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We propose a new method for calculating total energies of systems of interacting electrons, which
requires little more computational resources than standard density-functional theories. The total energy
is calculated within the framework of many-body perturbation theory by using an efficient model of
the self-energy, that nevertheless retains the main features of the exact operator. The method shows
promising performance when tested against quantum Monte Carlo results for the linear response of the
homogeneous electron gas and structural properties of bulk silicon.

PACS numbers: 71.15.Nc, 71.15.Mb, 71.45.Gm

Density-functional theory (DFT) [1] is a powerful
method to calculate ground-state properties of electronic
systems. In its standard Kohn-Sham form [2], the system
of interacting electrons is mapped onto a system of nonin-
teracting electrons moving in an effective local potential.
This potential, however, exhibits some nonanalyticities in
its dependence on the electron density, such as the dis-
continuity on addition of an extra particle to the system,
which is reflected in the band gap problem [3] and the
failure to correctly describe the response of a macroscopic
system to an external electric field [4]. This nonanalytic
behavior is missing from the standard approximations to
the Kohn-Sham potential, i.e., the local density (LDA) and
generalized gradient approximations (GGA), which may
explain some of their limitations when applied to complex
systems such as catalyzed chemical reactions [5].

One way forward is to avoid the need to describe the
nonanalyticities by incorporating the true nonlocal nature
of the exchange and correlation. Recently, a new realiza-
tion of DFT, the generalized Kohn-Sham scheme (GKS)
[6,7], has been proposed, in which the electrons move in an
effective nonlocal potential. Among the GKS approaches,
the screened-exchange LDA (sX-LDA) [6] appears to
give the best performance, describing structural properties
with the same accuracy as the LDA but improving on its de-
scription of quasiparticle energies. However, this scheme
is numerically as expensive as a standard Hartree-Fock
calculation.

In this work we propose a new generalized Kohn-Sham
scheme, the 2-GKS scheme, in which the exchange-
correlation potential is intended to mimic the self-energy
operator, which in many-body perturbation theory (MBPT)
exactly describes exchange and correlation effects and,
being truly nonlocal, is expected to be more amenable to
approximation than the Kohn-Sham potential.

In the framework of MBPT, the total energy of a system
of electrons moving in an external potential Ve can be
calculated by means of the Galitskii-Migdal formula:
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where i and j are the indices of a suitable complete set
of one-particle wave functions, k;; are the matrix elements
of h = —V?/2 + Ve, and A is the spectral function of
the Green’s function. Atomic units are used through this
Letter.

From a particular approximation for the self-energy, a
model spectral function A can be obtained and the total
energy can be calculated via Eq. (1). Using the GW ap-
proximation [8], in its self-consistent formulation, total
energies derived from Eq. (1) have recently been shown
to be in very good agreement with quantum Monte Carlo
data, when applied to 3D [9,10] and 2D [10] homogeneous
electron gases. However, this approximation is computa-
tionally too expensive to be in competition with methods
such as the LDA and GGA in applications to very large
systems. The self-energy model that we propose will al-
low us to calculate total energies within the same order of
numerical cost as the LDA.

We start by modeling the self-energy of a homogeneous
electron gas (jellium) of density ny. For occupied states
the energy dependence of the self-energy is relatively weak
[8], suggesting the approximation [11]

S(r = r'l;€) = 2(Ir = r'l; 1), (2)

where u is the chemical potential of the system. The
self-energy for jellium at w can be well reproduced by the
following model function:

30, v’y ng) = f(no)g(lr — r'l;ng), 3)

where f(ng) = VLPA(ng) and
e (o) Ir—r'|

g(Ir — r'l;n9) = C(no) ir 4)

— 1|
The constant C(ng) ensures that the chemical potential
given by X is correct and 1/a(ng) represents the range
of the self-energy for a jellium of density ny.

In Fig. 1 the model function given by Eq. (3) is com-
pared to the GW data of Ref. [12], showing an excellent
agreement in the region in which ¥ has the largest con-
tribution. The small discrepancy that appears in the long-
range region is unimportant for the total energy, owing to

© 2000 The American Physical Society 5611



VOLUME 85, NUMBER 26

PHYSICAL REVIEW LETTERS

25 DECEMBER 2000

0.00
— -0.05
=]
8
= -0.10
=~ -0.15
* -0.20
®
¥ .0.25

Ir-r'l (a.u.)

