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We present GW many-body results for ground-state properties of two simple but very distinct families
of inhomogeneous systems in which traditional implementations of density-functional theory (DFT) fail
drastically. The GW approach gives notably better results than the well-known random-phase approxi-
mation, at a similar computational cost. These results establish GW as a superior alternative to standard
DFT schemes without the expensive numerical effort required by quantum Monte Carlo simulations.
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Ab initio many-body-theory (MBT) methods, particu-
larly those based on Hedin’s GW approximation [1],
have been used extensively during the last decade to
calculate excited-state properties of electron systems in
solid-state physics [2]. In addition, there is a recent and
increasing interest in the application of such methods to
obtain ground-state properties [3–10]. In MBT, electron-
electron correlations are taken into account directly
without resorting to the mean-field density-based ap-
proximations used in routine implementations of density-
functional theory (DFT) [11], thus providing a more
microscopic description of the interacting many-electron
problem.

Modern MBT calculations use efficient algorithms for
the evaluation of MBT quantities [such as the dielectric
function ê�v�, the self-energy operator Ŝ�v�, and the
one-particle Green function Ĝ�v�] required in the study of
excited-state properties of real materials [12,13]. The ap-
plication of these techniques to the calculation of ground-
state properties, such as the density or the total energy,
opens the appealing possibility of treating all the elec-
tronic properties in the same fashion. Although more ex-
pensive than DFT, these MBT methods do not require the
demanding computational effort of quantum Monte Carlo
simulations [14]. Nonetheless, ground-state calculations
based on MBT must be painstakingly assessed. First, ap-
proximations that have proved successful for spectral prop-
erties might not necessarily be good methods for structural
properties. Second, the energies and lifetimes of quasi-
particles are mainly determined by the pole structure of
Ĝ�v�, while ground-state properties emerge from a multi-
dimensional integration of Ĝ�v�. As a consequence, fea-
tures that can be safely ignored in the determination of
quasiparticle properties, such as the high-frequency be-
havior or high-energy-transfer matrix elements, play an
important role if we want to calculate, for instance, the
ground-state energy. The development of general-purpose
procedures requires a careful study of the optimal treat-
ment of these points.
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In this Letter, we present non-self-consistent (in the
sense described below) GW calculations for the ground-
state properties of two families of simple inhomogeneous
systems: the quasi-two-dimensional (2D) electron gas and
a pair of interacting jellium slabs. These provide suitable
test cases for an extensive assessment of the performance
of GW-MBT ground-state calculations. First, despite
the simplicity of these systems, local density approxima-
tion (LDA) and the generalized gradient approximations
(GGA) fail to describe them properly. For the quasi-2D
gas, the high inhomogeneity of the density profile along
the confining direction is clearly beyond the scope of
local or semilocal approaches [15]. The situation is quite
different if we consider interacting jellium slabs. In the
limit of large separation, in which the densities of each
subsystem do not overlap, dispersion or van der Waals
(vdW) forces are evident. These forces are due to long-
ranged Coulomb correlations and, hence, cannot be
described at all by the LDA or GGA [4,16]. As shown
below, even nonlocal DFT prescriptions for the XC en-
ergy, such as the weighted density approximation (WDA)
[17], are unable to reproduce such forces. On the other
hand, these systems exhibit translational invariance along
the xy plane, thus reducing significantly the number
of independent variables needed to describe the spatial
dependence of all the operators, assisting the production
of the highly converged test calculations required here.

In Hedin’s GW framework, the self-energy Ŝ of a sys-
tem of N electrons under an external potential yext�r� is
approximated by

S�1, 2� � iG�1, 21�W�1, 2� , (1)

where the labels 1 and 2 symbolize space-time coor-
dinates. Ŵ is the screened Coulomb potential, which
is exactly related to the bare Coulomb potential ŵ and
the polarizability P̂ by Ŵ �v� � ŵ 1 ŵP̂�v�Ŵ �v� �
ê21�v�ŵ (the usual matrix operations are implied).
Under the GW approach, the polarizability is given by
© 2002 The American Physical Society 056406-1
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P�1, 2� � 22iG�1, 2�G�2, 11�. Finally, Ŝ and Ĝ
are linked through the Dyson equation Ĝ21�v� �
v 2 �t̂ 1 ŷel 1 Ŝ�v��, with t the one-electron kinetic
energy, and yel�r� the classical electrostatic potential [the
sum of yext�r� and the Hartree interaction potential]. This
set of equations defines a self-consistent problem, but
routine GW calculations concerned with the quasiparticle
properties do not attempt self-consistency: when eval-
uating Ŝ, the interacting Green function Ĝ is generally
substituted by that corresponding to the noninteracting
Kohn-Sham (KS) system under the LDA (or GGA)
approximation.

