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Space-Time Method forAb Initio Calculations of Self-Energies and Dielectric Response
Functions of Solids
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We present a new method for efficient, accurate calculations of many-body properties of periodic
systems. The main features are (i) use of a real-space/imaginary-time representation, (ii) avoidance of
any model form for the screened interactionW , (iii) exact separation ofW and the self-energyS into
short- and long-ranged parts, and (iv) the use of novel analytical continuation techniques in the energy
domain. The computer time scales approximately linearly with system size. We give results for jellium
and silicon, including the spectral function of silicon obtained from the Dyson equation.

PACS numbers: 71.10.+x, 71.25.Cx, 71.25.Rk, 71.45.Gm
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Many-body perturbation theories for condensed-matt
physics allow the Green’s functions of a system of in
teracting electrons to be formulated in terms of those
a hypothetical similar system of noninteracting electron
moving in an effective potential. The key quantity tha
connects the two is the exchange-correlation self-ener
operatorS. From the Green’s functions, most proper
ties of the system can be calculated, most notably t
quasiparticle energies, the spectral function, the electr
density, the momentum distribution, and the total en
ergy. Such theories have usually been developed first
the homogeneous electron gas (jellium), whose trans
tional symmetry makes two-point functions such as th
self-energySsr, r0d diagonal in a momentum representa
tion Sskd. Also, because experiments generally focus o
energy-dependent measurements, the natural represe
tion of time dependenceSst  t 2 t0d is in the energy
(or frequency) domainSsvd, yielding the total function
Ssk, vd. In a periodic system the replacement of continu
ous translational symmetry by discrete translational sym
metry turns the functions into matricesSGG0 sk, vd, where
G andG0 are reciprocal lattice vectors, and this is the rep
resentation that has been used for practical calculatio
[1,2].

Four observations form the starting point for ou
method. First, the commonly usedGW approximation
for the self-energy operator [3] (the first term in an itera
tive solution of coupled equations relating the many-bod
quantities) is a computationally expensive multidimen
sional convolution in a momentum-energy representatio
but simply multiplicative when written in terms of space
and time,

Ssr, r0, td  iGsr, r0, tdWsr, r0, td , (1)

whereG is the one-particle Green’s function andW the
screened Coulomb interaction. Second, quantities su
as S, W , andG, which contain much structure along the
real energy and time axes, may rigorously be analytica
continued to the imaginary energy (e.g., Ref. [2]) or tim
axis, where all the relevant information is presented in
much smoother form. In particular, oscillatory quantitie
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in real time become smooth, monotonic functions i
imaginary time or energy. Third, fast Fourier transform
(FFT) methods allow extremely efficient implementatio
of a discrete Fourier transform to go between space a
momentum, and energy and time. Fourth, the self-ener
is known to go to zero asjr 2 r0j ! `, so that a finite
cutoff in jr 2 r0j may be used in numerical work.

The calculation of the screened Coulomb interactionW
begins with the expression for the noninteracting dens
response function

x0sr, r0, td  2iG0sr, r0, tdG0sr0, r, 2td , (2)

whereG0 is the noninteracting Green’s function. In ou
work, as in most modernab initio applications of many-
body perturbation theory, our “zeroth order” noninter
acting system is that of the local-density approximatio
(LDA) to density-functional theory (DFT), where ex-
change and correlation are described by a local potent
We analytically continueG0 in its standard eigenfunction
expansion from real to imaginary energy, and then ta
the Fourier transform from imaginary energy to imaginar
time, yielding

G0sr, r0, itd 

8>>>>><>>>>>:
i

occP
nk

cnksrdcp
nksr0d exps2´nktd ,

t , 0 ,

2i
unoccP

nk
cnksrdcp

nksr0d exps2´nktd ,

t . 0 ,
(3)

wherecnk and ´nk are the LDA one-electron eigenfunc-
tions and eigenvalues; the zero of energy is taken at t
Fermi energy (or in an insulator at the center of the ban
gap), and the sum is over occupied or unoccupied sta
depending on the sign oft. This may be evaluated con-
veniently by a band summation, and convergence is rap
because of the real, decaying exponentials. After a ba
three-dimensional real-space grid has been chosen (w
spacingDr), r runs over all grid points in the irreducible
wedge of the real-space unit cell, andr0 runs over all
grid points (offset so as to excluder0  r for numeri-
cal reasons) inside a sphere of radiusRmax centered onr.
© 1995 The American Physical Society 1827
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Similarly, the time grid is an equally spaced, offset gri
between6tmax with spacingDt. It is then a simple mat-
ter to formx0 according to Eq. (2).