FIG. 1. Comparison between the model self-energy and the
GW data from Ref. [12] for jellium of r; = 2.

the oscillatory behavior of the wave functions [13]. In ad-
dition to its suitability for jellium, the function g defined
in Eq. (4) has been shown to have the correct asymptotic
decay in semiconducting systems [14].

The key idea of this approach is to use a jelliumlike self-
energy to describe the exchange and correlation energy of
inhomogeneous systems. This is suggested by the fact that
for several semiconductors the self-energy has been shown
[15] to be almost spherical and to have the same range as
the self-energy of a jellium with the corresponding aver-
age density. A natural extension of Eq. (3) to an inhomo-
geneous system is

i) = LOED) S

2
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where here ng is the average density. This may be likened
to an LDA exchange-correlation potential that has been
made nonlocal by including a spreading function g.

The self-energy in Eq. (5) is the self-energy of a system
of noninteracting electrons, since it is energy independent
and real. The method that we propose is equivalent to a
mapping between the interacting system and the fictitious
noninteracting system represented by 3°. If we choose
the basis set ¢; to be formed by the wave functions of
the quasiparticles in this fictitious sytem, then the spectral
function A° is simply given by

A?J(w) = 51'.]'5((1) - 6?), (6)

where 6? are the quasiparticle energies of the noninteract-
ing system.

Using this spectral function A? and the Galitskii-Migdal
formula [Eq. (1)] the total energy of the model system can
be obtained:

#)

=T + Eext + Eg + Ey, (7)
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where, as usual, T is the kinetic energy, E is the Hartree

energy, Ec is the external energy, and
occe

Eyi = %Z [ arsie) [ ar' s e i),
@

As in other generalized Kohn-Sham schemes, a correc-
tion term E¢ is added so that the total energy given by the
model is exact in the homogeneous limit. This term can
be interpreted in MBPT as the remaining energy associated
with the satellite structure of the spectral function [16],

Byl = [ den@)[elPA ) — @) ©)

where € is the energy per particle obtained from Eq. (8)
in the limit of homogeneous densities:
1
a = [ aksm). a0
87 1 J k| <kr(n)

where kr(n) is the Fermi vector of a jellium of density n.
The total energy of the interacting system is thus

E=T+EH+Eext+En1+Ess- (11)

This functional is minimized with respect to variations
in the one-particle wave functions, yielding the following
effective Hamiltonian:

~

1 1
h= _EVZ + Vext + Vi + (520 + Vi + VSS>,

(12)
where Vi (n(r)) = 6E/Sn(r) and

Vale) = 3 /006 [ ar'Rep(e gl — ¢,
(13)

in which p is the density matrix of the fictitious noninter-

acting system:
occ

p(rr’) = 3 b (X)i(r). (14)

In the limiting case of the spreading function g tending
to a delta function, the term %EO + V.. + Vg reduces to
the conventional LDA exchange-correlation potential, so
that the LDA can be considered as a particular case of the
more general scheme proposed here.

The computational effort involved in solving the varia-
tional equations determined by Eq. (12) is not significantly
larger than in traditional DFT’s. In a plane wave basis
set, the matrix elements of the nonlocal potential take the
simple form

k + G2k + Gy = f(G - G
% g(k + G|) + g(lk + G'|)
5 ,

15)

i.e., they are just the product of the LDA exchange-
correlation potential and an analytical function of the
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moduli of the vectors k + G and k + G’. The calcula-
tion of X0 scales, as with local potentials, linearly with
the number of reciprocal-lattice vectors ng.

The potential V,, defined by Eq. (13) depends on the
density matrix of the system rather than the density it-
self, but it can be efficiently calculated in reciprocal space,
where the action of the nonlocal operator g on the wave
functions is simply given by the products g(G)¢;(G). The
calculation of V), also scales linearly with ng. In con-
trast, in Hartree-Fock or sX-LDA schemes, calculating the
exchange-correlation matrix scales with the cube of ng.

