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The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial
problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-
interaction effects by widely used local and semilocal exchange-correlation energy density functionals is
shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the
Kohn-Sham potentials and density profiles.
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I. INTRODUCTION

The Kohn-Sham (KS) [1] formulation of density-
functional theory(DFT) [2] is in the present day the most
popular method in electronic structure calculations. In this
scheme, the exact ground-state energy and electron density
could be found self-consistently if the exchange-correlation
(XC) energy functionalEXCfng was known.EXCfng contains
all the quantum many-body effects of the electron system,
but very simple mean-field prescriptions such as the local-
density approximation(LDA ) often suffice to obtain accurate
results for a wide variety of systems at an affordable compu-
tational cost.

However, there are several problems that are well beyond
the capabilities of the local approximation and anysemilocal
extension thereof, because of the clear manifestation of the
very nonlocal nature of electron-electron correlations. For
example, the long-ranged van der Waals interactions, the im-
age potential at metal surfaces and clusters, or severalpatho-
logical behaviors of the exact XC potential cannot be de-
scribed at all using simple XC functional models[3].
Nevertheless, these limitations should not be important in
many other situations, and new XC functionals are being
proposed with the aim of reaching chemical accuracy while
keeping the implementation ease of the local-density based
approximations[4,5]. This could open the appealing possi-
bility of making predictive studies of relevant aspects of
quantum chemistry such as reaction paths, atomization ener-
gies, and bond lengths and energies.

The purpose of this paper is to bring further insight into
the capabilities and limitations of local and semilocal XC
functionals, showing that even in very simple problems the
complexity of the quantum electron-electron correlations
might prevent any of these approaches from properly de-
scribing the ground-state properties of such systems. We do
not intend to make a comprehensive assessment of mean-
field-like approximations, but just to provide a representative
common picture of all of them. Hence, among the realm of
proposals existing in the literature, we have chosen the well-
known LDA prescription by Perdew and Wang[6], the gen-
eralized gradient approximation(GGA) by Perdew-Burke-
Ernzerhof [7], and the very recent meta-GGA(MGGA)

proposed by Taoet al. [8]. These three approaches have the
virtue of being designed using general considerations(i.e.,
they do not include empirical parameters). Furthermore, they
can be seen as a coherent set of conceptual progressive im-
provements starting from the strictly local approximation,
then considering the dependence on the density variation,
and finally including information from KS orbitals through
its associated kinetic-energy density.

We will study a very simple but nontrivial system: two
electrons confined within a sphere of hard walls, whose so-
lution has been found through accurate configuration-
interaction calculations[9,10]. This system is an interesting
benchmark reference due to the following reasons. First, its
simplicity: the density is isotropic, hence having a simple
mathematical one-dimensional problem restricted to the ra-
dial coordinate. Second, its ground state has singlet spin con-
figuration. As a consequence, Pauli’s correlation(exchange)
between the electrons is absent and the exchange energy
EXfng just corrects the spurious electron self-interaction in
the classical Hartree electrostatic energyWHfng. That is, the
Coulomb correlation is actually the only source of quantum
many-body effects in this system. Finally, different correla-
tion regimes can be easily achieved by varying the radiusR
of the confining sphere. Thus, at smallR (high mean density)
we are in the low-correlation limit where the confinement by
the sphere dominates over the electron-electron interaction,
so having a system with anatomic-likebehavior. By increas-
ing the value ofR (decreasing the mean density) we gradu-
ally enter into a highly correlated regime in which the corre-
lation exhibits long-ranged and anisotropic effects.

Then, this simple system offers an excellent scenario to
assess essential features of functional approximations to the
XC energy. In particular, since it is impossible within the
present formulation of semilocal functionals to achieve the
exact exchange energy for arbitrary one- and two-electron
systems(−WHfng and −WHfng /2, respectively), we can eas-
ily see how important is this limitation for two-electron den-
sities with very distinct mean densities. On the other hand,
LDA and GGA suffer from spurious correlation self-
interaction, a limitation which is corrected by the MGGA
[8,11]. Nonetheless, the proper self-interaction correction
does not guarantee the overall accuracy of the correlation
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functional, and the actual role played by nonlocal correlation
effects has to be checked carefully.

