrier in a single domain particle is primarily determined by the
magnetocrystalline anisotropy energy of the material and the particle size [78].
Clearly increasing data density requires smaller bit sizes, and thus materials
with a much higher magnetocrystalline anisotropy energy, such as L10 FePt.
Such materials do exist but the high anisotropy energy also hugely increases the
coercivity of the material, making it impossible to write the data with existing
recording heads. This is an intractable problem requiring novel approaches to
overcome the physical limitations.

7.1 Heat Assisted Magnetic Recording

It is well known that the magnetocrystalline anisotropy energy reduces significantly
with increasing temperature. By using a heat source to raise the temperature of
the material, it is possible to make use of this property for magnetic recording.
The heat source reduces the material coercivity for the writing process, while
retaining good thermal stability at room temperature due to the high anisotropy
energy. The most effective form of heating utilizes a high power laser mounted
directly on the recording head; a process known as Heat Assisted Magnetic
Recording (HAMR). Other common names include Optically Assisted Magnetic
Recording (OAMR) or Thermally Assisted Magnetic Recording (TAMR). A
typical layout of the recording arrangement for HAMR is illustrated in Figure. 7.1.

A number of micromagnetic models have previously been developed to
model the HAMR process [77, 79], but make a number of assumptions which
are certainly not true as the grain size of magnetic media decreases well into
the sub 10 nanometre regime. Micromagnetics is essentially a continuum
formulation, in its original form valid at zero temperature only. However,
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Figure. 7.1: Visualisation of the arrangement of the recording head and media
for HAMR, showing key components with typical dimensions. The
proximity of the field head to the laser is closely related to the rate of
cooling and maximum temperature for the writing process.

improvements to the model over time have allowed temperature effects to
be incorporated into micromagnetics, principally by scaling the length of the
magnetisation vector, exchange energy, anisotropy energy and other material
parameters with temperature. The Landau-Lifshitz-Gilbert equation of motion
for the micromagnetic spin system with temperature incorporates Langevin
dynamics in a similar manner to the atomistic model, except it is applied at
the granular macrospin rather than atomistic level. In this case the width of the
thermal field distribution for a single micromagnetic cell is given by:

σ =

�
αkBT

MsVγ∆t
(7.1)

where α is the damping constant, kB is the Boltzmann constant, T is the absolute
temperature, Ms is the saturation magnetisation of the cell, V is the cell volume,
γ is the gyromagnetic ratio, and ∆t is the integration timestep. These ideas
are certainly applicable in the case of reasonable micromagnetic cell sizes (tens
of nanometres) and for temperatures much lower than the Curie temperature,
where the length of the micromagnetic macrospin does not change significantly.
However, for small system sizes and high temperatures the above assumptions
are definitely not applicable and thus will provide incorrect results [80, 81].

For small micromagnetic cell sizes, the cell only represents a few atoms.
Because of this, near the Curie temperature the atomic scale thermal fluctuations
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are significant enough to considerably affect the length of the macrospin magnetic
moment, which in turn can be critical for fast reversal processes. For these
reasons micromagnetic models as they currently stand are wholly unsuitable to
accurately model the HAMR process. New approaches, such as the Landau-
Lifshitz-Bloch (LLB) macrospin equation [82, 83], may well accurately reflect the
influence of atomic scale fluctuations.

In order to better understand the core physics of the HAMR process, an
atomic-scale model of the recording medium has been developed. Such a
model is not limited by the same restrictions as micromagnetics regarding the
continuum approximations, and so can accurately reflect the magnetisation
dynamics on a sub-picosecond timescale. The supreme disadvantage with such
an approach is computational effort due to the requirements of simulating over
a hundred 3.5 nm grains, but the simulations do provide valuable insight into
the details of the recording process. Information from these results can then be
fed into macrospin models, such as the LLB, allowing much larger systems to be
modelled which much better reflect the underlying physics of HAMR [84].

The chapter is structured as follows; the first part of this chapter will describe
the modelling methods developed to model the thermal effects arising from
rapid laser heating. The next section will then address the fundamental physics
of HAMR, by investigating the process for single isolated FePt grains in the
range 2-10 nm in diameter. The second part will then apply this knowledge to
the creation of a working atomistic model of the recording process on realistic
recording media, where the effects of variable grain size, media rotation speed,
laser power and other phenomena can be properly taken into account. Finally
the feasibility of using conventional media to achieve a recording density in the
range 1-2 Tbit/in2 is discussed.

7.2 Thermal Modelling

The first section of this chapter addresses the thermal modelling of laser heating
within a magnetic recording medium and also isolated grains, where the spatial
and temporal temperature profile is important for the magnetisation dynamics.
Usually a two-temperature model is employed to model the effects of heat
transfer in isolated laser-heated systems [85, 86, 87, 88]. The two-temperature
model treats the electrons as a separate system to the lattice and models the heat
transfer between the two systems. However, such a model takes no account of the
spatial temperature profile essential for a large-scale recording model. In order to
effectively model the spatial and temporal heat profile a simple, purely classical,
electron heat transfer model was developed. Recently more advanced treatments
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of the problem, such as the Lattice-Boltzman method [89], have been suggested,
but the simple classical model suffices for the purposes of a recording simulation
in the first instance. From a magnetic standpoint, the electron temperature is the
characteristic magnetic temperature, and so the heat transfer model deals only
with this temperature.

The heat transfer model works by dividing the recording layer or grain into
small blocks (0.5 nm cubed) with an electron specific heat capacity at constant
volume, |cm|v, and a thermal conductivity of km. Underneath the recording layer
is a thick heatsink layer with a thermal conductivity of kh. Neighbouring blocks
of material exchange thermal energy dependent on the temperature gradient,
timestep, and specific heat capacity. The bottom of the heatsink is held at room
temperature so that excess heat is always removed from the recording layer.
The heat is added from the laser by assuming a normalised Gaussian energy
distribution. Therefore, for each cell in the magnetic layer we can express the
total change in thermal energy per unit time, ∆Ethermal, as:

∆Ethermal
∆t

= ∆Elaser − ∆Emagneticlayer − ∆Eheatsink

= Plaser exp
�
−r2

2r2
o

�
−

1
2 ∑

j=1,4

km Acell∆Tij
m

Lcell
−

kh Acell∆Th
Lheatsink

(7.2)

where Plaser is the laser power, r is the distance of the cell from the centre of
the laser spot, 2ro

√
2 ln 2 is the full-width-half-maximum of the laser, Acell is the

area of the discretised cell, Lcell is the centre-to-centre cell separation distance,
∆Tij

m is the temperature gradient between neighbouring cells i and j, ∆Th is the
temperature gradient between the cell and the base of the heatsink, and Lheatsink

is the thickness of the heatsink, as shown in Figure. 7.2.
The change in thermal energy is then converted to a temperature rise by the

relation:

∆T =
∆Ethermal
|cm|vVcell

(7.3)

where ∆T is the temperature rise in the cell, and Vcell is the volume of the cell.
These equations are then solved for each cell to generate the thermal profile in
the magnetic layer. This model allows certain material parameters, such as the
heat sink thermal conductivity or laser power, to be tuned for optimal recording
results.

The actual grid size for the thermal modelling is considerably larger than the
simulated magnetic area, as shown in Figure. 7.3. This is due to the fact that the
heat from the laser tends to spread out over a wide area. If the thermal array is
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Figure. 7.2: Visualisation of a classical heat transfer model, showing key elements
and dimensions.

limited to the magnetic area then there is an artificial concentration of heat at the
ends of the array which leads to an unphysical increase in the temperature under
the laser spot. This problem is solved by having a large thermal modelling area.

A typical temperature profile is shown in Figure. 7.4. The asymmetry of the
profile is due to the proximity of the laser source and write head, causing a
substantial proportion of the laser power to be absorbed by the write head above
the medium. This is modelled by truncating part of the light profile from the laser
in Equation. 7.2.

The thermal conductivity of the heatsink material essentially determines the
lateral extent of the hot spot in the magnetic layer, as this is the only mechanism
which removes heat from the system (laterally the heat is only distributed).
Since the laser spot size is already much bigger than the size of a magnetic bit,
aggressive heatsinks are needed to localise the heating, thus preventing adjacent
magnetic data from being erased, however highly conducting materials also
require much more powerful lasers to heat the material. As such Silicon is an
optimal heatsink material as it has a high thermal conductivity of 140 W/mK.
The thermal conductivity of the magnetic layer is primarily determined by its
chemical composition and the actual structure. Due to its granular nature, the
thermal conductivity of the media layer is quite low, typically around 5 W/mK.
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Figure. 7.3: Visualisation of thermal modelling grid and magnetic area, showing
key dimensions.
































































Figure. 7.4: Representation of a typical spatial temperature profile of a laser pulse
centred on a magnetic recording medium. The laser power is 3.0 mW
and the FWHM of the laser is set at 40 nm. The asymmetry in the
profile is caused by the proximity of the laser source and write head.
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In fact, due to the granular structure of the medium, it is likely that heat will be
localised within the magnetic grains due to the high thermal conductivity of the
packing medium. In general, of course, a lot of the so-called “constants” in such a
model are in fact temperature dependent, and future models will likely take such
effects into account.

7.3 The Physics of Heat Assisted Magnetic Reversal

In order to better understand the fundamental reversal mechanism during the
HAMR process, the reversal of a single, isolated grain was investigated first.
A critical requirement of any magnetic recording process is repeatability - a
single grain must reliably reverse every time. HAMR significantly complicates
this requirement since the reversal mechanism is dominated by the thermal
fluctuations induced by the rapid heating. By investigating these effects for a
single, isolated magnetic grain, ideal conditions for a larger scale system can be
found much more quickly due to the much reduced computation time.

