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mentation of a non-local energy optimized exchange-correlation kernel to account for short-range correlation
effects. We evaluate the jellium surface energy, through a painstaking extrapolation of single slab calculations,
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correlation energies are rather sensitive to the details of the kernel, any physically well-motivated approxima-
tion within our framework describes binding energies(including surface energies) within the same level of
accuracy.
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I. INTRODUCTION

In recent years there has been an increasing interest in the
use of the formally exact adiabatic-connection fluctuation-
dissipation theorem(ACFDT),1 in the framework of time-
dependent density functional theory(TDDFT)2–4 to calculate
electron ground-state correlation energies.5–13This approach,
as well as formulations based on Green’s function
theory,14–18 has emerged as a promising alternative to the
widely used Kohn-Sham(KS) method19 without the numeri-
cal expense of statistical diffusion quantum Monte Carlo
(DQMC) or quantum-chemistry methods. In TDDFT and
Green’s function based methods, many of the electron corre-
lations effects are directly built in without resorting to any
mean-field-like approximation, like the widely used local
density approximation(LDA )20 or the generalized gradient
approximation(GGA)21 to the exchange-correlation energy.
As a consequence, several shortcomings of the mean-field
prescriptions, such as the lack of a proper treatment of long-
ranged dispersion forces, can be easily overcome with these
many-body approaches. Moreover, increasing computational
capacity opens the appealing possibility of a unified treat-
ment of complicated electron-electron correlations in a seam-
less fashion for overlapped, intermediate or distant regimes,
even in systems like carbon compounds(stretched graphite,
bundled nanotubes) or polymer crystals, where such disper-
sion forces are believed to be important. Further simplifica-
tions, which incorporate the many-body effects in an ap-
proximate but more fundamental level than KS-LDA,22–25

might be useful in the near future to tackle very complex
phenomena.

According to the ACFDT, the correlation energy of an
electron system is given exactly by

EC = −E
0

+`

du

2p
E
0

1

dlTrsŵfx̂lsiud − x̂0siudgd, s1d

where Tr is the spatial trace and the usual matrix operations
are implied(we will use Hartree atomic units throughout the

paper unless otherwise specified). xlsr 1,r 2; iud is the
imaginary-frequency density response of a fictitious system
of electrons interacting through a scaled Coulomb potential
lwsrd=l / r whose ground-state density equals the actual
one, andx̂0siud is the density response function of the KS
non-interacting system. The latter can be evaluated exactly
as follows:

x0sr 1,r 2; iud = o
s

o
n,m

sfn,s − fm,sd
iu + s«n,s − «m,sd

3 fn,s
* sr 1dfn,ssr 2dfm,ssr 1dfm,s

* sr 2d, s2d

with fn,ssr d and «n,s the KS eigenfunctions and eigenener-
gies with Fermi occupation numbersfn,s. In TDDFT, the
density responsex̂lsiud is related to the non-interacting one
by a Dyson-like matrix equation

x̂0siud = s1̂ − x̂0siudflŵ + f̂XC,lsiudgdx̂lsiud, s3d

f̂XC,lsiud being the exchange-correlation(XC) kernel of the
fictitious system with the scaled interactionlŵ. Since

f̂XC,lsiud is unknown, practical applications of TDDFT re-
quire one to approximate such a XC kernel.

If we do not consider any XC effect in the interacting
response function(i.e., we setfXC=0 thus neglecting the
so-called local-field corrections), we have the random-phase
approximation(RPA). The RPA treats important aspects of
long-ranged correlations exactly, although it gives a poor de-
scription of short- and intermediate-ranged ones.26 In spite of
this crude assumption, the RPA accounts for dispersion
forces absent in mean-field approximations,6,8,16,27 and it
seems to be a good approximation, usually better than KS-
LDA or KS-GGA, for calculating binding energies.10,13

Nonetheless, the absolute value of correlation energies is
systematically overestimated, theC6 van der Waals coeffi-
cients for some atoms are quite inaccurate,28 and the good
performance of the RPA when calculating surface energies is
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very likely due to a fortunate cancellation of errors.13 The
use of simple schemes beyond RPA, like the adiabatic local
density approximation(ALDA ), or even more sophisticated
approaches, such as the wave-function-dependent exchange-
only kernel by Petersilka-Gossman-Gross,29 does not guaran-
tee a systematic improvement upon the RPA when calculat-
ing correlation energies and other related quantities.5,10

Due to the popularity of TDDFT, there is intense activity
to obtain and assess better approaches to the XC kernel.
They range from functional forms that rely on known prop-
erties of the homogeneous electron gas(HEG)30–32 to truly
ab initio schemes based on many-body techniques.33,34 In
general, these efforts have been directed toward a better de-
scription of neutral excitations, aimed at circumventing the
expensive numerical implementation of the many-body
Bethe-Salpeter equation.4 However, focusing on the evalua-
tion of correlation energies, it requires the entire knowledge
of the XC kernel, including regions that are not interesting at
all to obtain optical properties, Thus, the actual performance
of some of these new approaches to calculate total energies is
still unknown, and their sophistication might lead to unaf-
fordable calculations when applied to real materials.