As a first test, we will evaluate these functionals over the
exact densities, i.e., in a non-self-consistent fashion, compar-
ing the XC energies and potentials with the exact ones. Then,
we will present the fully self-consistent solutions, in such a
way that we will assess not only the self-consistent energies
but also the DFT densities that minimize the corresponding
total-energy functionals. Atomic unitss"=me=e=1d will be
used throughout the paper.

II. RESULTS ON THE EXACT DENSITY PROFILE

The Hamiltonian of the two-electron model system is
given by

Ĥ = −
1

2o
i=1

2

¹i
2 +

1

urW1 − rW2u
+ o

i=1

2

Vsr id,

Vsrd = H0, r , R

`, r ù R.

The hard wall described byVsrd impose strict boundary con-
ditions atr =R, but does not have a direct contribution to the
total-energy functionalEfng. Therefore

Efng = TSfng + WHfng + EXCfng, s1d

whereTSfng is the kinetic energy of the fictitious KS nonin-
teracting system. For a singlet state, the set of KS equations
is reduced to a single Schrödinger equation

f− 1
2¹2 + vSsr dgfsr d = «fsr d, s2d

wherevS=vH+vX +vC is the KS effective potential which is
the sum of the HartreesvHd, exchangesvXd, and correlation
svCd potentials. The density is related to the ground-state
orbital of Eq. s2d through the simple equalityfsr d
=Însr d /2.

Under the exact DFT formulation, ifnexsrd is the ground-
state density of the system, the corresponding eigenvalue«ex

must equal the ionization energyEfnexg−Es1d, whereEfnexg
=Etot

ex is the two-electron ground-state energy and
Es1d=p2/ s2R2d is the energy of the one-electron system.
Thus, the exact correlation potential can be written explicitly
as

vC
exsr d = «ex +

1

2

¹2Înexsr d
Înexsr d

−
1

2
E dr 8

nexsr d
ur − r 8u

, s3d

where we have used the exact relationEXfng=−WHfng /2
f13g. However, it is worth pointing out that Eq.s3d is an
expression only valid for the exact density profile. An exact
functional expression for the correlation potentialvCsr d of an
arbitrary spin-unpolarized two-electron densitynsr d would
require to know the external potential that defines the two
interacting electron system whose ground state isnsr d and
then include such a potential. Then, the simplicity suggested
by Eq. s3d is just apparent.

The performance of different local and semilocal prescrip-
tions when evaluating the XC energy on the exact density
profile is shown in Fig. 1 and Table I. The LDA systemati-
cally underestimates the absolute value of the exchange en-
ergy, whereas the GGA partially corrects this trend, although
in the low-density limit the GGA overestimatesuEXu. The
MGGA behaves reasonably well for small radii, which is not
a surprise since it reproduces exactly the exchange energy of
the hydrogen atom and, as we said in the Introduction, in this
range the model system behaves precisely like an atom.
Thus, although the MGGA does not cancel exactly the spu-
rious Hartree self-interactions, it fairly accounts for such a
cancellation in atomic-like systems. When decreasing the
mean electron density, the system cannot be considered like
an atom any more and the MGGA greatly overestimates the
self-interaction corrections toWH, becoming even worse than
GGA.