Magnetic Reversal Mechanisms near the Curie Point

For conventional magnetic recording, the magnetic grains are reversed through
rotation of the magnetic moments by the external field, so-called precessional
reversal. During the conventional reversal process the length of the magnetic
moment remains essentially constant, since it is related to the temperature of the
system. Note that this is the only possible mechanism when simulating systems
using the LLG equation.

Near the Curie temperature, however, the length of the system magnetisation
can vary during the reversal process due to the strength of the anisotropy and
applied fields compared with the exchange energy. A similar effect has been
observed previously in investigations into domain walls in FePt [39], where at
elevated temperatures the high anisotropy field caused a reduction of the length
of the magnetisation at the centre of the wall (in the magnetically hard direction),
generating elliptical domain walls 1.

The relevance of this phenomenon to magnetic reversal is that it allows
for another, previously unknown, route for the reversal process, namely a
reduction in the length of magnetisation which aids the transition between energy
states along and against the applied field direction. Due to the anisotropy

1 Elliptical domain walls are a perturbation of the usual Néel domain wall, where the wall is
formed by a gradual circular rotation of the magnetisation vector along the plane of the wall.
For elliptical walls, the length of the magnetisation is reduced at the centre (in the magnetic hard
axis) due to the strength of the anisotropy energy and thermal fluctuations. This gives the wall an
elliptical profile in M, hence the name.
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field, the maximum reduction in magnetisation length occurs when the system
magnetisation is orientated along the magnetic hard axis. This is because the high
anisotropy competes with the exchange interaction along the hard axis, whereas
along the easy axis the exchange and anisotropy energies are complementary.
Since the anisotropy and applied field energies are ultimately dependent on the
length of the system magnetisation, this leads to a reduced configuration energy
along the magnetic hard axis, and thus a reduction in the energy barrier between
the two minimum energy states.

The path of the system magnetisation vector under this process (in zero
field) is an ellipse, and hence this is given the name elliptical reversal. In its
extreme form the reversal process is entirely due to the reduction in the length
of the system magnetisation, and this is classified as linear reversal, where no
precessional component exists. Schematic diagrams for all three reversal modes
are shown in Figure 7.5. It should be emphasised here that these effects occur only
at temperatures in the vicinity of the Curie point, since at lower temperatures the
exchange energy prevents any significant reduction in the length of the system
magnetisation. In fact the linear and elliptical reversal mechanisms each have
different temperature regimes, a detailed analysis of which can be found in [90].

!

!

(a) In the precessional
reversal mode, the magnitude
of the system magnetisation
remains constant, as it
precesses around the external
applied field.

!

!

(b) In the elliptical reversal
mode, the magnitude of
the system magnetisation
reduces to a minimum as it
crosses the magnetic hard
axis, and recovers as the
magnetisation realigns along
the easy axis direction.

!

!

(c) In the linear reversal
mode, the magnitude of
the system magnetisation
reduces to zero as the Mz
component of magnetisation
crosses zero.

Figure. 7.5: Schematic plots of precessional (a), elliptical (b) and linear (c)
reversal modes of the system magnetisation under the influence of an
external applied field. The red lines indicate the path of the system
magnetisation for the different modes relative to its alignment to the
easy axis.

In order to illustrate the effect of temperature on the heat assisted reversal
process, simulations of the reversal of 10 nm diameter FePt nanoparticles were
performed. This particle size is much larger than that needed for a recording
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density of 1TBit/in2, but as will be illustrated later, the success of the HAMR
process is significantly volume dependent. The model utilises the truncated FePt
Hamiltonian described in section 2.6, which incorporates the effects of anisotropic
exchange coupling, which are important for modelling FePt realistically. The
simulations were performed on a single isolated cylindrical grain, with a moving
laser pulse with a varying laser power. The laser is initialised directly above the
grain, and then moved away at constant speed, resulting in a cooling time to
room temperature of approximately 300 ps. The effect of the laser is to heat the
material to the desired temperature, which is determined by the laser power. The
Curie temperature of the grains is ∼ 700K, and so maximum temperatures of 673
K, 691 K, 710 K and 800 K were chosen. All of these temperatures are above the
minimum write temperature, where the external applied field is greater than the
anisotropy field, Hk = 2Ku(T)/Ms. In principle this means that magnetic reversal
should be energetically favourable for all the above temperatures. The grain
magnetisation is initialised in the positive z-direction, and an external reversing
field of 0.8 Tesla was applied along the negative z-direction. The system is first
equilibrated for 5 ps, at which point the laser is then activated. The simulations
were repeated 100 times so that the relative reliability of the reversal process
could be assessed. The first ten results for each temperature are plotted in
Figure. 7.6.

The data in Figure. 7.6(a) for the lowest temperature of 673 K, which is around
25K below Tc, shows only one reversal in ten is successful. As can be seen, the
reversal process in this case is largely precessional, since at no point do all three
magnetisation components go to zero. This corresponds to the case where the
elevated temperatures, and thus reduced anisotropy, allow the field to reverse
the magnetisation via precession. The fact that reversal occurs at all suggests that
for long timescales the reversal process is energetically favourable, however, the
low success rate suggests that the precessional reversal process is insufficiently
fast for successful HAMR. If the cooling time is increased significantly, then one
would expect to achieve a much higher reversal success rate. However, such a
long time is not possible in a practical device.

For a maximum temperature of 691K, as shown in Figure. 7.6(b), the reversal
success rate is much higher than for the lower temperature, at approximately
50 %. Firstly this shows a very sharp temperature dependence of the reversal
success rate, given the small increase in temperature. In general the data also
show a mixture of elliptical and near-linear reversal mechanisms. Counting
from the left of the figure, reversals 1, 2, and 5 show a significant component
of magnetisation perpendicular to the easy axis, indicating an elliptical reversal
mode. However, reversal 9 shows a nearly pure linear transition, since all
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(a) Magnetisation components vs time for
Tmax = 673 K.























      















        

(b) Magnetisation components vs time for
Tmax = 691 K.























      















(c) Magnetisation components vs time for
Tmax = 710 K.























      















(d) Magnetisation components vs time for
Tmax = 800 K.

Figure. 7.6: Effect of temperature on the reversal mechanism for maximum
temperatures, Tmax, of 673K (a), 691K (b), 710K (c), and 800K (d).
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components of magnetisation go very close to zero. The final successful reversal,
7, shows a stronger reduction of all three magnetisation components compared
with reversals 1,2, and 5, suggesting a more elliptical reversal mode. Although
the elliptical reversal mode seems to be energetically favourable, the rapid
cooling time means that the reversal success rate is still only 50%, since there
is insufficient time to allow the system to fully equilibrate. As with the previous
example, if a longer cooling time is used then one would expect the process to be
much more successful.

In order to see true linear reversal, practically one must heat the material
significantly above the Curie temperature, as shown in Figure. 7.6(d). The reason
for this originates from the small size of the grains. In a bulk material, the
magnetisation at Tc is zero, but as shown previously in Chapter 3, small particles
possess a persistent average magnetisation at and above Tc. This persistent
magnetisation means that, on average, there is likely to be some non-easy axis
magnetisation component due to the random thermal fluctuations, in which
case the reversal mechanism is closer to elliptical than linear. If the system
temperature is increased to above Tc then the anisotropy energy disappears, since
the thermal fluctuations in the length of magnetisation are truly random. This
then allows the linear reversal mechanism to appear, since the magnetisation
vector can take up any orientation with equal probability.

The data in Figure. 7.6(d) show a 100% reversal success rate, which is
primarily due to the linear reversal mechanism. As can be seen, the very high
Tmax of 800K rapidly reduces the magnetisation to a very small value. Above
Tc the anisotropy energy disappears, leaving only the external applied field. In
the vicinity of Tc the susceptibility of the material diverges, strongly enhancing
the effect of the external applied field on the magnetisation orientation. The
combination of these effects is to orientate the (small) magnetisation vector along
the field direction within 10 ps of activating the laser. An expanded view of this
is shown in Figure. 7.7.

Although the z-component of magnetisation does occasionally oppose the
field direction, it is much more likely to lie along the field direction. As the
grain is cooled through Tc, the susceptibility becomes very large, forcing the
magnetisation to point along the field direction. Under further cooling the
increasing anisotropy field prevents the magnetisation escaping from the field
aligned direction, resulting in a very robust reversal mechanism.

The final result to discuss is that for a maximum temperature of 710 K, which
is just above Tc, as shown in Figure. 7.6(c). As for the case of Tmax = 800 K, the
reversal process is 100% reliable, although due to the persistent magnetisation
above Tc, the reversal process is generally more elliptical rather than linear.
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Figure. 7.7: Plot of Magnetisation components vs time for Tmax = 800 K showing
initial reversal within 10 ps of laser activation. As the system
cools the grain exhibits superparamagnetic behaviour, with multiple
switching events. At t=125 ps the field orients the magnetisation in
the negative z-direction, at which point it is stable due to the lower
system temperature.

Visualisation snapshots of the reversal process at different times are shown in
Figure. 7.8. On the left of each image is a cutaway view of the grain with atomic
moments, while on the right is the single macroscopic spin which shows the
magnetisation volume and direction of the collective grain.