A completely different approach to this problem is the
development ofenergy-optimizedXC kernels, as proposed
recently by Dobson and Wang.8 Using this recipe, the XC
kernel approximation is designed in such a way that the cor-
responding ACFDT correlation energy of a reference system
(usually the HEG) fits the exact values. The main drawback
of this approach is that one should not expect an overall good
description of excited-state properties. However, it will lead
to much better correlation energies than RPA with almost the
same computational cost. On the other hand, the use of
simple energy-optimized kernels could also be useful to ob-
tain highly accurate XC potentials required, for instance, for
a better performance of TDDFT approximations in the cal-
culation of excited state properties in localized systems.

In this paper we will present a simple non-local energy-
optimized XC kernel easy to implement in any RPA code.
This generalizes the work of Dobson and Wang,8 which was
restricted to spatially local optimized XC kernels. Using this
new kernel, we will calculate several structural properties of
jellium-like systems where the ACFDT calculations are easy
to carry out. More important, there is a realm of results ob-
tained by other methods that provide a firm basis for a com-
parative study. In addition to this benchmark character, we
will be able to analyze physical aspects that are typical of
confined systems(like dissociation energies or the presence
of van der Waals interactions) due to the electron localization
along thez direction, while keeping the free-electron-like
properties of bulk metals. Finally, we do not need to consider
other factors that are important forab initio studies of the
properties of real materials, like the use of pseudopotentials.
As a consequence, we can focus strictly on the actual perfor-
mance of different approximations to the exact ACFDT-
TDDFT.

II. THEORY

Since our goal is the development of a functional approxi-
mation to the XC kernel to calculate correlation energies

using the ACFDT, the currently available parametrizations of
the HEG XC kernelfXC

hom might be a promising starting point.
As shown by Leinet al.,7 the form developed by Richardson
and Aschcroft35 of the full dynamical HEG XC kernel leads
to a perfect fit with the “exact” DQMC correlation energies.
However, the same authors also found that good accuracy
can be kept by using an adiabatic non-local parametrization
such as the one proposed by Corradiniet al.30 Therefore, the
dynamical features of the XC kernel have less influence than
the non-locality in the correlation energy. We have checked
that, as expected, this also holds for any other physically
well-motivated approximation36,37 to the static XC kernel. In
addition, we have to bear in mind that there are many spec-
tral features that could be contained in the XC kernel of an
inhomogeneous system that cannot be inherited, by any
means, from the homogeneous limit. Finally, naïve ways to
include dynamical effects into the XC kernel can easily lead
to the violation of known constraints.38 Thus, in principle
there is no need to force the frequency dependence into ap-
proximations based on functional forms of the XC kernel, if
our aim is solely the evaluation of structural properties in an
efficient way. Therefore, following an idea proposed several
times in the literature,31,32 we adopt the following functional
approximation:

fXC,lsr 1,r 2;vd . fXC,l
s0d sñ,r12d =

1

l
fXC

s0d S ñ

l3,lr12D s4d

Here, the effective densityñ is a function of the densities
nsr 1d and nsr 2d (the arithmetical mean unless stated other-
wise) and fXC

s0d sn,r12d a certain parametrization of the static
part of the XC kernel of the HEG. Of course, we recover the
ALDA if we make a further approximation and neglect any
non-local contribution to the HEG kernel[that is, if we set
fXC

s0d sn,r12d=kXC
homsnddsr12d, wherekXC

homsnd=d2fn«XC
homsndg /dn2,

«XC
homsnd being the correlation energy per particle].

The encouraging results obtained by Dobson and Wang8

using an energy-optimized ALDA suggest the construction of
a simple non-local kernel that gives accurate HEG correla-
tion energies while preserving exact limits of the actual ker-
nel. In the HEG, the kernelfXC

s0d srs,qd expressed in reciprocal
space, is related to the static local-field factorGsn,qd
through the relationfXC

s0d sn,qd=−s4p /q2dGsn,qd. The model
introduced by Hubbard39

GHubsn,qd = −
1

2

q2

q2 + qF
2 , s5d

whereqF is the Fermi momentum of the HEG, improves the
description of short-range correlation effects reducing, in the
largeq limit, the Coulomb correlation between electrons of
parallel spin. This was accomplished by finding an approxi-
mate way to sum all the exchange diagrams of the ladder
type that entered in the evaluation of the interacting response
function. This proposal inspired the elaboration of more so-
phisticated models along the years,40 which turned out to be
rather similar to the original model. Thus, we propose an
energy-optimized Hubbard-like(OH) kernel whose expres-
sion in reciprocal space is
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fXC
s0d srs,qd .