Regarding the correlation energyECfng, the LDA shows
an evident poor behavior which is improved by the GGA
although the correlation energies are always much too nega-
tive. On the contrary, the MGGA behaves extremely well for
all densities. Its relative error in the high-density limit
(around 20%) has a minor influence in the total energy, and
such an error is less than 5% for lower densities. This excel-
lent performance is in agreement with the conclusions by

FIG. 1. Percent errorsDE=100sEDFT−Eexd /Eex for the ex-
change, correlation, and total energies as functions of the sphere
radiusR. All DFT results are obtained non-self-consistently over the
exact density. Solid line, LDA; dashed line, GGA; dotted line,
MGGA; dash-dotted line, EXX+M.
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Seidl et al. [12] about the essentially correct behavior of the
meta-GGA correlation functional proposed in Ref.[11] (the
basic ingredient of the MGGA by Taoet al.) under uniform
scaling to the low-density limit. We have to bear in mind that
in the highly correlated regime, the two electrons arelocal-
izedin two different positions. That is, if one of the electrons
is at a distancer from the center, the probability to find the
second one is concentrated around a point on the opposite
side [9]. Thus, the LDA/GGA main source of error in this
regime, corrected by the MGGA, is the absence of self-
interaction corrections.

In the lower panel of Fig. 1 we present the accuracy of
the corresponding non-self-consistent DFT total energies.
The well-known compensation of errors between exchange
and correlation in LDA and GGA is easy to
atomic-like limit, but in the high correlation regime both
functionals fail badly. The MGGA does not benefit from any
cancellation of errors(it overestimates the absolute value of
exchangeandcorrelation energies). Hence, it slightly under-
estimates the total energy for small radii, but the error on
exchange dominates for lower densities where the MGGA
performs poorly. A hyper-GGA[5], designed with the aim of
being free of any self-interaction error, must yield very ac-
curate total energies for all the ranges in our model system.
Then, its performance should be similar to that presented in
the lower panel of Fig. 1, where we plot the relative error on
the total energy evaluated through a hybrid functional where
the exchange is calculated exactly(as in EXX) and the cor-
relation approximated by the MGGA. We refer to it as
EXX+M. In this case, the error on the total energy is always
less than 1%, and forR.1 the absolute deviation is just
7 mhartree/e, fairly close to the chemical accuracy(around
2 mhartree/e).

From the shape of the potentials it is possible to see the
underlying physics contained in the approximations. The
above-mentionedlocalization of the electrons in the highly
correlated limit is an obvious consequence of the electro-
static repulsion, which tend to dominate over the confine-
ment by the wall as we increase the radius of the system.
Since the Hartree energy contains spurious self-interactions,
the role of the exchange is to compensate partially the effects
due toWH. As we can see in the upper panel of Fig. 2, where
vXsrd is plotted for the model system withR=10, the exact
exchange potential has a minimum in the center of the
sphere, favoring an atomic-like behavior. The corresponding
LDA potential is not able to account completely for this ex-
changeattractivefeature, whereas the overall shift ofvX

LDA is

a concomitant consequence of the local dependence on the
density. The semilocal potentials exhibit a similar behavior
but there are unphysical oscillations reflecting the presence
of the gradient and the Laplacian of the density in the ex-
pression of the exchange potential.

On the contrary, the Coulomb correlation enhances the
localization through a potential barrier located in the center
of the sphere(see the middle panel of Fig. 2). This barrier
reflects a truly nonlocal correlation effect. In fact, forR
=10, the electron density is almost homogeneous aroundr
=0, and thenvC

LDAsr d is practically constant in this region.

TABLE I. Comparison between the exact exchange and correlation energies for several sphere radiiR and the results given by the local
and semilocal functionals evaluated on the exact density profile. The exact total energy is also included to illustrate the increasing importance
of correlation for highR.