It is well known that full self-consistency implies a
worsening of the description of spectral properties [18].
However, for the 3D [5,10] and 2D [10] homogeneous
electron gases, the total energy arising from Ĝ by using
the Galitskii-Migdal formula of MBT [19] fits the (essen-
tially exact) QMC values extremely well if Ĝ is obtained
self-consistently. Nonetheless, at the non-self-consistent
level (which we will call G0W0) the exact exchange en-
ergy is already built in and, at the same time, correlation
effects beyond the random-phase approximation (RPA) are
taken into account, as reflected in good total energies and
very good total energy differences [5,10] for these homo-
geneous systems. Since the relevant quantity for structural
properties is the total energy difference, G0W0 (and even,
in some cases, RPA [20]) is likely to fulfill a useful role.
The known particle-number violation under the G0W0 ap-
proximation [21], while nonzero, is so small that it can be
ignored in practical applications [22].

All the calculations reported in this Letter are done
as follows. First, we perform a standard LDA-KS cal-
culation, in which, owing to the translational invariance
along the xy plane, the KS orbitals are organized into
subbands. That is, each KS state is given by fnk�r� �
cn�z�eik?r�

p
2p, where k � �kx , ky� and r � �x, y�

denote the two-dimensional momentum and position in
the xy plane. Then, the noninteracting polarizability
P0�1, 2� � 22iG0�1, 2�G0�2, 11� is calculated at imagi-
nary frequencies using the expression

P0�z, z0, k; iv� �
NoccX
n�1

X̀
m�1

Snmk�iv�gnm�z�gnm�z0� . (2)

Here, Nocc is the number of occupied KS subbands,
gnm�z� � cn�z�cm�z�, and the coefficients Snmk�iv�
admit a fully analytical expression [9,23]. P0�iv� could
be also calculated fully numerically [13] but due to the
high symmetry of the system, the present method is more
efficient. The infinite sum in Eq. (2) is truncated at a
certain value NB, which acts as a convergence parameter.

The next step is the inversion of the RPA dielectric
function ê0�iv� � 1 2 ŵP̂0�iv� and the evaluation of
Ŵ0�iv� � ê

21
0 �iv�ŵ. This can be done in a double

cosine basis representation [9,22], but the high inhomo-
geneity of the systems along the z direction suggests a
different method based on Ref. [12]. Note that the
polarizability spans a Hilbert space made up by the
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product states gnm. Obviously, the set �gnm� has a large
number of linear dependences which can be eliminated
using a standard Gramm-Schmidt procedure, so obtaining
an optimized basis set Bop � �za�z��. In all the cases
here studied, Nop � NB 1 Nocc 2 1 z functions ensure
an almost perfect representation (with a relative error
less than 1024) of all the product states gnm. Hence,
P0�z, z0, k; iv� �

P
a,b za�z�P0�k, iv�abzb�z0�, where

the matrix elements P0�k, iv�ab can be immediately
obtained from Snmk and the scalar products �gnm, za	.
Then, we calculate the representation w�k�ab of the bare
Coulomb potential, and the matrix elements W �k, iv�ab

of the screened Coulomb potential are easily obtained by
a matrix inversion for each value of k. Well-converged
results are typically obtained with NB 
 80 subbands,
although for quasi-2D systems NB is significantly less.
RPA correlation energies, where required, can be straight-
forwardly obtained in this representation.