In order to calculate the dielectric matrix́ and
screened Coulomb interactionW , we take the six-
dimensional Fourier transform (6DFFT) [4] fromsr, r0d
to sk, G, G0d, and the one-dimensional Fourier transform
(1DFFT) from imaginary time to imaginary energy, an
evaluate the expressions

´sk, ivd  1 2 nx0sk, ivd , Wsk, ivd  n´21sk, ivd ,

(4)

where matrix multiplication in the subscriptssG, G0d is
implied, andn is the bare Coulomb interactionnGG0skd 
4pdGG0yjk 1 Gj2. (The above expressions correspon
to the random-phase approximation (RPA); an equa
practical alternative at this stage is the effective screen
Coulomb interactionW̃  nf1 2 x0sn 1 Kxcdg21, where
Kxc is the second derivative of the LDA exchange
correlation energy, which has been argued to be a mo
consistent choice within the assumptions of theGW
approximation [5,6].) After forming WGG0 sk, ivd we
take the 6DFFT back to the real-space representati
and the 1DFFT to the imaginary-time domain. Th
net computational effort is much reduced in compariso
with the usual techniques, primarily because the cos
double summation overk points and bands does no
appear. Furthermore, the need for plasmon-pole mod
to represent thev dependence ofW is eliminated: The
FFT providesW simultaneously for a large number of
imaginary energies or times.

Although we actually requireW at the imaginary times
that this provides, we note that an alternative at th
stage, shouldW be required at real energies, would b
to analytically continue from the imaginaryv axis to the
real v axis. There is already some experience of th
reliability of analytic continuation ofW in the v plane
[7], and our novel continuation techniques forS below
are also applicable toW because of the similar analytic
structure ofW andS.

The screened Coulomb interaction is, of course, rel
tively long ranged: At large distances the limiting be
havior of all elements (with the sole exception of th
zero-frequency screening in a metal) is proportional
1yjr 2 r0j. In order to avoid problems in the 6DFFT as
sociated with the long-range tail and in the 1DFFT a
sociated with the asymptotic frequency dependence,
write (without loss of generality)

Wsr, r0, itd 
1

jr 2 r0j
idstd 1 gsjr 2 r0jdfsitd

1 WSsr, r0, itd , (5)

wheregsRd is the Yukawa functionf1 2 exps2RyldgyR
with the correct1yR asymptotic dependence (withl 
1 a.u.), andf is a function determined by the small-wave
1828
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vector behavior ofW in reciprocal space which allows the
long-ranged part to be accommodated for eacht, leaving
the exact remainderWS short ranged. The factor ofi in
the bare interaction simply reflects our Fourier transfor
convention for imaginary time. The explicit separation o
the bare interaction also makesWS well behaved for small
jr 2 r0j, where there can be no screening.

We calculateS using theGW approximation (1) di-
rectly in real space and imaginary time. WithW split
according to (5),S splits into a bare exchange part
a long-ranged term with multiplicative screening, and
short-ranged term [8]. The first two terms are easi
evaluated (and, incidentally, account for about 90% of th
self-energy). The main computational effort is accounte
for by the remaining term.