R Etot
ex EX

ex EX
LDA EX

GGA EX
MGGA EC

ex EC
LDA EC

GGA EC
MGGA

1 11.5910 −1.7581 −1.5230 −1.6843 −1.7805 −0.0507 −0.1424 −0.0775 −0.0647

5 0.7016 −0.3335 −0.2914 −0.3213 −0.3412 −0.0383 −0.0715 −0.0501 −0.0421

10 0.2381 −0.1592 −0.1407 −0.1550 −0.1651 −0.0288 −0.0481 −0.0362 −0.0301

25 0.0633 −0.0590 −0.0537 −0.0596 −0.0634 −0.0163 −0.0257 −0.0201 −0.0166

50 0.0249 −0.0278 −0.0262 −0.0296 −0.0311 −0.0093 −0.0151 −0.0116 −0.0095

FIG. 2. Exchange and correlation potentials obtained from the
exact density profilesR=10d. Thick solid line, exact results; thin
solid line, LDA; dashed line, GGA; dotted line, MGGA; dash-
dotted line, EXX+M. Note that the shape of the LDA XC potential
reproduces fairly well the exact one except in the region around the
center of the sphere. This error is amplified by the EXX+M pre-
scription, where the exchange part is exactly correct but the corre-
lation potential is the same as the MGGA.
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On the other hand, the LDA fits reasonably well the exact
potential ifr *5, but this partial agreement is completely lost
under the GGA and MGGA. This overall bad quality of the
local and semilocal correlation potentials is a general feature
in finite systems[14], although in some cases it could be
masked if we focus on the totalvXCsr d. As we may see in the
lower panel of Fig. 2, the XC potentials given by LDA,
GGA, and MGGA are rather similar(excepting the above
mentioned unphysical oscillations). Their shape is close to
the exact one forr *5 but, as expected, they do not repro-
duce at all the correlation barrier atr =0. Under the
EXX+M prescription, the situation is even worse, since the
XC potential reaches a minimum atr =0 due to an exact
description of exchange which is not compensated by an
accurate correlation potential. Therefore, although the corre-
lation energies given by the MGGA are excellent, the poten-
tials derived from it are not able to reproduce the nonlocal
effects that manifest themselves in the shape ofvCsr d. As we
will see in the following section, this will lead to important
deviations from the exact density profile when solving self-
consistently the KS equation.

III. SELF-CONSISTENT RESULTS

One of the major advantages of KS-DFT is its fully self-
consistent character: any previous knowledge of the electron-
density profile is not required except for setting up an initial
guess to start the iterative resolution of the KS equations. For
many purposes, LDA and/or GGA give accurate self-
consistent densities because the corresponding approximate
potentials are very similar to the exact ones in those regions
relevant for the calculation of the electron density. This jus-
tifies the use of more sophisticated functional expressions as
a mere correction over the self-consistent LDA and/or GGA
densities. Consequently, the main effort carried out during
Past years had been directed towards the improvement of the
XC energies, paying less attention to the characteristics of
the XC potentialvXCsr d.

Nonetheless, in the preceding section we have seen that
all the functionals considered in this paper fail to reproduce
the exact XC potential in a region where the electron density
is far from being negligible. The consequences can be seen
in Fig. 3, where we compare the exact KS potentialvSsrd
with the DFT ones obtained from the exact density profile
nexsrd. The LDA, GGA, and MGGA do not reproduce the
exact shape ofvSsrd and it is reflected by a classical forbid-
den region greater than the actual one: the self-consistent
density will be pushed towards the walls. The EXX+M
model, as commented, incorporates exactly the attractive
character of exchange, but the wrong description ofvCsrd
makes the effective potential less confining than the exact
one: this hybrid approach tends to concentrate the density
aroundr =0.

These deviations from the exact two-electron density pro-
file, which can be quantified through the expression

dn =
1

2
E dr unexsr d − nsr du s4d

should not be important for high mean densities. In this
atomic-like limit the external confining potential dominates,

and the electrons are going to be concentrated around the
center of the sphere anyway. However, the greater the radius
the less important is the confinement, and the shape of the
XC potential will play a more prominent role. This trend can
be seen in Fig. 4, where we compare the DFT densitiesnsrd
as well as the corresponding reduced radial densitiesr2nsrd
with their exact counterparts. In the atomic-like regime
sR&5d, we can observe genuine errors on the DFT densities
around the center of the sphere. However, this wrong behav-
ior will lead to marginal errors on integrated quantities, as
suggested by the overall good agreement shown by the re-
duced radial densities. At intermediate mean densitiessR
.10d, the differences onr2nsrd can be already observed at
a first glance. Moreover whereas the system shows an
incipient localized behavior, which is characterized by a
density reaching a local maximum atr Þ0, the EXX+M
self-consistent density still has an atomic behavior char-
acterized by a maximum atr =0. Finally, in the low-
density limit, all the approximate functionals fail to de-
scribe the exact density profile with a minimum accuracy.
For instance, ifR=25 the error given by Eq.s4d is 8.6%
using the EXX+M functional and14.2%using the GGA.