The real-space representation of Ŵ0 is given by the ex-
pansion

W0�z, z0, r; it� � i
X

a,b,k

Z dv

2p
ei�vt1k?r�

3 za�z�zb �z0�W �k, iv�ab ,

where
P

k � �2p�22
R

dk, whereas the KS Green func-
tion G0�z, z 0, r; it� is calculated directly from the KS
eigenstates [13]. By using (1) we readily get the self-
energy operator in real space and imaginary time and,
eventually, its representation S�k, it�nm in the KS basis
set. We use typically 100 (or fewer) t�v points in a
Gauss-Legendre grid with vmax 
 80Dc (Dc is the width
of the conduction band), and 100 150 r�k points with
k2

max�2 
 vmax. It is important to emphasize that the
asymptotic time and frequency tails of all the operators
must be treated analytically to ensure smooth and rapid
convergence.

In the imaginary-time/frequency representation
Ŝ�m 1 iv� � 2i

R
dtŜ�it�e2ivt, with m the inter-

acting chemical potential. Hence, the Green function
at imaginary frequencies is the solution of the Dyson
equation

Ĝ21�m 1 iv� � m 1 iv

2 �ĥKS 1 Ŝ�m 1 iv� 2 ŷXC� (3)

with ĥKS � t̂ 1 ŷS the KS-LDA Hamiltonian and yXC�r�
the LDA-XC potential. Ĝ is calculated in the KS rep-
resentation G�k, iv�nm, with m previously obtained by
diagonalizing the quasiparticle Hamiltonian at iv � 0,
ĥQP�m� � ĥKS 1 Ŝ�m� 2 ŷXC, and by imposing that the
volume enclosed by the interacting Fermi surface equals
the KS value. A small term dy�r�, accounting for the
change in the Hartree potential due to the differences be-
tween the G0W0 and LDA densities, should be included
into (3) and ĥQP. However, this term induces an imper-
ceptible change in the shape of Ĝ, and it has a negligible
influence on the ground-state properties.
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The electron density and energy are given, respec-
tively, by n�r� � p21 H

dv G�r, r; iv� and E � Eel 1

p21 tr
H

dv�t̂ 1
1
2Ŝ�iv��Ĝ�iv�, where Eel is the classi-

cal electrostatic energy [which can be obtained from n�r�],
and tr symbolizes the spatial trace. Owing to the symmetry
of our model systems (the generalization to arbitrary ge-
ometries is straightforward), we can write n�z� � n0�z� 1

dn�z� � n0�z� 1
P

n,k jcn�z�j2dfnk, n0�z� being the
LDA density, and

dfnk �
Z dv

p
�G�k, m 1 iv�nn 2 G0�k,m0 1 iv�nn�

(4)
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(m0 is the LDA chemical potential). On the other hand,
the exchange energy per surface unit is given directly
by EX�S �

1
2

P
n,k fnkSX�k�nn , where ŜX is the

frequency-independent part of the self-energy
SX�r1, r2� � i limt!01 G0�r1, r2; it�w�r12� (i.e., the
Fock operator). Finally, the correlation energy EC is
written as the sum of its kinetic energy and electrostatic
parts:

TC

S
�

X
n,k

´nkdfnk 2
Z

dzyS�z�dn�z� , (5)
WC

S
�

X
n,k

1
2

∑
SX�k�nndfnk 1

X
m

Z dv

p
SC�k, m 1 iv�nmG�k, m 1 iv�mn

∏
, (6)
where we have included the frequency-dependent part of
the self-energy ŜC�iv� � Ŝ�iv� 2 ŜX. As usual, we
suppose that the total electrostatic energy is given correctly
by the LDA, since we have checked carefully that the den-
sity variation dn�z� causes only minor changes in the elec-
tronic energy. We also note that when evaluating EC we
do not need all the matrix elements of Ŝ and Ĝ. In gen-
eral, full convergence is achieved by performing the sum
only over LDA states such that ´nk & 6Dc, and this also
applies to the resolution of Dyson’s equation. Therefore,
the most demanding part of the calculation is the evalu-
ation of ê21�iv� which, in any case, is required to obtain
the RPA correlation energy.

