Introduction to VAMPIRE

A practical course

Richard F L Evans

richard.evans@york.ac.uk www-users.york.ac.uk/~rfle500/

THE UNIVERSITY of York

The financial support of EPSRC and the CCP-Magnetism networking project is gratefully acknowledged

Overview

- 9:00 9:30 Introduction to linux and editor basics
- 9:30 10:30 Getting started with VAMPIRE
- 10:30 10:50 Coffee break
- 10:50 12:00 Ultrafast magnetisation dynamics
- 12:00 13:00 Lunch
- 13:00 13:45 System generation
- 13:45 14:30 Hysteresis properties
- 14:30 15:00 Vampire Q&A and future development requests
- 15:00 Close

Tutorial resources

www-users.york.ac.uk/~rfle500/teaching/vampire-tutorial/

Introduction to linux and the command line

What is linux?

Free operating system with similar aims to Windows/ Mac

Clone of UNIX operating system, with wide range of command line utilities and tools

Simplistic GUI with a range of free software

What is the command line?

Simple text interface to a range of built-in tools

A bit like computers from the 80's

But - very powerful and precise. Common programming tasks are much easier in a UNIX-like system

Still used extensively on supercomputers for this reason!

How does the command line work?

Typing a 'command' and return executes that command

Examples for directory management

- *Is* list files and folders in current directory
- *cd name* change directory into existing subfolder called *name*
- *mkdir name* makes a new folder called *name*
- *cd*.. change into directory above
- *rm name* remove file called *name* **permanently**
- *rm -r name* remove file/folder called *name* **permanently**

Other useful commands

gedit name Open file called name in gedit GUI editor

emacs -nw name Open file called name in emacs editor

(*Ctrl+X+S to save, Ctrl+X+C to quit*)

gnuplot Simple plotting program

rasmol -xyz file.xyz Open file.xyz with atomic structure viewer

./vampire Run a local executable file called vampire

[tab][tab] Autocomplete command (tab key)

Getting started with VAMPIRE

Create a separate directory for all your vampire related stuff

cd ~

mkdir vampire

cd vampire

Setting up a simulation in Vampire

input file (program control)

material file (material properties)

<pre># # Creation attributes: # create:crystal-structure=fcc create:periodic-boundaries-x create:periodic-boundaries-y create:periodic-boundaries-z</pre>
<pre># # System Dimensions: #</pre>
<pre>dimensions:unit-cell-size = 3.524 !A dimensions:system-size-x = 4.0 !nm dimensions:system-size-y = 4.0 !nm dimensions:system-size-z = 4.0 !nm</pre>
<pre># # Number of Materials #</pre>
<pre>material:num-materials=1 #</pre>
Material 1 Nickel Generic
material[1]:material-name=Ni

material[1]:uniaxial-anisotropy-constant=0.0

material[1]:material-element=Ni

Spin Hamiltonian for Ni

 $\mathscr{H} = -\sum_{i < j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j - \sum_i k_{\mathbf{u}} S_{i,z}^2$

Ni.mat

```
#-----
# Number of Materials
material:num-materials=1
# Material 1 Nickel Generic
#------
material[1]:material-name=Ni
material[1]:damping-constant=0.01
material[1]:exchange-matrix[1]=2.757e-21
material[1]:atomic-spin-moment=0.606 !muB
material[1]:uniaxial-anisotropy-constant=5.47e-26
material[1]:material-element=Ni
```

input

#
<pre># Creation attributes: #</pre>
<pre>create:crystal-structure=fcc create:periodic-boundaries-x create:periodic-boundaries-y create:periodic-boundaries-z #</pre>
<pre># System Dimensions: #</pre>
<pre>dimensions:unit-cell-size = 3.524 !A dimensions:system-size-x = 4.0 !nm dimensions:system-size-y = 4.0 !nm dimensions:system-size-z = 4.0 !nm #</pre>
<pre># Material Files: #</pre>
<pre>material:file=Ni.mat #</pre>
<pre># Simulation attributes: #</pre>
<pre>sim:temperature=300 sim:minimum-temperature=0 sim:maximum-temperature=800 sim:temperature-increment=25 sim:time-steps-increment=1 sim:equilibration-time-steps=1000 sim:loop-time-steps=1000</pre>

#
<pre># Program and integrator details #</pre>
<pre>sim:program=curie-temperature sim:integrator=monte-carlo #</pre>
Data output
output:real-time output:temperature output:magnetisation output:magnetisation-length output:mean-magnetisation-length