Initially, at a time of 5 ps, the grain magnetisation is orientated along the
+z-axis. The laser is then activated, causing a rapid reduction in the length
of the system magnetisation due to the increased temperature, as shown in
Figure. 7.8(b). In Figures. 7.8(c) and 7.8(d) the magnetisation length becomes very
small and rotates across the hard axis. The enhanced damping due to the high
temperature causes a near linear change of Mz across the magnetic hard axis,
though M/Ms is finite throughout. Note that even at temperatures near Tc there
are visible short range correlations in the magnetisation. As the system is cooled
the length of magnetisation begins to recover, as shown in Figure. 7.8(e) until
the grain becomes near-uniformly magnetised in the field direction as shown in
Figure. 7.8(f). During the recovery there is a slight precession arising from the
magnetisation not recovering precisely along the easy direction.
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(a) (b)

(c) (d)

(e) (f)

Figure. 7.8: Visualisation snapshots of the HAMR process for a single 10nm
diameter FePt grain for a maximum temperature of 710 K.
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Time Dependence of Reversal below Tc

One important effect not yet addressed is the time dependence of the reversal
success rate. For single domain particles at low temperatures, where the
anisotropy energy is much greater than the thermal energy, the escape rate is well
described by an Arrhenius-Néel law [9, 10]. At higher temperatures, however, the
transition rates are not easily calculated, since they depend on the actual shape of
the energy surface. However, taking a generic system with some energy surface
not in an equilibrium state, one can certainly say that the longer the system has
to equilibrate, the closer the system will be to thermal equilibrium. This effect
is central to understanding the physics behind ultrafast reversal processes, since
even if a certain equilibrium state favours reversal, if there is insufficient time to
reach equilibrium then the reversal success rate will not reflect the equilibrium
distribution.

In order to determine the time to reach equilibrium, a simplified reversal
simulation was performed. The system chosen was a 6nm diameter FePt
nanoparticle, with a magnetisation initialised in the positive z-direction. An
external applied field is applied in the negative z-direction, which attempts
to reverse the grain magnetisation, for the duration of the simulation. After
equilibration at room temperature, the grain is instantly heated to 670K, simulating
a fast laser pulse. After a certain pulse time, ∆t, the grain is instantly cooled to
423K, simulating deactivation of the laser, but with some remaining heat in the
material. At this lower temperature the system magnetisation direction is stable
on the timescale of the simulation and does not change. Since the maximum
temperature is below Tc, the reversal mechanism is entirely elliptical, and the
system magnetisation remains non-zero at all times. At the end of the simulation
the final magnetisation direction is recorded and the simulation repeated 100
times. The number of grains which are orientated along the field direction are
then counted, giving a measure of the reversal success rate. The laser pulse time
is varied between 10 and 110 picoseconds to determine the time dependence of
the reversal success probability. A plot of the percentage write success rate as
a function of laser pulse time for applied field strengths of 0.8 and 2.0 Tesla is
shown in Figure. 7.9.

The difference between the two field strengths is quite stark for this simulation,
with the 0.8 Tesla external field showing a very slow convergence to the equilibrium
energy state, while the 2 Tesla external field has a very fast convergence, showing
100% reversal after only 20 ps. This effect can be explained by noting that for this
temperature the coercivity is approximately 0.5 Tesla, so for the 2 Tesla external
field the magnetisation transitions very rapidly to lie along the field direction.
For the 0.8 Tesla external field, the transition to equilibrium relies more heavily
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Figure. 7.9: Plot of the time dependence of the reversal success rate for a 6nm
diameter FePt grain, for different laser pulse times and applied field
strengths. The line provides a guide to the eye.

on thermal activation and thus progresses much more slowly. The underlying
trend for both cases shows a transition to equilibrium for increasing laser pulse
times, in keeping with the qualitative prediction of the Arrhenius-Néel Law.

Given that a realistic head field in a practical device is approximately 0.8 Tesla,
this simulation shows that, for a temperature of 670 K, reliable magnetic reversal
will not occur on the timescale of 100 ps. This problem can be overcome on the
physical level either by the application of a much stronger applied field, or by
increasing the temperature closer to Tc, where the coercivity is lower and the
transition rates are increased.

Volume Dependence of Heat Assisted Magnetic Reversal

Although the details of the temperature and cooling time are critical to achieving
successful heat assisted reversal, understanding the precise temperature and
volume dependence of the process is important for determining the limits
of the technology. If one neglects the time dependence of the write success
rate, excepting that the cooling time must allow the system to reach thermal
equilibrium, one can consider the equilibrium distribution of the magnetic
moment as representing, on the fundamental level, the physics of heat assisted
reversal.

For conventional magnetic recording, where the strength of the external
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applied field exceeds the anisotropy field, 2K/Ms, the effect of the field is to bias
the energy so that the minimum configuration energy exists where the system
magnetisation lies along the field direction. The total energy of the system is
given by the summation of the anisotropy and applied field energies, given by:

Etotal(θ) = Eapplied(θ) + Eanis(θ) = MVH cos θ + KV sin2 θ (7.4)

where θ is the angle from the positive z-direction, M is the particle magnetic
moment, H is the applied field strength, K is the anisotropy constant, and V is
the particle volume. A plot of the angular dependence of the anisotropy, applied
field and total energies for an arbitrary system with Eapplied = 2Eanis is shown in
Figure. 7.10.


























    





















Figure. 7.10: Plot of the normalised applied field, anisotropy, and total energies as
a function of angle from the positive z-axis, where Eapplied = 3Eanis.

As can be seen, the effect of the external field is to bias the energy so that
the minimum energy state is along the field direction. In order to obtain the
statistics for this system, for an ensemble of identical moments, one can calculate
the probability of the magnetic moment lying at a certain angle from the positive
z-axis, P(θ), using the Boltzmann distribution of the form:

P(θ) = sin θ exp
�

∆E
kBT

�
= sin θ exp

�
MVH cos θ + KV sin2 θ

kBT

�
(7.5)

where kB is the Boltzmann constant and T is the absolute temperature. The sin θ
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prefactor arises from the relative area on the unit sphere, which is maximised at
the equator. The Boltzmann distribution for the same system as above is shown
in Figure. 7.11 for the low temperature case (∆E/kBT = 0.1).













    
















Figure. 7.11: Plot of the normalised probability of the magnetic moment lying at
an angle θ from the positive z-axis for Eapplied = 3Eanis.

As can be seen, the probability of the magnetic moment being aligned against
the field direction in equilibrium is effectively zero. This agrees with the plots of
the energy in Figure. 7.10, showing the minimum along the field direction.

For heat assisted reversal, however, the situation is more complex than
this picture, since both the applied field energy and anisotropy energy are
temperature dependent. However, an analytic expression for the free energy of a
ferromagnet at all temperatures exists which can be used to correctly describe the
energetics of a magnetic system close to the Curie Temperature. The Garanin
expression for the free energy of a ferromagnet per unit magnetisation and
volume, F , taken from the derivation of the Landau-Lifshitz-Bloch equation [82],
is given by:

F =
Fe
V

+ H ·m +
m2

x + m2
y

2χ⊥
+

�
m2 −m2

e
�2

8χ�m2
e

(7.6)

where m is a vector describing the magnitude and direction of the system
magnetisation. Note that the above expression is valid only for temperatures
below Tc - above Tc a different expression exists which can be found in reference
[82]. The first term, Fe

V , is an isotropic ground state energy which is independent
of temperature. The second term describes the coupling of the system to an

external magnetic field, H, while the third term,
m2

x+m2
y

2χ⊥
, describes the anisotropy



7. The Physics of Heat Assisted Magnetic Reversal 123

free energy, assuming a uniaxial easy axis along the z-direction. The temperature
dependence of the free anisotropy energy is described by the temperature
dependent perpendicular susceptibility, χ⊥, which is fitted to atomistic simulations

or derived from mean field theory. The final term, (m2−m2
e)

2

8χ�m2
e

, describes a change

in energy associated with deviations from the equilibrium magnetisation for a
given temperature, me, and arises from the internal exchange energy. As for the
anisotropy, there is a temperature dependent parallel susceptibility, χ�, which
describes the temperature dependence of this effect. For the purposes of the
following analytical work, the temperature dependence of m, and the parallel
and perpendicular susceptibilities were all calculated from atomistic simulations
of FePt in reference [91].

This simple description of the free energy of a ferromagnetic system hides a
myriad of complex physics, some of which is investigated in detail by Kazantseva
[90]. For the purposes of the following, however, we are primarily interested
in the Boltzmann spin distribution for systems of different sizes for different
temperatures. Unlike previously, however, the Boltzmann distribution cannot
be described in terms of a unique value of θ, since the magnetisation is able to
go to zero. Also the Boltzmann distribution describes a population of states over
the x, y, and z components of the magnetisation. Since the Garanin free energy is
rotationally invariant perpendicular to the z-axis, the problem can be reduced to
the x-z plane. Plots of the two dimensional Boltzmann distribution for a 3 nm3

FePt nanoparticle for three different temperatures are shown in Figure. 7.12.

(a) (b) (c)

Figure. 7.12: Boltzmann Distribution for 3 nm3 FePt Nanoparticle for 400 K (a),
600 K (b), and 650K (c).

As can be seen, at a temperature of 400 K the magnetisation tends to
align along the ±z direction, indicated by the maximum probability. At low
temperatures the length of the magnetisation is forced to be very close to the
equilibrium length, leading to a very narrow distribution in the length of m,
while the anisotropy ensures that the magnetisation is orientated along the
±z direction. As the temperature is increased to a temperature of 600 K, the
equilibrium magnetisation is decreased to approximately 40%. However, the
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distribution in the direction and length of magnetisation is much broader, due
to the increased parallel susceptibility and reduced anisotropy energy. Very
close to Tc, at a temperature of 650 K, the Boltzmann distribution is still a
maximum at ±mz

e , but now there is a significant probability of the magnetisation
lying at mz = 0, indicating a superparamagnetic state. What is particularly
interesting is that, for the line along mz = 0, the maximum probability lies where
mx = 0, essentially showing that the most likely reversal mode is via the linear
mechanism, as described earlier.

In order to calculate the Boltzmann distribution for a single variable, such as
mz, then the distribution of probabilities over mx must be taken into account.
This is done by taking a sum over all mx probabilities for a unique value of
mz. Utilising the Boltzmann distribution of the free energy for different values
of mz allows the investigation of the equilibrium spin distribution for different
sized particles, for different field strengths and temperatures. This new approach
allows one to take into account elliptical and linear reversal modes explicitly
within the Boltzmann distribution to determine the reversal probability for a
given system. Plots of the equilibrium spin distribution for 2 nm, 3 nm, 4.5 nm
and 6 nm diameter particles are shown in Figure. 7.13 for different temperatures
and an external applied field of 0.8 Tesla in the positive z-direction.