By construction, the X-GKS is exact for homogeneous
densities. In order to test its performance for inhomo-
geneous systems, we have used it to calculate the linear
response of a homogeneous electron gas to an external
perturbation 28 Vey;cos(q - r). This is a stringent test
since it involves the calculation of total energies for a
whole family of systems with different values of the per-
turbation amplitude & Vex and the wave vector g. The total
energy changes with respect to its unperturbed value by an
amount y (q)8V2,, where y(q) is the response function of
the system, related to the local field factor G(q) via

Xo(q)
1 —w(@[1 - G@]xolq)’

where w(q) = 47 /g? is the Coulomb potential and yo(q)
is the noninterating Lindhard response function. For a
given value of q, the total energy is calculated for several
values of 6Vex; and then the set of points (& Vezxt,E) are
fitted to a polynomial, whose first-order coefficient is y(q).
In Fig. 2, the local field factor G(q) calculated within the
2,-GKS scheme is plotted against the wave vector of the
perturbation and compared to the quantum Monte Carlo

(QMC) results of Moroni et al. [17], the LDA and the

x(q) = (16)
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FIG. 2. Local field factor for the linear response of jellium at
rg = 2 in the 2-GKS scheme compared to the QMC results [17],
the LDA, and the GGA of Ref. [18] (PBE) (which coincide).
The numerical uncertainties in the 3-GKS results are of the
order of 0.05 and are not shown for clarity. The new scheme
proposed considerably improves the local field factor for large
values of ¢ with respect to the LDA and to PBE.

GGA. For small values of g all methods agree well with
QMC. The large g response, however, is not correctly de-
scribed with the LDA, nor with the best GGA available due
to Perdew, Burke, and Ernzerhof (PBE) [18]. The X-GKS
shows a significant improvement in the local field factor
for large values of g.

As a further test, the 2-GKS scheme was applied to
calculate structural properties of a typical semiconductor
such as silicon. The bulk total energy was calculated us-
ing an LDA pseudopotential [19] due to Kerker [20] and
a plane wave basis set, and compared with the QMC re-
sults of Ref. [21], calculated with exactly the same pseu-
dopotential. The results are shown in Table I. Both the
2.-GKS and the convential DFT’s (LDA and GGA) total
energies are in good agreement with the QMC results, al-
though X-GKS agrees slightly less well [25]. The lattice
parameter and bulk modulus are equally well described in
the LDA, the GGA, and the 3-GKS scheme.

Although describing quasiparticle spectra is not the
primary goal of our scheme, we also calculated the quasi-
particle energies of Si. The overall tendency is to cor-
rectly increase the eigenvalues at the conduction band
with respect to the LDA values. The direct band gap at
I is increased from 2.6 eV in the LDA to 3.0 eV in our
scheme, whereas the GW and experimental values are
3.4 eV. Valence band widths in the 2-GKS are in general
overestimated.

In summary, we have proposed a new method for calcu-
lating total energies at the same time as quasiparticle ener-
gies which is just as efficient as a standard DFT calculation,
but that is constructed as a model of the self-energy, thus

TABLE 1. Total energy of bulk Si within the %-GKS scheme,
the LDA and GGA (PW91) [22], calculated with a 4 X 4 X 4
Monkhorst-Pack k grid, and QMC [21], all with a cutoff of
15 Ry for the G vectors. A LDA pseudopotential due to Kerker
[20] was used in all four cases, which allows a comparison of the
exchange-correlation functional under this particular choice of
external potential. The lattice parameter and bulk modulus were
also calculated, using a cutoff of 22 Ry for the G points and
a Monkhorst-Pack set of 14 special k points in the Brillouin
zone. The use of an LDA pseudopotential does not justify
the comparison of our results with experiment, but nevertheless
we present also the experimental values, for completeness. In
common with the LDA and PW91, the 3-GKS scheme shows
generally good agreement with QMC and experiment. Note that
quantities shown in parentheses have not been calculated with
the pseudopotential of Ref. [20].