To mimic a quasi-2D electron system, we have taken a
thin jellium slab with a background density n � � 4

3pr3
s �21

and width L. This slab is bounded by two infinite planar
walls, and overall charge neutrality is assumed. We keep
the number of particles per unit surface area n2D � nL
constant, in such a way that the limit L ! 0 corresponds
to a 2D homogeneous electron gas (HEG) with density
n2D. In Fig. 1 we plot, for several values of L, the XC
energy per particle ´XC given by the LDA, the nonlocal
WDA, the RPA, and the G0W0 method. As commented
previously, the LDA diverges when approaching the 2D
limit, whereas the WDA behaves reasonably well, slightly
underestimating the absolute value of ´XC in the strict 2D
limit. The RPA does not show any pathological behavior,
but it overestimates j´XCj by more than 20 mHa�e2 for
all configurations. Finally, G0W0, whose superiority to the
RPA has already been established in the 3D limit, [5,10]
retains this in the transition to the 2D limit. Its performance
is similar to that of the WDA for these systems (although
the residual error for the 2D gas has the opposite sign).
It is important to point out that the RPA and G0W0 XC
energies obtained by starting from a WDA-KS calculation
are indistinguishable from those plotted in Fig. 1. Thus,
the specific choice of the KS method seems to be of minor
importance when calculating XC energies using MBT.
The study of the interacting energy between two uncon-
fined jellium slabs is of more direct significance, as it has
been considered as a benchmark for seamless correlation
functionals attempting to describe vdW forces [4,24]. By
varying the distance d between the slabs we cover con-
figurations in which the density profiles of each subsys-
tem overlap (i.e., there is a covalent bond), and situations
(when d ¿ 0) in which there is no such overlap and the
only source of bonding is the appearance of vdW forces.
In the upper panel of Fig. 2 we plot the XC energy per
particle ´XC�d� as a function of d using the LDA (the
WDA gives very similar results), the RPA, and the G0W0,
for two slabs of width L � 12a0 and a background den-
sity n corresponding to rs � 3.93. We can see that the
G0W0 reduces the RPA error by 60%. In the lower panel
we represent the correlation binding energy per particle
[defined as eC�d� � ´C�d� 2 ´C�`�]. First, neither the
LDA nor even the nonlocal WDA is able to reproduce
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FIG. 1. XC energy per particle for thin confined jellium slabs
of fixed 2D density n2D � 3�4p as a function of their thickness
L (see inset). Lines: LDA, WDA, and RPA; circles: G0W0.
The exchange energy (dash-dotted line) has been included as a
reference. Note the effect due to the filling of a second subband
at L 
 4.2a0, which is especially evident in ´X. The arrow
indicates the QMC value for the 2D limit.
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FIG. 2. Upper panel: XC energy per particle for two jellium
slabs as a function of the distance d (see inset). Lines: LDA,
WDA, and RPA; circles: G0W0; squares: G0W0 plus LDA-like
correction term. Lower panel: Correlation binding energy per
particle. The LDA and WDA contributions have been obtained
by subtracting the exact exchange energy from the corresponding
XC values. The exchange binding energy (dash-dotted line) has
been also included in this panel.

the characteristic asymptotic d22 vdW behavior. This be-
havior is described by the RPA and the G0W0, and for both
approximations eC �d ¿ 0� is very similar (which is not a
surprise because such an asymptotic behavior is fully de-
scribed at the RPA level [4]). For intermediate and small
separations, there are slight differences between the RPA
and the G0W0 but much less important than those appear-
ing when comparing the total correlation energies.

A detail that is worth pointing out is the fact that the
error in the absolute G0W0 correlation energy is amenable
to a LDA-like correction. From the differences, given
in Ref. [10], between QMC and G0W0 correlation en-
ergies for the HEG, we can build a functional DEC �R

drn�r�d´C�n�r��. The absolute G0W0 energy corrected
in this way is in broad correspondence with the LDA en-
ergy, while the binding energy retains its correct 1�d2 be-
havior at large d and is little altered for small d (see Fig. 2).

In summary, we have performed GW-MBT calculations
to evaluate the ground-state energy of inhomogeneous sys-
tems. With practically the same cost we have obtained cor-
relation energies beyond the random phase approximation.
The importance of a truly ab initio treatment of electron
many-body effects is evident in the model systems we have
chosen, for which traditional implementations of DFT are
completely inaccurate.
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