Considering first the case of the larger 6nm diameter particles, as shown in
Figure. 7.13(d), one can see that in equilibrium the probability of the macrospin
moment being aligned against the field direction is effectively zero for temperatures
below 640 K. This equates to the low temperature case for conventional reversal,
where the reversal process is totally reliable provided the system is given
sufficient time to reach equilibrium. As the grain diameter is reduced to 4.5
nm, as shown in Figure. 7.13(c), one can see that the zero probability of the spin
moment aligning against the field direction occurs at a lower temperature of 620
K. For successful reversal to occur in this system one must therefore equilibrate
the system at a temperature of 620K or below.

For the 3 nm diameter grains, as shown in Figure. 7.13(b), another problem in
achieving successful reversal arises, namely that in equilibrium there is always a
probability of the spin moment lying against the field direction. This is a volume
effect and arises from the fact that the applied field and anisotropy energies
relate directly to the particle volume. For small grain sizes, the difference in
the configuration energies along and against the field direction, compared with
the thermal energy, become much smaller. This means that it is possible for a
spin moment initially lying along the field direction to escape into the opposite
energy well against the field direction. This is a statistical process, illustrated
by the equilibrium spin distribution as shown in the figure. This illustrates the
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(a) Spin distribution for a 2nm x 5nm Grain.



















                






 

 

 

 

 

 

 

 

(b) Spin distribution for a 3nm x 5nm Grain.















                






 

 

 

 

 

 

 

 

(c) Spin distribution for a 4.5nm x 5nm Grain.















                





 

 

 

 

 

 

 

 

(d) Spin distribution for a 6nm x 5nm Grain.

Figure. 7.13: Spin distributions for different temperatures for 2nm (a), 3nm (b),
4.5nm (c), and 6nm(d) diameter grains in an external field of 0.8
Tesla along the positive z-direction.

appearance of the fundamental small volume limit of heat assisted magnetic
reversal, since the equilibrium spin distribution no longer allows for reliable
magnetic reversal. The spin distribution for the 2 nm diameter grains shows this
effect clearly, with a significant probability of the macrospin aligning against the
field direction, even for temperatures much less than the Curie temperature.

In order to assess the overall equilibrium temperature dependent reversal
probability for different grain sizes, one can simply calculate the area under
the spin distribution curve along the field direction. This would represent
the reversal success rate if the grains were instantly cooled to zero from the
equilibrium temperature, but gives an indication of the general reversal reliability
for different grain sizes and also the minimum equilibration temperature (equating
roughly to the temperature that the medium must be cooled through in an actual
device). A plot of this reversal reliability as a function of temperature for a
realistic head field of 0.8 Tesla is plotted in Figure. 7.14.

The plot shows that for 6 nm diameter grains, the reversal reliability converges
to 100% very close to Tc, while the smaller grains converge at increasingly
lower temperatures, requiring much longer cooling times. As evident from the
equilibrium spin distribution, the 2 nm diameter grains never reach a 100%
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Figure. 7.14: Plot of the temperature dependence of the equilibrium reversal
probability for 2 nm, 3 nm, 4.5 nm and 6 nm diameter FePt grains.
The external field is set at 0.8 Tesla.

success rate due to their small volume. The question then remains, what is the
limiting factor for the equilibration temperature for use in a functional device,
since the data above show that ideally the equilibration temperature should be
as low as possible? The solution comes from the concept of a time-dependent
blocking temperature. The blocking temperature arises from the Arrhenius-Néel
law, where the critical blocking temperature, TB is given by:

TB =
∆F

kB ln t fo
(7.7)

where ∆F is the free energy barrier between the easy and hard direction, kB

is the Boltzmann constant, and fo is the attempt frequency. This expression
associates a critical temperature to a given timescale. It should be noted that
strictly this expression is valid only in the limit of ∆E � kBT, and so for the
high temperatures there is likely some small error in the analytic calculation of
the blocking temperature. The other point to note is the value of the “attempt
frequency”, fo. Conventionally this is taken to be around 109 s−1, whereas a
more realistic value [83] for higher temperatures and lower volumes is around
1012 s−1, and so this higher value is assumed for the following. In a functional
device, the cooling time in a field is effectively limited to about 100 ps. Using the
above expression for the blocking temperature, it is possible to find the minimum
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allowable equilibration temperature for an equilibration time of 100 ps. In order
to determine this minimum equilibration temperature, one must first calculate
the energy barrier, ∆E.

Due to the applied field, there are in fact two energy barriers to reversal;
the first being against the field direction, and the second being along the field
direction. Due to the asymmetry in the applied field energy with respect to
the magnetic easy axis, the energy barrier for the magnetisation to escape from
lying against the field direction is the lower of the two. Since we are interested
in the reversal probability, ie the probability of the magnetisation lying along
the field direction, then it is this lower energy barrier that is the one of interest.
However, there is a complication with this approach, in that the energy barrier,
∆E, is temperature and field dependent. A plot of the blocking temperature as a
function of system temperature for different sized grains is shown in Figure. 7.15.
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Figure. 7.15: Plot of the temperature dependence of the Blocking temperature for
2 nm, 3 nm, 4.5 nm and 6 nm diameter FePt grains. The external
field is set at 0.8 Tesla.

The blocking temperatures for both energy barriers along (P-) and against (P+)
the field direction. For zero field the two lines for each particle size are coincident,
since the energy barriers are the same. Also plotted is the line for the equivalence
of the blocking and system temperature, indicating the temperature at which the
system goes from a blocked to non-blocked state. Clearly it is this temperature
which is the actual blocking temperature, and, by comparison with the data in
Figure. 7.14, one can see that for a reliable recording method the grain size is
limited to sizes of 3 nm x 5nm or larger (assuming a 95% success rate is required),
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which limits the use of HAMR for ultrahigh recording densities, at least with
conventional granular recording media.

Finally the influence of the external field strength on the reversal probability
will be addressed. For conventional recording, the increased strength of the
applied field allows higher coercivity materials to be used for recording media.
For HAMR, however, the effect is quite different, since the coercivity is independent
of particle size provided the material remains single domain. The influence of
increased field strength is to increase the bias of the minimum configuration
energy along the field direction. This effect can partially alleviate the finite
volume problem discussed above, where the thermal fluctuations allow the spin
moment to escape the minimum energy state. A plot of the probability of the
spin moment lying along the field direction at the field dependent blocking
temperature as a function of applied field strength for different particle sizes is
plotted in Figure. 7.16.























          























Figure. 7.16: Plot of the external field strength dependence of the equilibrium
reversal probability for 2 nm, 3 nm, 4.5 nm and 6 nm diameter FePt
grains at the blocking temperature.

As can be seen, for the intermediate grain sizes the influence of increasing the
field is significant, suggesting that if write fields can be enhanced then HAMR
can be used to write information to grains with a diameter as small as 3nm in
diameter. For the 2 nm diameter grains the small volume means that even for
very large fields the reversal probability remains below 100%.

In the next section the physics described here will be applied to an atomistic
recording model for a data density of 1-2 TBit/in2. Such a recording media
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would utilise grains which are 3.5 nm in diameter, which is near the fundamental
physical limit of heat assisted magnetic reversal.

7.4 The HAMR Recording Process

In a hypothetical future device which uses HAMR, the write process essentially
involves a write head with an attached laser passing over a high density
recording media. The laser heats the medium to near or above the Curie
temperature and the write head records the magnetic information. A fast hard
drive will spin up to 15000 rpm and so the speed of the medium relative to the
head is around 50 ms−1, or in more “atomic scale units” 0.05 nm/ps. Given that a
typical bit length for 1 Tbit/in2 is ∼ 15 nm then a typical raw recording rate will
be around 3 GBit/s.

Designing an Ultra High Density Recording Medium

A conventional perpendicular recording medium utilises a granular thin film
material where the magnetic grains are separated by a non-magnetic padding
material, such as a metal-oxide. This attempts to make each grain a largely
separate magnetic entity which can be written independently of other grains.
When a recording pass is made it is possible that a grain is not written as
intended, usually due to undesired exchange coupling to nearby grains. To
ensure that the written data can be read back reliably each data bit consists of
50-60 grains. Thus if a single grain is not written successfully there will still be
many other grains with the correct magnetisation and thus give back a correct
reading to the read head.

The media material for the HAMR process has two key requirements: it must
have a high anisotropy energy, Ku, and also a relatively low Curie temperature,
Tc. Candidate materials for HAMR are presently confined to rare earth /
transition metal alloys such as FePt and CoPt. FePt with an L10 crystal structure is
an ideal candidate as it has a room temperature Ku of around 107 J/m3 and Tc ∼

750K [37]. Creating the L10 structure requires annealing at a high temperature for
a number of hours. However, the annealing process has a tendency to destroy the
granular nature of the medium and so obtaining all the desired parameters for a
perfect recording medium is proving somewhat difficult in practice [92, 93, 94].
For the purposes of this study it is assumed that these technical limitations can
be overcome. The magnetic modelling utilises a truncated FePt Hamiltonian as
described in section 2.6, which incorporates the effects of anisotropic exchange
coupling, which are important for modelling FePt realistically.
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For realistic modelling of a recording media, a close approximation to the real
granular structure is required. An illustration of how this is achieved is shown in
Figure. 7.17.