E (eV/atom) a (rA) B (Mbar)
3-GKS —107.65 5.39 1.008
LDA —107.90 5.39 0.967
PWI1 —108.17 (5.46%) (0.92%)
QMC —108.3% (5459 (1.039
Expt. e (5.43%) (0.992%

*From Ref. [23].
"From Ref. [21];
+0.05 eV/atom.
‘From Ref. [24].
dCited in Ref. [24].

estimated finite-size convergence error
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describing the exchange and correlation in a more realistic
way than the LDA and GGA. This type of approach holds
the prospect of enhanced accuracy of total-energy calcula-
tions by avoiding the pathological aspects of the traditional
Kohn-Sham exchange-correlation energy functional.

We gratefully acknowledge many enlightening dis-
cussions with Pablo Garcia-Gonzdlez and thank Richard
Needs, Paul Kent, Bengt Holm, and Ian White for provid-
ing useful quantum Monte Carlo and GW data. This work
has been partially funded by the EPSRC and Fundacién
Repsol.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[2] W. Kohn and L.J. Sham, Phys. Rev. 140, A1122 (1965).

[3] J.P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983);
L.J. Sham and M. Schliiter, Phys. Rev. Lett. 51, 1888
(1983); R. W. Godby, M. Schliiter, and L.J. Sham, Phys.
Rev. Lett. 56, 2415 (1986).

[4] X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. Lett.
74, 4035 (1995); P. Ghosez, X. Gonze, and R. W. Godby,
Phys. Rev. B 56, 12811 (1997).

[5] D.M. Bird and P. A. Gravil, Surf. Sci. 377, 555 (1997).

[6] A. Seidl, A. Gorling, P. Vogl, J. A. Majewski, and M. Levy,
Phys. Rev. B 53, 3764 (1996); G. E. Engel, Phys. Rev. Lett.
78, 3515 (1997).

[7]1 G.E. Engel and W.E. Pickett, Phys. Rev. B 54, 8420
(1996).

[8] L. Hedin and S. Lundqyvist, in Solid State Physics, edited by
F. Seitz, H. Ehrenreich, and D. Turnbull (Academic Press,
New York, 1969), Vol. 23.

[9] U. von Barth and B. Holm, Phys. Rev. B 54, 8411 (1996);
B. Holm and U. von Barth, Phys. Rev. B §7, 2108 (1998).

[10] P. Garcia-Gonzdlez and R. W. Godby (unpublished); (pri-
vate communication).

5614

[11] Since the imaginary part of 3 at u is zero, the model
self-energy 30 is real.

[12] I.D. White (private communication).

[13] The products ¢; (r)2(r,r')¢;(r') cancel out when the dif-
ference between r and r’ is large, and thus the two wave
functions are not in phase.

[14] A. Schindlmayr (to be published).

[15] R.W. Godby, M. Schliiter, and L.J. Sham, Phys. Rev. B
37, 10159 (1988).

[16] A uniform background structure with a certain cutoff w,
will yield precisely this correction term if w, is chosen
using the criterion that the total energy of jellium is exact.

[17] S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev.
Lett. 75, 689 (1995).

[18] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
77, 3865 (1996).

[19] It should be noted that the use of an LDA pseudopoten-
tial tends to reproduce LDA structural properties when
used with any other exchange-correlation functional: see
M. Fuchs, M. Bockstedte, E. Pehlke, and M. Scheffler,
Phys. Rev. B 57, 2134 (1998). This does not affect, how-
ever, the comparison between theoretical methods.

[20] G. Kerker, J. Phys. C 13, L189 (1980).

[21] P.R.C. Kent, R.Q. Hood, A.J. Williamson, R.J. Needs,
W.M.C. Foulkes, and G. Rajagopal, Phys. Rev. B 59, 1917
(1999); (private communication).

[22] J.P. Perdew, J. A. Chevary, S.H. Vosko, K. A. Jackson,
M. R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B
46, 6671 (1992).

[23] L-H. Lee and R. M. Martin, Phys. Rev. B 56, 7197 (1997).

[24] X.-P. Li, D. M. Ceperley, and R. M. Martin, Phys. Rev. B
44, 10929 (1991).

[25] An improved 3-GKS total energy functional can be built
through a simple spectral function model for the energy
dependence of . This reduces the correction term of
Eq. (9) by 2 orders of magnitude in jellium at r;, = 2 and
will be the subject of a future publication.