To calculate quasiparticle energies we form the e
pectation valueskcnkj fSsitd 2 Vxcg jcnkl directly in real
space (whereVxc is the LDA exchange-correlation po-
tential). Alternatively, if the full self-energy operator is
required, we take the 6DFFT to obtainSGG0sk, itd. In
either case we next take the Fourier transform from ima
inary time to imaginary energy, and may then analytical
continue to the real energy axis by first using optimizatio
techniques to fit each element (separately for positive a
negative energies) to the multipole form

a0 1

nX
i1

ai

v 2 bi
, (6)

with complex parametersai and bi, which (with n  2)
we find to be an extremely stable and accurate fit (rm
relative error 0.2%) along the imaginary axis (and, fo
jellium, in good agreement with directly computed resul
along the whole of the real axis). The functional form i
motivated by the known positions of the branch cuts an
the character of the resonant structure in the self-ener
In principle it is necessary to constrain the pole position
bi to avoid the quadrant of thev plane through which the
function is being continued, but in practice the optima
fit is always found to satisfy the constraint automatically
Sufficient numerical stability and information conten
are available to allow considerable extension of th
functional form should this be desired, but in the prese
calculations it has not proved necessary.

If the Green’s function is required, such as for a ca
culation of the momentum distribution or charge densit
we instead retainS in an imaginary-energy representa
tion SGG0 sk, ivd without the need for analytic continua-
tion, and solve the matrix Dyson equation

Gsk, ivd  G0sk, ivd 1 G0sk, ivd fSsk, ivd 2 Vxcg

3 Gsk, ivd , (7)

for G using matrix inversion.G may then be integrated as
appropriate using contour deformation techniques in t
v plane, for example, to obtain the momentum distribu
tion nskd, or the electron densitynsrd (in which case a
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6DFFT to real space is taken first). We also obtain th
spectral function

AGG0 sk, vd 
1
p

jImGGG0 sk, vdj (8)

at real energies by analytic continuation from th
imaginary-v axis using the functional form (6), as used
above forS.

We tested our method for jellium (where exact resul
at the level ofGW are simple to calculate for comparison
and silicon. The jellium calculations show the metho
to yield the correct results (e.g., for quasiparticle ene
gies, spectral function, and momentum density), and co
vergence with respect to the key FFT parameters (Dr,
Dt, Rmax, and tmax) is very satisfactory. Typical val-
ues areDr  0.5 a.u.,Dt  0.3 a.u.,Rmax  18 a.u., and
tmax  10 a.u., which give convergence of differences o
self-energies (and therefore of quasiparticle energy d
ferences) to better than 0.05 eV and absolute values
better than 0.1 eV. In Fig. 1 we give a comparison b
tween the self-energy for real energies and for imagina
energies. As explained, the quantity for imaginary en
ergy shows less structure and is much more convenien
handle numerically. Nevertheless all relevant informa
tion is retained, as shown by the fact that our analyt
continuation techniques allow the full details of the sel
energy for real energies [Fig. 1(b)] to be regained. Th
full results for jellium, which give further insight into the
properties of the analytically continued quantities, will be
presented in a future paper [9] together with details of th
numerical methods.

FIG. 1. (a) The GW self-energy of jellium (with density
parameterrS  2) for imaginary energies, calculated using ou
method [and displayed here as its imaginary part, ImSsk, ivd].
(b) The imaginary part of the same quantity analyticall
continued to the real-v axis, ImSsk, vd. The relative numerical
simplicity of (a) is evident, but all relevant information is
retained, as shown by (b), which is in excellent agreement w
direct calculations. In each plot ten contours are used, from23
(black) to 3 eV (white) in (a), and from215 to 15 eV in (b).
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In the other figures we give results for silicon in the dia
mond structure (a  5.432 Å), where the Green’s func-
tion and screened Coulomb interaction are construct
from LDA wave functions and eigenvalues calculated u
ing an ab initio norm-conserving pseudopotential. Test
show the above values of the FFT parameters to r
main appropriate for silicon (the insensitivity of the FFT
parameters to the material is discussed further below
Figure 2 shows the matrix element of the self-energy o
erator of silicon for real energieskcnkjSsvdjcnkl contin-
ued from the imaginary axis using (6). Plasmon dampin
at high and low energies is clearly visible. The inset i
lustrates the excellent quality of the fit (6) along the imag
inary axis. In Fig. 3 we show the spectral function o
silicon. The sharp peaks, which are automatically pro
erly renormalized, correspond to the quasiparticle ene
gies (and are in excellent agreement with both the qua
particle energies calculated directly from the self-energ
operator, with experiment, and with conventionalGW
calculations [1,2]) [10], while the remainder of the func
tion corresponds to the well-known spectral backgroun
and includes contributions from plasmons. We are n
aware of any comparable calculations of the functions d
played for silicon. The calculations currently take 60 mi
per imaginary time on a Cray Y-MP for the fullWGG0skd,
and 20 min per time for the fullSGG0 skd. The calculation
of the full self-energySGG0sk, vd over an energy range
of 100 eV takes less than half the time of a convention
technique using a plasmon-pole model forW , which is at
best valid only for a much smaller energy range. Full e
ploitation of the short-ranged character ofWS would, we