!nniittiiaall  hheexxaaggoonnaall
ggrraannuullaarr  llaattttiiccee

TToouucchhiinngg  ggrraaiinnss
wwiitthh  aattoommiicc  lleevveell
eexxcchhaannggee  iinntteerraaccttiioonnss

NNeeww  mmeeaann  ggrraaiinn
ccoooorrddiinnaatteess

Figure. 7.17: Illustration of how the granular recording media is generated.
The grain template starts with a hexagonal lattice which is then
randomly extended as indicated by the arrows. These points are
then connected by an ellipse to create the grain. The red dots
indicate the new grain coordinates which are used to calculate the
dipolar fields.

The atomic scale model of the medium is made by first making a large single
crystal of the desired material (eg L10 FePt). A template is then used to identify
a pseudo granular structure within the single crystal. The starting origin of each
of the grains is fixed on a hexagonal lattice, shown by the black dots and dashed
lines in the above figure. The starting points are separated by a distance just
greater than the desired mean radius for the grains, in this case 1.9 nm. In order
to randomise the shapes of the grains, an initial radius of 1.7 nm was chosen,
added to which was a randomly chosen distance of ± 0.5 nm. The random part
was added separately to the +x,−x, +y,−y components of the radius, leading to
four axes of different lengths, as shown by the black arrows in the figure. The four
axes are then connected by an ellipse to form closed shapes. Since the shapes are
randomly extended, their centre of mass has also moved. In order to accurately
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simulate the dipolar fields, their new centre of mass positions are calculated as
the origin for the macrospin magnetic moments, as indicated by the red dots.
This leads to a random granular-type structure very similar in appearance to that
used in a real recording media.

By repeating this process for each of the points on the original hexagonal
lattice, a granular-type structure is generated. This template is superimposed
onto the original atomic lattice structure. Atoms which fall within the grains are
identified as the magnetic material, and those outside of the grains as packing
atoms with no magnetic interactions. Due to the random nature of the generator,
it is possible that some grains touch and interact magnetically. Figure. 7.18 shows
a plot of the grain size distribution, with a mean grain diameter is 3.40 nm and
a standard deviation of 0.28 nm taken from the raw data. The diameter of each
particle is calculated by taking the mean of its four axial radii. A visualisation of
the end result is inset in Figure. 7.18, where the light spheres indicate the non-
magnetic packing atoms, while the dark spheres indicate the magnetic atoms.























      













 



Figure. 7.18: Plot of number of grains vs grain diameter for atomic scale granular
recording medium, showing a log normal fit to the data. Inset is
a visualisation of an atomic scale granular recording medium for
1TBit/in2

Hard Disk Write Head Design for HAMR

Modelling of hard disk write heads forms a significant area of physics in its own
right [95, 96, 97]. An ideal write head would generate a strong, focused, uniform
magnetic field around the field pole which can rapidly change its magnetic
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state. Achieving all these characteristics is a continual technical challenge for
increasingly large data densities. This model is primarily concerned with the
response of the recording media during the HAMR process, and so an ideal head
field was used to write the medium. The head was made to be wider than the
recording track, so called optical-dominant recording. At the pole edges the field
was assumed to decay rapidly with downtrack distance with a cos(x) profile.

Geometrical Considerations for Head Design for HAMR

Of critical importance for HAMR is the physical arrangement of the laser and
field pole, because, on the timescale of the write process, the recording head
moves very slowly. This means that there is a considerable lag between the
centre of the heat spot and the write head crossing a fixed point on the recording
medium. Consequently the temperature under the field pole is lower than
the temperature in the centre of the heat spot, and thus grains can undergo
substantial cooling during the write process. An optimal design is to place the
laser as close as possible to the write field pole, but there are physical limitations
to their proximity.

7.5 The Write Process for a Single 3.5nm Grain

The first step in calibrating the recording model for a particular grain size is to
investigate the temperature dependence of the general properties of the magnetic
grains, such as the magnetisation, and anisotropy energy. For small grain sizes
finite size and surface effects can be particularly important, inducing a reduced
Curie temperature or enhanced anisotropy, for example. Since we are primarily
interested in the challenges in achieving an areal density of 1TBit/in2, such a
density would require 3.5 nm diameter grains (assuming 50 grains per bit and
a packing fraction around 90% of that for a perfect hexagonal lattice). Note that
this is slightly smaller than might be expected for such a data density, due to the
necessity of the grains being isolated by a distance of at least 1-2 atomic radii. A
visualisation of a single 3.5 nm cylindrical grain with a height of 5 nm is shown
in Figure. 7.19.

Curie Temperature of a 3.5 nm FePt Grain

Determining the Curie temperature of a single grain is important for HAMR
so that the laser can be calibrated to heat the medium precisely to the desired
temperature. As before the truncated Hamiltonian described in Section 2.6
is used for the following calculations. A standard Monte Carlo metropolis
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Figure. 7.19: Visualisation of a single 3.5 nm FePt grain showing the L10 crystal
structure and irregular surface features. The light spheres indicate
Fe sites, while the dark spheres indicate the Pt sites.

algorithm was used to calculate the equilibrium magnetisation as a function of
temperature first by equilibrating the system at the desired temperature and then
averaging over 20,000 Monte Carlo steps. A plot of the temperature dependence
of the equilibrium magnetisation, M/Ms, is shown in Figure. 7.20. The curve
is fitted to an effective critical exponent of β = 0.488 which is calculated from
the ratio of core to surface atoms for surface and volume critical exponents. The
surface critical exponent arises from the reduction in coordination number at the
surface, inducing less critical behaviour in the temperature dependence of the
magnetisation [44, 98, 99, 100].

The data show a significantly reduced Curie temperature of 645 K when
compared to the bulk material Tc of 700 K, as well as a disordered magnetic tail
due to the small system size.

The Influence of Surface Anisotropy on the Coercivity of a 3.5 nm FePt Grain

At such small grain sizes, surface effects can begin to dominate the magnetic
properties. One such effect is that of surface anisotropy, which has been
investigated in detail in Chapter 5. Although the effects of surface anisotropy
can be many and varied, in the case of L10 FePt, the situation is considerably
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Figure. 7.20: Temperature dependence of the saturation magnetisation for a
single 3.5 nm diameter FePt grain. A fit to the data shows a Curie
temperature of 665 Kelvin, as well as persistent magnetic order
above Tc.

simplified due to the layered crystal structure. This layered structure yields either
an easy axis (Ks < 0) or easy plane (Ks > 0) anisotropy when taking into account
the directional vector summation of local atoms within the Néel Model. For 3.5
nm grains, approximately 40% of atoms are on the surface.

The main difficulty with incorporating surface anisotropy within a model
system is obtaining a realistic value for the magnitude of the surface anisotropy
constant, Ks. The best source of information is from experimental data measuring
surface anisotropy at thin film interfaces. A large amount of published data
is available from such experiments and a typical value of Ks for an Fe-Ag
interface is 0.64 ergs/cm2, or in atomic-scale units 5.6 × 10−22 Joules/atom at
300 K [101, 102, 103]. The temperature dependence of the anisotropy energy is
calculated using the Constrained Monte Carlo technique described in Section
6. Since the local Néel surface anisotropy for the particular structure of L10

FePt is uniaxial and spherically symmetric, the standard method of holding the
macrospin moment at 45 ◦ to the z-axis and calculating the restoring torque is
perfectly valid for determining the temperature dependence of the anisotropy. To
ascertain the effect of the surface anisotropy on the coercivity, the anisotropy field
of a single grain was calculated for both positive and negative signs of Ks. For
comparison the anisotropy field was also calculated with no surface anisotropy
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and also with no core anisotropy, leaving just the surface contributions, as shown
in Figure. 7.21.















        

































Figure. 7.21: Plot of anisotropy field vs temperature for 3.5 nm FePt grain for
different signs of surface anisotropy constant. All core indicates the
anisotropy field of the particle if no surface anisotropy is assumed,
while the surface anisotropy only is the contribution from the
surface to the anisotropy field with the bulk anisotropy deactivated.

In the case of Ks < 0, the surface and core anisotropy contributions are
additive, giving rise to a zero temperature anisotropy field in excess of 26
Tesla. For the converse case, where Ks > 0, the anisotropy energies compete.
This results in a strange situation where the anisotropy field initially increases
with temperature and then decreases above 300 K. This is due to the stronger
temperature dependence of a uniaxial single-ion anisotropy compared with the
dominant two-ion anisotropy in FePt [37]. At low temperatures the surface
and core anisotropies compete, thus giving a much lower anisotropy field. As
the temperature is increased the surface anisotropy becomes weaker and the
fractional core anisotropy contribution increases, thus increasing the coercivity.
The stronger temperature dependence of the surface anisotropy is due to the
fact that surface spins are less strongly exchange coupled and thus have a
reduced effective Curie temperature. A distinct, somewhat accidental, benefit
of surface anisotropy for HAMR, in the case of Ks < 0, is that, due to the
stronger temperature dependence of surface anisotropy, the anisotropy field
of the material near Tc is almost entirely dependent on the core anisotropy
contribution, while at room temperature the anisotropy is enhanced by around
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40% compared to bulk, leading to much improved thermal stability for long-term
data storage.

Dynamic Effects for a Single Grain for Heat Assisted Writing

In order to create a working model of the HAMR process, parameters such as
the time dependence of the temperature and applied field for a single grain
first need to be calculated. These are solely determined by the specifics of the
model - namely the laser power, thermal conductivities and the write head - laser
separation. The temperature and field profiles for a single grain directly in the
path of a continuous laser beam are shown in Figure. 7.22. The graph shows that
initially, at time t= -2 ns, the temperature of the grain is at room temperature. The
temperature then slowly increases as the laser approaches, reaching a maximum
near t = 0 ns. As the laser passes over the grain the temperature begins to
reduce. The temperature profile is asymmetric due to the write head blocking
the laser, which leads to more rapid cooling while the write head passes over the
grain. At t = 0.25 ns the write head passes overhead, attempting to orientate the
grain during the cooling process. While the external field is acting on the grain,
the temperature drops from Tstart to Tend. After the write head has passed, the
magnetisation direction of the grain is locked and gradually cools back to room
temperature. The entire recording process occurs in a little over 2 nanoseconds
due to the speed of the write head assembly.