Running Vampire

Curie temperature calculation

Calculate phase transition in Ni

Essential temperature dependent property of a magnetic material

input

#
<pre># Creation attributes: #</pre>
<pre>create:crystal-structure=fcc create:periodic-boundaries-x create:periodic-boundaries-y create:periodic-boundaries-z #</pre>
<pre># System Dimensions: #</pre>
<pre>dimensions:unit-cell-size = 3.524 !A dimensions:system-size-x = 4.0 !nm dimensions:system-size-y = 4.0 !nm dimensions:system-size-z = 4.0 !nm #</pre>
<pre># Material Files: #</pre>
<pre>material:file=Ni.mat #</pre>
<pre># Simulation attributes: #</pre>
<pre>sim:temperature=300 sim:minimum-temperature=0 sim:maximum-temperature=800 sim:temperature-increment=25</pre>
<pre>sim:time-steps-increment=1 sim:equilibration-time-steps=1000 sim:loop-time-steps=1000</pre>

#
Program and integrator details
#
<pre>sim:program=curie-temperature</pre>
<pre>sim:integrator=monte-carlo</pre>
#
Data output
#
output:real-time
output:temperature
output:magnetisation
output:magnetisation-length
output:mean-magnetisation-length

Curie temperature calculation

Curie temperature calculation

$$m(T) = \left[1 - \left(\frac{T}{T_{\rm c}}\right)\right]^{\beta}$$

Gnuplot for plotting data and curve fitting

Gnuplot for plotting data and curve fitting

m(x) = (1-x/Tc)**beta Tc = 500.0 beta = 0.4 fit [0:Tc] m(x) "output" u 2:7 via Tc, beta p "output" u 2:7 w p ti "data", m(x) w l

Ultrafast magnetisation dynamics

Ultrafast demagnetization in Ni

E. Beaurepaire et al, Phys. Rev. Lett. 76 4250 (1996)

"If you put two condensed matter physicists in a room, you get two theories of ultrafast demagnetisation, unless one of them is a magnetician, in which case you get three"

(Winston Churchill)

Two temperature model

 $C_{\rm e} \propto T_{\rm e}$

Input file for simulated laser pulse

```
sim:equilibration-time-steps=10000
sim:total-time-steps=50000
sim:laser-pulse-power=2.2e22
sim:laser-pulse-temporal-profile=two-temperature
sim:program=laser-pulse
sim:integrator=llg-heun
sim:time-step=1.0e-16
```

output:real-time
output:electron-temperature
output:phonon-temperature
output:magnetisation-length

Note strong time-step dependence of properties

Safe region (depending on $T/T_{\rm C}$)

Effect of pulse power in Ni

Stronger laser pulses show more demagnetization and slower recovery

Thermally induced magnetic switching

T. Ostler et al, Nat. Commun.(2012)

Sublattice magnetization dynamics

I. Radu *et al*, Nature (2011)

Transient ferromagnetic state

I. Radu *et al*, Nature (2011)

GdFe ferrimagnet

GdFe.mat

input file

```
sim:equilibration-time-steps=20000
sim:total-time-steps=50000
sim:laser-pulse-power=1.6e22
sim:laser-pulse-temporal-profile=two-temperature
sim:program=laser-pulse
sim:integrator=llg-heun
sim:time-step=1.0e-16
```

output:real-time
output:electron-temperature
output:phonon-temperature
output:material-magnetisation

Calculated magnetization dynamics for (4 nm)³

Dynamics for (7 nm)³ GdFe

System generation

http://vampire.york.ac.uk/tutorials/

View your structures with rasmol

cfg2rasmol

rasmol -xyz crystal.xyz

Hysteresis properties

Hysteresis calculations

Generally a 'slow' process - typically 10s of nanoseconds

For comparison with experiment, use high damping limit, $\lambda = 1$

Coercivity **strongly** field rate dependent - slower is better!

input file

```
create:single-spin
```

```
sim:loop-time-steps=100000
sim:program=hysteresis-loop
sim:integrator=llg-heun
sim:time-step=1.0e-15
sim:temperature = 0
sim:equilibration-applied-field-strength = 2.0 !T
sim:maximum-applied-field-strength = 2.0 !T
sim:applied-field-increment = 0.01 !T
sim:applied-field-angle-phi = 0.1 # (degrees from z)
```

```
output:real-time
output:applied-field-strength
output:applied-field-alignment
output:magnetisation
```

hysteresis-loop program

Cycles field from H_{max} to $-H_{max}$ in a user defined increment

Calculates dynamic response of the magnetisation to the field

Questions

What happens to the hysteresis loop if you change loop-time?

How many steps (field rate) do you need to reach the limit $H_c = 2k_u/\mu_s$

What effect does changing the field angle have?

Save and email your files

cd ~

tar -cjf myfiles.tar.gz vampire

(tar -xjf myfiles.tar.gz to extract)