FIG. 2. The matrix element of the self-energy operato
of silicon continued as described onto real energy ax
RekcnkjSsvdjcnkl shown for the first 8 bands atk  0. The
deviation from a linear function is crucial in obtaining accurat
quasiparticle energies away from the band gap (whose cen
is at zero). Inset: The calculated quantity along the imagina
energy axis RekcnkjSsivdjcnkl for band 4 (the valence band
maximum), together with the form (6) (with two poles)
subsequently used to continue to the real axis; the fit is seen
be excellent.
1829
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FIG. 3. The spectral functionkcnkjAsr, r0, vdjcnkl of silicon,
for several bands atk  s1, 1, 1dpy4a. The renormalized
quasiparticle poles are evident as sharp peaks, whose calcul
weights (the renormalization factorsZ) are given. The spectral
background, which includes contributions from plasmons,
also visible.

estimate, yield a further saving of at least 50%, and sc
ing to larger systems is very favorable as discussed belo

The new method opens new prospects for the app
cations ofab initio many-body perturbation theory. First,
the improved computational efficiency of the various par
of the calculation, together with the elimination of the
need for plasmon-pole models forW , allow larger and
more complex unit cells to be studied. Second, the ex
tence of an efficient way of solving the Dyson equation t
obtain the next-level Green’s functionG [Eq. (7)] raises
the possibility of going beyond theGW approximation to
treat more strongly correlated electrons by including th
vertex functionG (which is approximated as a delta func
tion at theGW level). One simple way in which this may
be done has been mentioned above [5,6]; we are expl
ing the possibility of a more generalG in which our real-
space grid will be used to exploit its expected short-rang
character.

For large unit cells, the dependence of the total com
puter time on the number of basis functionsN becomes
crucial. The most important point is that the range o
the nonlocality ofW or S appears to be approximately
the same in all materials [11], and the length scale
the short-range behavior is set by atomiclike quantities,
that Rmax andDr need not change withN. Similarly the
imaginary-time grid used for silicon is capable of repre
senting much structure, so thatDt andtmax do not change
significantly withN . The information stored is therefore
linear in N , since the number ofr points (which run over
the irreducible wedge of the unit cell, as opposed to th
r0 points which run over the sphere of radiusRmax) is pro-
portional to N . Consequently the time for all the cal-
culations performed using this representation, which a
dominated by FFT’s, will scale with system size approx
mately merely asN [12]. If the basis set is changed for a
given system size, the time scales asN2. These scalings
1830
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are in marked contrast to conventional techniques, whi
usually involve N2 double summations over bands an
k points and typically scale asN4.

In conclusion, we presented a new formulation ofab
initio computational many-body perturbation theory fo
solids which gives greatly improved efficiency in the
calculation of dielectric matrices, self-energy operator
Green’s functions, quasiparticle energies, spectral fun
tions, charge densities, etc. The computational cost
this method scales approximately linearly with the syste
size, which allows the routine extension ofab initio work
beyond calculations of quasiparticle energies, and its a
plication to materials requiring larger basis sets or larg
unit cells than were previously feasible.
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