In order to optimise the HAMR process the ideal temperature under the laser
spot needs to be found to maximise the chances of successful reversal. As shown
earlier the temperature ideally needs to be just above Tc when the external field
from the write pole is overhead, so that the susceptibility is at a maximum, while
the cooling rate needs to be sufficiently high so that the grain is in a highly stable
magnetic state once the write pole has passed. These temperatures are primarily
controlled by the laser power and thermal conductivity of the heatsink material,
as described in Section 7.2.

Reversal of a Single Grain during Heat Assisted Writing

Putting all the elements described above together allows the investigation of the
model parameters and their effect on the reversal of a single, isolated grain.
Before moving to a full model with many grains, one would like to know how
robust the reversal process is, which, as illustrated previously, is dependent on
the cooling time, maximum temperature, field strength and particle volume.
This is done by determining the write success rate by repeatedly performing the
reversal on a single grain and counting the number of successful writes. The laser
is initialised directly over the grain and then moved away at a speed of 10 ms−1
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Figure. 7.22: Plot of temperature and external applied field against time for a
single grain during HAMR. The temperature profile is asymmetric
due to the write head blocking direct laser heating. The temperature
of the grain when the write field is first overhead is indicated by the
red line, while the temperature of the grain when the field leaves is
given by the blue line.

as would occur in a typical device. The write head following the laser, with a
field of 1 Tesla, then attempts to orientate the grain magnetisation in the opposite
direction to the initial direction. Once the temperature of the grain has returned
to room temperature (typically after a time of 1 ns), the laser is deactivated and
reset above the grain and the simulation is repeated, but with a different sequence
of random numbers for generating the random thermal field. A typical result
for these simulations is plotted in Figure. 7.23, showing one of many successive
demagnetisation events.

The z-component of magnetisation, indicated by the black line, shows the final
recovery direction, in this case in the negative direction indicating a write success.
The reversal mechanism is elliptical in nature, since a transverse component of
the magnetisation exists at all times during the reversal process. Due to the small
size of the grains, the thermal fluctuation of the grain magnetisation length is
considerable. The overall write success rate for a single 3.5 nm x 5 nm grain was
found to be at a maximum of 90 % for a maximum temperature of 830 K at the
centre of the laser pulse. The maximum success rate of only 90% suggests that the
use of 3.5 nm grain size is approaching the fundamental limits of conventional
magnetic recording technology. This can certainly be avoided by using a stronger
write field, or possibly achieving a longer cooling time with less aggressive
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Figure. 7.23: Plot of time dependence of a single grain magnetisation during
sequential HAMR. The grey line indicates when the external field
from the write head is acting on the grain. The black line, indicating
the z-component of the magnetisation, shows that for this particular
simulation, the reversal process was successful.

heatsinks.
Nevertheless, the final section of this chapter will present the results for a

write simulation for a collection of 120 interacting grains, to see what the final
recorded data bits look like.

7.6 The Write Process for Media

Having determined the ideal simulation parameters for a single magnetic grain,
a collection of grains can then be modelled to see the effects of inter-grain
interactions in the form of exchange and dipolar fields. Exchange interactions
between grains tend to reduce the sharpness of the bit edges leading to reading
errors, while dipolar fields attempt to disorder the grains in a perpendicular
field. These effects further complicate the HAMR process and so understanding
their impact on the reliability of HAMR is essential. As mentioned before, the
exchange interactions between grains are accounted for on the atomic scale by
having touching grains. Another aspect of simulating a larger collection of grains
is that the laser heating is in a Gaussian profile, and so a temperature gradient
exists across the recording bit. As was demonstrated for the writing process
for a single grain, the write success rate is strongly temperature dependent and
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so assessing the impact of this temperature gradient on the multi-grain level is
important for understanding the fundamental limits of HAMR.

Figure. 7.24: Visualisation of the final magnetisation configuration after write
simulation. Red colouring indicates spins in the -z direction, while
blue indicates the opposite.

The full media recording model simulates the process of writing alternate
bits to the recording media, bringing together all the elements described above.
A single simulation involves a single pass of the laser and write head over
the medium surface. The magnetic response is then recorded and exported
as an image, showing the end configuration of the grains. A typical output
is shown above in Figure. 7.24. Red colouring indicates a magnetisation in
the negative z-direction, while blue colouring indicates a magnetisation in the
opposite direction. Although the bit transitions are blurred, it is possible to
discern the transitions. It is interesting to note that wherever grains touch they
have the same final magnetisation direction, suggesting that due to the high
anisotropy the inter-grain exchange coupling is very strong. Also it is clear that
the effects of dipolar fields considerably worsens the write success rate when
compared with a single grain.

Conclusions and the Future for HAMR

These simulations have identified some of the huge technical challenges involved
with performing successful ultra-high density heat assisted magnetic recording.

The physics and thermodynamics of the reversal process have been investigated
in some detail, showing the existence of different reversal modes. Simulations
of heat assisted reversal have shown the existence of these modes for different
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temperatures. The simulations have been extended through the numerical
calculation of the Garanin free energy for a ferromagnet, showing the equilibrium
properties of a magnetic system close to the Curie temperature. The analytical
calculations show the emergence of a real thermodynamic limit to the heat
assisted reversal process occurring for very small grain sizes. The small volume
means that the energy barrier between magnetic states is reduced, and so thermal
fluctuations prevent a totally reliable reversal process. This limit is very unlikely
to be overcome by clever engineering and as such provides the ultimate limit for
heat assisted magnetic recording.

Another limitation for heat assisted reversal is the cooling time in the field,
which ideally should be as long as possible so that the system can reach
equilibrium. This effectively precludes the use of ultra fast laser pulses on
conventional recording media, since the pulse induces rapid heating and cooling
processes. This effect relates to the blocking temperature, where for a given
heating time the magnetisation is locked in a state. Practically this means that
the material must be heated very close to Tc in order to see reversal, since it is at
this point that the energy barriers become small enough to allow reversal in 100
ps.

Simulations of a single grain showed that the heat assisted reversal process
exhibits a visible elliptical reversal mode at elevated temperatures. This aids
in the transition between energy states over and above what is expected by
the usual theories, which ultimately determines the maximum reversal success
rate achievable. The interaction of multiple grains complicates the process of
magnetic recording with HAMR but nevertheless illustrates that conventional
recording with HAMR is feasible in the Tbit/in2 regime.

These challenges can likely be overcome to a point with clever engineering
and device fabrication improvements. However, the above simulations also
outline the fundamental limits to magnetic recording, where moving a few
atoms around can make the difference between a functional and non-functional
device. At a density of 1-2 TBits/in2 recording with a conventional granular
medium begins to fail as a reliable statistical process, and other techniques such
as magnetic random access memory (MRAM) or bit-patterned media (BPM) will
be needed to achieve higher areal densities. Using BPM with 4 nm particles with
5 atoms separation between adjacent bits yields an ultimate recording density in
the 30 Terabits/in2 regime.



Conclusions

In this final chapter of the thesis, the results presented previously are summarised,
drawing attention to the main conclusions and significant results. The final part
then outlines future prospects for atomistic modelling of magnetic systems.

Effects of Structure of the Magnetic Properties of Nanoparticles

The effects of particle shape and structure on the magnetic properties of Co,
CoAg, and Fe nanoparticles were investigated by using a combination of Molecular
Dynamics and Atomistic magnetic calculations. The structural calculations
utilised the Embedded Atom Method, a technique particularly well suited
to modelling the structures of metals. Ab-initio calculations of the effective
spin Hamiltonian for Co and Fe were used to accurately model the magnetic
properties, taking into account any variations in interatomic separation.

The structural calculations revealed a common surface compression for all
the particle types, arising from the reduction in coordination number at the
surface. For the Co and Fe nanoparticles this compression was shown to cause
an increase in the Curie temperature. The structural calculations also revealed
that the addition of a monolayer silver coating to Co particles drastically altering
the internal structure. The mixed hcp and fcc internal stacking was shown by the
magnetic calculations to greatly enhance the anisotropy energy when compared
with pure fcc cobalt nanoparticles. This provides a feasible alternative to the
assumption that any increase in anisotropy in Co nanoparticles must be due to
surface anisotropy.

Surface Anisotropy

Following on from the structural calculations of nanoparticles, the next chapter
describes in detail some of the wide range of phenomena caused by surface
anisotropy in nanoparticles. The effects of surface faceting, internal crystal
structure, particle shape and particle size were all investigated. The surface
anisotropy was modelled using the phenomenological Néel surface anisotropy
model, and used in combination with the Lagrange Multiplier technique to
perform constrained energy minimisation. In order to quantify the results, the
effect of surface anisotropy on the energy barrier was determined in each case.

The first investigation was into the effects of nanoparticle shape on the energy
barrier. This showed that for weak values of surface anisotropy the effects
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were small, with little apparent change in the energy barrier. For very strong
surface anisotropy the energy surface was shown to become cubic, arising from
spin non-collinearities caused by the underlying crystal symmetry. Elongated
particles exhibited very different behaviour, with the energy barrier changing
dramatically for all strengths of surface anisotropy. The next part looked at the
crystal structure dependence of the energy barrier for nanoparticles with surface
anisotropy. This showed that increases in bulk coordination number reduced the
strength of the effect of surface anisotropy, and in the case of an hexagonal lattice,
six-fold symmetric energy surfaces are generated, illustrating the importance of
the underlying crystal symmetry and spin non-collinearities.