Then, the full minimization ofEfng adds a further source
of error due to the inaccuracies of the self-consistent density.
Nonetheless, theseself-consistency-inducederrors in the to-
tal energies are going to be less important because there is an
overall trend to cancellation, see Table II. For instance, the
EXX+M self-consistent density is smoother than the exact
one, which lowers the kinetic and exchange energies while
increasing the Hartree interaction energy. However, in spite
of the distorted density profile, there is a fortunate cancella-
tion of errors that makes the sum of these three terms prac-
tically equal to the exact value. Thus, the minimization of the
energy leads to changes on the density profile favoring lower
correlation energies, which is done by increasing the density
around the center of the sphere. As a result, self-consistent
total energies are just slightly worse than the non-self-

FIG. 3. Kohn-Sham potentialvSsrd for the exact density profile
sR=10d. Thick solid line, exact result; thin solid line, LDA; dashed
line, GGA; dotted line, MGGA; dash-dotted line, EXX+M. In or-
der to allow an easier comparison, the potentials have been shifted
in such a way that the corresponding first eigenvalue for each ap-
proximate potential is equal to zero. The behavior of the potentials
near the sphere walls is less important due to the role played by the
boundary conditionnsRd=0.
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consistent ones, the relative errorDEtot ranging from −0.1%
for R=1 to −2.5% forR=50. A similar conclusion reads for
the remaining functionals(LDA, GGA, MGGA), although in
this case the self-consistentTSfng is greater than the exact
one, whereas the classical interaction energy is reduced after
the minimization. Hence, self-consistency keeps the fairly
good quality of the total energies in the atomic limit, where
there are minor changes in the density profile, and for inter-
mediate and low densities the dramatic changes onnsr d in-
duce a few percent variation on the total energies that, in any
case, were already too small.

IV. CONCLUSIONS

In this work we have assessed the quality of some of the
most popular XC functionals used inab initio electronic
structure calculations in a simple system of electrons where
several correlation regimes can be easily achieved. None of
the exchange functionals is completely free of self-
interaction errors, making it impossible to obtain accurate
energies for highly correlated electrons. Local and GGA cor-
relation exhibit a similar drawback, but the MGGA correla-
tion shows an excellent performance for all the regimes.
Nonetheless, neither LDA/GGA nor MGGA can describe
highly nonlocal correlation effects that lead to a nontrivial
behavior of the correlation potential, so seriously affecting
the quality of the self-consistent densities. Due to persistent
cancellation of trends, the corresponding changes on the total
energy after minimization are less important, but this uncon-
trolled source of error might prevent these approximate func-
tionals from having full predictive accuracy.

The overall bad quality of the self-consistent KS potential
also compromises the evaluation of post-self-consistency

corrections based on more sophisticated methods, such as
many-body perturbation theory or time-dependent DFT[3],
if the wrong effective potential is not corrected as well. On
the other hand, an accurate description of the XC potential is
required, for instance, when studying neutral excitations in
finite systems using time-dependent DFT[15]. As shown re-
cently by Della Sala and Görling[16], for those systems
having a highest occupied molecular orbital with nodal sur-
faces, the exact exchange potential tends to a constant if
going to infinity over a set of zero measure directions. This
leads to the appearance of potential barriers that, although
could be of minor importance when obtaining the self-
consistent static results, might be essential if a proper de-
scription of all the unoccupied KS orbitals was required.
Here, although in a very different context, potential barriers
induced by the nonlocality of the many-body effects in an
electron system have been observed as well.