The final section investigated the size dependence of the energy barrier
and compared the results with published experimental measurements. This
revealed that in order to have a consistent size-dependent effect caused by
surface anisotropy, the particles must be elongated. A detailed analysis of simple
elongated particles found an excellent correlation between the local on-site Néel
anisotropy constant, and the macroscopic surface anisotropy energy density,
when taking into account the size scaling of the energy barrier.

Constrained Monte Carlo Method

A new constrained Monte Carlo method has been developed, so that the
temperature dependence of the magnetocrystalline anisotropy free energy can
be easily calculated. The method works by the complementary movement of
two random spins, such that the macroscopic magnetic moment of the system is
constrained along the desired direction, while allowing it to vary freely in length.

The method has been tested by calculating the temperature dependence
of uniaxial and cubic anisotropy energies and comparing the results with the
accepted analytical Callen-Callen theory, with the simulations showing excellent
agreement at low temperatures. The method was then used to perform the
first calculations of the temperature dependence of the surface anisotropy for
a thin film, showing that due to the uniaxial nature of the anisotropy, the
surface anisotropy follows the surface magnetisation as Ksurface ∼ M3

surface. The
final calculations investigated the temperature dependence of the micromagnetic
exchange constant using an atomistic approach. The calculations showed the
micromagnetic exchange constant scaling with the system magnetisation as A ∼

M1.71, although the reason for this scaling behaviour is not known. Nevertheless
the calculations give a good basis for micromagnetic simulations utilising a
temperature dependent exchange stiffness.
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Heat Assisted Magnetic Recording

The final chapter presented simulations of heat assisted magnetic reversal,
investigating the magnetic reversal process near the Curie temperature for
applications in future hard disk recording technologies. The first section shows
that the magnetic reversal probability is highly temperature dependent due to the
existence of elliptical and linear reversal mechanisms near and above Tc. Further
simulations then showed that the reversal probability is also time dependent,
where at constant temperature the system requires a certain amount of time
to reach equilibrium. These ideas are then explored further with an analytical
description for the angular dependence of the system energy taking into account
the change in the magnitude of the magnetisation, allowing the calculation of
the Boltzmann distribution for the system. The Boltzmann distributions reveal
the volume dependence of the magnetic reversal probability in equilibrium,
illustrating the fundamental thermodynamic limit for heat assisted magnetic
reversal. The Boltzmann distributions are then related to a size, anisotropy,
and field dependent blocking temperature which is then solved graphically.
The blocking temperature is shown to reflect the best case condition for the
magnetic reversal reliability for a dynamic system, which ultimately depends on
the cooling time.

This understanding of the physics behind heat assisted reversal is then
applied to a device-like simulation of a granular recording medium designed
for a data density in the TBit/in2 regime. The effect of surface anisotropy
within such a system is assessed, and shows that it can potentially enhance the
thermal stability. These simulations ultimately show that such a data density is
theoretically feasible, provided fairly aggressive error correction methods can be
employed.

Future Prospects

Although atomistic magnetic simulations have existed for decades, only recently
has it been possible to perform large scale calculations on tens of thousands of
spin moments. This thesis has shown how the atomistic simulations are capable
of exhibiting a myriad of physical magnetic effects at the nanoscale, not seen
with larger scale micromagnetic models. This improvement in the description of
magnetic materials allows for a better understanding of magnetic behaviour at
the nanoscale.

Nevertheless, a number of assumptions in the atomistic model have yet to be
truly tested. The first, which has been touched on in this thesis, is the relationship
between structural and magnetic properties. The original Heisenberg model
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explicitly included the Coulomb potential, and so an improved atomistic model
would include this directly into the Hamiltonian. The problem with this
approach is that it then requires assumptions on the interatomic distance dependence
of the exchange interactions and anisotropy energy, which is non-trivial for
complex materials such as FePt. Another related assumption is the role of
damping and thermal fluctuations within the LLG. Currently damping is included
phenomenologically and the thermal fluctuations are included with an effective
white noise thermal field. In principle both these effects are included within the
Coulomb interaction, and so this forms an up and coming area of research.

As for the standard atomistic magnetic calculations, faster computers are
enabling the simulation of much more complex and larger systems, such that
it will be possible in the near future to model entire devices atomistically, such as
a hard disk read and write element. Such models can aid the understanding of
experimental results and guide the development of future magnetic technologies.
The future prospects for the atomistic model are good, and with continued
refinements will continue to provide an essential method to realise new technologies
and nanomagnetic devices.
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Appendix I - Code Optimisation Techniques

A number of computational “tricks” and techniques have been discovered over
the previous three years of my Doctoral studies, which combined have improved
code performance by an order of magnitude compared with an un-optimised
version. Although these methods are not directly relevant to the remainder
of the thesis, they did aid in the computation of all the simulations. In order
to summarise and explain these methods without being overly verbose, the
appendix includes fragments of example code with a general description, rather
than a large body of the computational code, which currently runs in excess of
10,000 lines. Some of these examples are limited to magnetic simulations, while
others may well be applicable to other types of problem.

General Computational Techniques

The first section of the appendix addresses general computation methods, such
as the normalisation of very small numbers, and optimising memory structure to
give the best performance.

Value Normalisation

Generally the atomic scale model deals with numbers which, in everyday terms,
are very small, typically being in the range 10−21 - 10−25. This creates a problem
for computational arithmetic since computers only possess a finite number of
digits, which leads to rounding errors when dealing with small numbers. In
order to minimise these problems, the parameters used in the model are usually
normalised, either to the interatomic exchange energy, Jij, or to the magnitude of
the atomic spin moment, µs. In my code, all energies and fields are normalised
to µs. This has the advantage that external fields are always in units of Tesla,
enabling the easier extraction of key values such as the anisotropy field. The
normalisation process ensures that computation is performed on numbers which
are ∼ 1, which ensures the best accuracy is conserved for the calculations.

Array Optimisation

The manner in which data is structured in a computational code can greatly
affect its performance, so much so that the following improvement yielded an
order of magnitude improvement in code runtime. Calculation of the interatomic
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exchange energy often comprises a substantial fraction of computation time, due
to the sum over a number of neighbouring atoms. A pre-computed neighbour
list consisting of a list of atom numbers for each atom is used to identify which
atoms are neighbours, and this is then used at runtime to calculate the exchange
energy for atom i. A typical section of Fortran 90 code showing the declaration of
arrays is given by:

1 integer :: num_atoms
2 integer :: num_neighbours
3 real(kind=dp) :: J_ij ! Exchange constant
4
5 integer :: neighbour_list (1: num_neighbours ,1: num_atoms)
6 real(kind=dp) :: atomic_spin_array (1:3 ,1: num_atoms)
7 real(kind=dp) :: atomic_energy_array (1: num_atoms)

Here the number of atoms and neighbours, the exchange constant, and three
arrays are declared: the first containing the neighbour list, the second containing
the vector spin for each atom, and the final array for storing the total energy for
the atom. For fully coordinated atoms this form of array structure is fine, however
most particles of interest are not fully coordinated, and so an exception must be
made for atoms which do not have the number of num neighbours. Since the
atom number starts at 1, null neighbours are given an atom number of zero. The
standard code for calculating the exchange energy would then be given by:

8 integer :: i,j ! do loop variables
9 real(kind=dp) :: J_total

10
11 ! Loop over all atoms
12 do i=1,num_atoms
13 J_total = 0.0 _dp
14
15 ! Loop over all neighbours
16 do j=1, num_neighbours
17 ! Check if neighbour exists
18 if(j/=0) then
19 ! Calculate exchange energy
20 J_total = J_total + &
21 J_ij*dot_product(atomic_spin_array (:,i), &
22 atomic_spin_array (:, neighbour_list(j,i)))
23 else
24 ! If atom is null then exit loop
25 exit
26 end if
27 end do
28
29 ! Store total energy
30 atomic_energy_array(i) = J_total
31 end do

Here, the code performs two loops, and calculates the exchange energy for
each atom. Note that the exit statement at 25 assumes that the neighbour list is
ordered so that null neighbours are at the end of the array for each atom. The if

statement within the inner do loop causes a large performance hit, since the next
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segment of code cannot be pipelined until it has been evaluated. Since the result
of the if statement is known for all atoms prior to the execution of the loop, it
is possible to avoid the if statement by pre-computing the number of neighbours
each atom has and storing this in a neighbour number array, like so:

32 integer :: neighbour_number_array (1: num_atoms)
33 integer :: neighbour_counter
34
35 ! Loop over all atoms
36 do i=1,num_atoms
37 neighbour_counter = 0
38
39 ! Loop over all neighbours
40 do j=1, num_neighbours
41 ! Check if neighbour exists
42 if(j/=0) then
43 ! Add 1 to num_neighbours
44 neighbour_counter = neighbour_counter + 1
45 else
46 ! If atom is null then exit loop
47 exit
48 end if
49 end do
50
51 ! Store num_neighbours
52 neighbour_number_array(i) = neighbour_counter
53 end do

This loop is executed only once at the start of the program. This then allows
a far more efficient form of the earlier code to be used for the calculation of the
exchange energy, given by:

54 integer :: i,j ! do loop variables
55 real(kind=dp) :: J_total
56
57 ! Loop over all atoms
58 do i=1,num_atoms
59 J_total = 0.0 _dp
60
61 ! Loop over all existing neighbours
62 do j=1, neighbour_number_array(i)
63 ! Calculate exchange energy
64 J_total = J_total + &
65 J_ij*dot_product(atomic_spin_array (:,i), &
66 atomic_spin_array (:, neighbour_list(j,i)))
67 end do
68
69 ! Store total energy
70 atomic_energy_array(i) = J_total
71 end do

One further improvement can be made to this code, however, since there are
still null neighbours stored in memory. This leads to wasted memory space, as
well as a performance penalty due to the way CPU caches load data from main
memory. The data comes from the main computer memory in blocks, constituting
a cache line, the size of which is architecture dependent. Due to the way the data
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is stored, this means that unneeded data is passed to the CPU cache. One way to
resolve this issue is to re-order the neighbour list into a single dimension array.
This uses a little extra memory as an index to the neighbour list is required, but it
does mean that all data loaded to the cache is used, which improves performance
by about 10% for a typical problem. The final code for this is given below.

72 integer :: total_neighbours
73 integer :: start_index
74 integer :: finish_index
75 integer :: alloc_stat
76 integer :: neighbour_counter
77
78 integer :: index_array (1:2 ,1: num_atoms) !1-start index
79 !2-finish index
80
81 integer , allocatable :: 1D_neighbour_list (:)
82
83 ! Calculate total number of neighbours
84 total_neighbours = 0
85 do i=1, num_atoms
86 total_neighbours = total_neighbours + &
87 neighbour_number_array(i)
88 end do
89
90 ! Allocate 1D neighbour list
91 allocate (1 D_neighbour_list (1: total_neighbours),stat=alloc_stat)
92 if(alloc_stat /=0) stop "Allocate�1D�neighbour�list�error"
93
94 ! Populate 1D neighbour list
95 neighbour_counter = 0
96 do i=1, num_atoms
97 start_index = neighbour_counter + 1
98 do j=1, neighbour_number_array(i)
99 ! Store neighbour number in 1D list

100 1D_neighbour_list(neighbour_counter )= neighbour_list(j,i)
101 ! Increment neighbour counter
102 neighbour_counter = neighbour_counter + 1
103 end do
104 finish_index = neighbour_counter
105 ! Store indices in index array
106 index_array (1,i) = start_index
107 index_array (2,i) = finish index
108 end do
109
110 ! Calculate exchange energy
111 do i=1, num_atoms
112 J_total = 0.0 _dp
113 ! Loop over atom index numbers
114 do j=index_array (1,i),index_array (2,i)
115 ! Calculate exchange energy
116 J_total = J_total + &
117 J_ij*dot_product(atomic_spin_array (:,i), &
118 atomic_spin_array (:,1 D_neighbour_list(j)))
119 end do
120 ! Store total energy
121 atomic_energy_array(i) = J_total
122 end do
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The same technique can be used to improve performance for conditional
execution where the outcome can be precomputed, for example where atoms
have different site-dependent anisotropies. Another example where such code is
useful is for systems with variable exchange constants, by using the index array
to precompute the on-site exchange energy.

Atomistic System Generation

An essential part of modelling nanoparticles at the atomic scale is generating
particle structures with different shapes and crystal structures. Due to symmetry
the best method for generating atomic structures is to use an integer lattice. As
will be illustrated later, this also facilitates the use of a very rapid neighbour list
generation algorithm. The common crystal structures found in nature are simple
cubic (sc), face centred cubic (fcc), body centred cubic (bcc) and hexagonal close
packed (hcp). All of these structures can be represented on an integer unit cell
with two lattice positions along the y and z axes, and six lattice points along the
x-axis, as shown below in Figure. A-1.

Figure. A-1: Visualisation of integer lattice construction. The grey spheres
indicate possible atom positions within the unit cell.

The extra lattice points in the x-axis allow the creation of 111 oriented fcc
and hcp lattice structures. A three dimensional integer array is declared which
includes all the possible atomic positions. The dimensions of the array indicate
the position in space, while the data it contains identifies whether an atom
occupies that site. If the integer is set to zero then no atom exists at that site,
otherwise the integer is the atom number, which is used later for generating the
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usual atom list. The array can also be expanded to include other integer values
which can be used to identify different atomic species or whether the atom is a
surface atom, for example. An integer lattice for a 10× 10× 10 unit cell array is
coded as follows:

1 integer :: x_dim ,y_dim ,z_dim
2
3 integer , allocatable :: 3D_coord_array (:,:,:)
4
5 ! Set system dimensions
6 x_dim = 10
7 y_dim = 10
8 z_dim = 10
9

10 ! Allocate 3D coordinate array
11 allocate (3 D_coord_array (-3*x_dim :3*x_dim , &
12 -y_dim:y_dim , &
13 -z_dim ,z_dim),stat=alloc_stat)
14 if(alloc_stat /=0) stop "Allocate�3D�coordinate�array�error"
15
16 ! Initialise array
17 3D_coord_array (:,:,:) = 0

The system is positioned at the centre of the coordinate system for convenience.
As can be seen, the dimensions of the integer array reflect positions in pseudo-
real space. The actual atomic coordinates are simply a multiple of the integer
coordinate and a lattice constant. Once the desired size of coordinate array is
allocated, it is initialised to zero. The next step is to populate the coordinate array
with a non-zero integer, representing the positions of the atoms. The simplest
case is that for a simple cubic lattice, since there is only a single atom per unit
cell, as shown in Figure. A-2.

Figure. A-2: Visualisation of simple cubic lattice showing one atom per unit cell.
The unit cell is then replicated in 3D space generating the crystal
lattice.



Appendix I 153

The coordinate array is populated with atoms by performing a loop over the
lattice sites as follows:

18 integer :: atom_number
19 integer :: i,j,k
20
21 atom_number = 1
22
23 do k=-z_dim -1,z_dim -1,2
24 do j=-y_dim -1,y_dim -1,2
25 do i=-x_dim -1,x_dim -1,6
26 3D_coord_array(i,j,k) = atom_number
27 atom_number = atom_number + 1
28 end do
29 end do
30 end do

The above code generates the simple cube lattice by taking different step
lengths of unit cell length over the coordinate lattice, 2 in the case of y and z,
and 6 in the case of the x-dimension. Note that this code also gives each atom a
unique identifer which is used later to generate the atom and neighbour lists.

A similar code can be used to generate a 001 orientated fcc lattice, as shown
in Figure. A-3.

Figure. A-3: Visualisation of face centred cubic lattice with four atoms per unit
cell.

The accompanying code to generate an fcc lattice is:
31 integer :: atom_number
32 integer :: i,j,k
33
34 atom_number = 1
35
36 do k=-z_dim -1,z_dim -1,2
37 do j=-y_dim -1,y_dim -1,2
38 do i=-x_dim -1,x_dim -1,6
39 3D_coord_array(i,j,k) = atom_number
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40 3D_coord_array(i+3,j+1,k) = atom_number +1
41 3D_coord_array(i+3,j,k+1) = atom_number +2
42 3D_coord_array(i,j+1,k+1) = atom_number +3
43 atom_number = atom_number + 4
44 end do
45 end do
46 end do

Here there are four atoms added for each unit cell, and the atom number is
incremented accordingly, the i,j and k modifiers indicate the position of atoms
within the unit cell.

The integer lattice method can also be used to generate hcp and 111 fcc lattices,
although the physical lattice constant is compressed by a factor 1√

3
along the y-

direction and by 2
√

2
3 along the z-direction. A visualisation of the hcp unit cell is

shown in Figure. A-4, followed by the code used to generate the hcp lattice.

Figure. A-4: Visualisation of hexagonal close packed lattice showing the
compressed y and z axes.

47 integer :: atom_number
48 integer :: i,j,k
49
50 atom_number = 1
51
52 do k=-z_dim -1,z_dim -1,2
53 do j=-y_dim -1,y_dim -1,2
54 do i=-x_dim -1,x_dim -1,6
55 3D_coord_array(i,j,k) = atom_number
56 3D_coord_array(i+3,j+1,k) = atom_number +1
57 3D_coord_array(i+2,j,k+1) = atom_number +2
58 3D_coord_array(i+5,j+1,k+1) = atom_number +3
59 atom_number = atom_number + 4
60 end do
61 end do
62 end do
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Having generated the lattice, the integer coordinates are stored in an atom list,
so that the atomic positions can be referenced directly.

Fast Neighbour List Method

Given a particular atomic arrangement, it is necessary to determine which
atoms are interacting by creating a so-called “neighbour list”. The use of
the integer coordinate system described above makes the generation of the
neighbour list very efficient, since the locations of the neighbours are stored
in a three dimensional coordinate system. This method thus avoids the need
to determine the neighbour separation distance which is the usual method for
the identification of nearby atoms as neighbours. A typical code segment for
calculation of the neighbour list for a simple cubic atomic structure is given by:

1 integer :: atom_number
2 integer :: i,j,k
3 integer :: ir !Interaction range
4 integer :: my_coords (1:3)
5 integer :: n_neighbours = 6
6 integer :: nn_counter
7
8 integer :: atom_coord_array (1:3 ,1: num_atoms)
9 integer :: neighbour_list_array (1: n_neighbours ,1: num_atoms)

10
11 ! Set interaction range
12 ir = 2
13
14 do atom_number =1, num_atoms
15 ! Store atom local coordinates
16 my_coords (:) = atom_coord_array (:, atom_number)
17
18 nn_counter = 0
19
20 !loop over all possible neighbour sites in range
21 do k=my_coords (3)-ir ,my_coords (3)+ir
22 do j=my_coords (2)-ir ,my_coords (2)+ir
23 do i=my_coords (1)-ir*3, my_coords (1)+ir*3
24 ! Check that ir not exceeded
25 if((i*i+j*j+k*k)<ir*ir+1) then
26 ! Check that atom exists
27 if(3 D_coord_array(i,j,k)/=0) then
28 nn_counter = nn_counter + 1
29
30 neighbour_list_array(nn_counter ,atom_number) &
31 = 3D_coord_array(i,j,k)
32 end if
33 end if
34 end do
35 end do
36 end do
37 end do

This method is particularly fast since the inner loops are all very small
compared with the size of the system. This means that the neighbour list for
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over a million atoms can be generated in less than a second, which is hundreds of
times faster than explicitly calculating the distance between all atoms. The above
code is also quite general and for correctly tuned interaction range can be used
for any crystal structure. Periodic boundary conditions can also be implemented
by “wrapping round” the integer arrays to see if an atom is in range.
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