The limitations observed for this family of prototype sys-
tems might have relevance for real molecular or condensed-
matter systems in some cases. Prospective tests of the
MGGA functional used in this work show an excellent per-
formance for a wide variety of typical molecular and solid-
state systems which, moreover, seems to be kept if partial
self-consistency is achieved[8]. However, there is no guar-
antee that the energy minimization procedure may lead to
small, but relevant changes on the local electron density in,
for instance, the bonding region between two species, so giv-
ing a wrong account of the nature of such a chemical bond.
Finally, for this model system we have seen that there are no
substantial differences between the fully self-consistent GGA
and MGGA densities, although in this case the MGGA func-
tionals take a simple GGA-like form. In spite of this simpli-
fication, the MGGA-XC potential amplifies the spurious os-

FIG. 4. Exact(solid line) and
self-consistent GGA(dashes) and
EXX+M (dash-dots) densities
nsrd and reduced radial densities
r2nsrd. All the quantities have
been scaled with the radius of the
confining sphere. The self-
consistent LDA and MGGA den-
sities are very similar to the GGA
ones and have not been included
in the figure. None of the approxi-
mate functionals is able to repro-
duce the correct behavior of the
density in the center of the sphere,
and their overall performance is
very poor forR@0.
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cillations already appearing under the GGA prescription. As
a conclusion, the overall capability of MGGA and envisaged
improvements thereof to yield accurate XC energies can
hardly be questioned(specially for the correlation part), but
further studies of the actual performance of the correspond-
ing KS potentials are required. The latter point is relevant for
those situations in which LDA/GGA are not able to repro-
duce the electron density with the required accuracy, and for
other DFT-based applications needing an overall good de-
scription ofvSsr d.
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TABLE II. Self-consistent DFT-KS results for several radii compared with the exact ones. The last file of
each entry contains the DFT density errordn as defined in Eq.(4).

Exact LDA GGA MGGA EXX1M

R=1

Etot 11.5910 11.7338 11.6376 11.5540 11.5770

TS+WH 13.3999 13.3955 13.3974 13.3973 13.4000

EX −1.7581 −1.5193 −1.6820 −1.7785 −1.7582

EC −0.0507 −0.1423 −0.0778 −0.0648 −0.0647

dn 0.0070 0.0049 0.0056 0.0006

R=5

Etot 0.7016 0.7104 0.7017 0.6897 0.6975

TS+WH 1.0734 1.0713 1.0716 1.0720 1.0747

EX −0.3335 −0.2897 −0.3196 −0.3401 −0.3348

EC −0.0383 −0.0713 −0.0504 −0.0421 −0.0423

dn 0.0210 0.0222 0.0196 0.0157

R=10

Etot 0.2381 0.2371 0.2346 0.2305 0.2362

TS+WH 0.4261 0.4245 0.4246 0.4249 0.4275

EX −0.1592 −0.1395 −0.1537 −0.1643 −0.1608

EC −0.0288 −0.0479 −0.0363 −0.0301 −0.0306

dn 0.0383 0.0448 0.0371 0.0401

R=25

Etot 0.0633 0.0587 0.0584 0.0582 0.0626

TS+WH 0.1387 0.1377 0.1376 0.1377 0.1395

EX −0.0590 −0.0533 −0.0597 −0.0632 −0.0600

EC −0.0163 −0.0256 −0.0195 −0.0163 −0.0170

dn 0.1352 0.1424 0.1300 0.0858

R=50

Etot 0.0249 0.0197 0.0199 0.0204 0.0243

TS+WH 0.0620 0.0621 0.0622 0.0623 0.0624

EX −0.0278 −0.0270 −0.0318 −0.0330 −0.0282

EC −0.0093 −0.0154 −0.0105 −0.0088 −0.0099

dn 0.3317 0.3348 0.3343 0.1084
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