kXC
homsrsd

1 + asrsdsq/qFd2 , s6d

wherers=f3/s4pndg1/3 is the Wigner radius andasrsd is the
empirical function

asrsd =
8.26 +rs

100 + 5rs
. s7d

The HEG kernel(6), which is plotted forrs=4 in Fig. 1,
keeps the exactq→0 behavior(related to the fulfillment of
the compressibility sum rule) and guarantees an excellent
reproduction of the DQMC correlation energies41 (as param-
etrized by Perdew and Wang20) for a wide range of densities
(see Fig. 2). For metallic densities the relative error is neg-
ligible and the highest relative deviation(only 3%) appears

in the low density limit aroundrs.15. However, we have to
remember that we do not intend to present an accurate pa-
rametrization of all aspects of the XC kernel, but just a
simple form suitable for accurate TDDFT total energy calcu-
lations. For instance, the proposed parametrization does not
reproduce the exact behavior forq@0 of the exact HEG XC
static kernel,37 which is a feature whose inclusion would lead
to numerical problems. Indeed, any non-zero large wave vec-
tor component in a static parametrization of the kernel would
also be kept in the dynamicalsiuÞ0d contributions to the
correlation energy, hindering us from reaching quick conver-
gence to the final ACFDT energies with respect to the cutoff
umax in the numerical frequency integration in Eq.(1) (see
the top two curves in Fig. 3). This computational advantage
of our kernel is not very important in simple systems like
those treated in this work. However, it might be critical in
prospective applications to real materials, since a substantial
part of the computational effort might otherwise be required
to calculate physically unimportant high-frequency contribu-
tions that were unnecessary using both the RPA or the opti-
mized kernel proposed here.

III. BINDING ENERGY OF THIN METAL FILMS

As a first application of the OH kernel described in the
previous section, we have calculated the total correlation en-
ergies of thin jellium metal films for several metallic densi-
ties. In all the cases, the non-interacting responsex̂0siud has
been obtained using the KS-LDA orbitals; our tests show that
the final numerical results only change marginally if we cal-
culate x0 using functional models that improve upon the
LDA by recovering the image-like −1/s4zd behavior of the
XC potential.42 In Table I we present such energies for thin
metal films with a background width of 6.4rs. For the opti-
mized Hubbard kernels, we use both the arithmetical(OH1)
and the geometrical(OH2) mean of the local densities to
evaluate the two-point functionñsr 1,r 2d (of Eq. (4)). In ad-
dition, we also present the KS-LDA results, as well as the

FIG. 1. Several parametrizations of the static XC kernelfXC
homsqd

of the HEG withrs=4. Thick solid line: energy optimized non-local
Hubbard-like kernel; thin solid line: energy optimized Dobson-
Wang local kernel; dash-dotted line: ALDA; dashed line: parametri-
zation by Corradiniet al.

FIG. 2. The absolute errorD«C=«C
ACFDT−«C

DQMC in the correla-
tion energy per electron of the homogeneous electron gas using
different XC kernels.«C

DQMC is taken from the accurate parametri-
zation by Perdew and Wang(Ref. 20 of the DQMC data by Ceper-
ley and Alder(Ref. 41). Note that the errors of the ALDA and RPA
have been divided by two. The superior performance of the OH
kernel (thick solid line) is evident for the whole range of electron
densities. Note that the Dobson-Wang(DW) energy optimized
prescription8 is constructed so as to give zero absolute errorDeC at
all rs values, if carried out exactly. However, the simple analytic
kernel given in Ref. 8 was a numerical fit to a limited range of data
in the metallic range 2, rs,5. A better fit to the exact DW kernel
could presumably be constructed for the rangers,2.

FIG. 3. The absolute convergence of the correlation energy per
electron of the HEGsrs=4d versus the reciprocal of frequency cut-
off umax in Eq. (1) for several ACFDT prescriptions(«F is the Fermi
energy of the HEG). D«C denotes the error in«C relative to its
converged value atumax

−1 =0. The excellent convergence of the RPA
and OH approximations contrasts significantly with the numerical
problems arising from the use of a static HEG kernel with a non-
zero short wavelength term.
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RPA, ALDA, and optimized Dobson-Wang(DW) prescrip-
tions of the TDDFT-ACFDT. Finally, we have also included
the correlation energies given by Eq.(4) but using the pa-
rametrization of the static HEG kernel by Corradiniet al.
(Cor); this calculation will allow us to assess the actual im-
portance of the details of the non-local parametrization used
to implement the local field corrections in our ACFDT cal-
culations. Details of the numerical procedures may be found
in the Appendix.

The KS-LDA itself is a good approximation to the com-
bined XC energy of this model system, following the usual
trend of error cancellation between X and C energies even in
situations where they predict values far from the exact
ones.43 Therefore, we may assess the ACFDT correlation en-
ergies through a comparison with the difference between the
LDA-XC energy and the exact exchange one, calculated with
the well-known expression:

EX = −E dr 1dr 2

uon

occ
fn

*sr 1dfnsr 2du2

ur 2 − r 1u
. s8d

We can observe that the three energy-optimized(OH1/2 and
DW) approximations give very similar correlation energies
(within 1 mhartree per electron), regardless of the specific
details of the functional inclusion of the local field correc-
tions. This demonstrates that the kernel optimization proce-
dure is very robust even for these metal films, whose electron
density profiles are very far from the homogeneous limit.
Moreover, the total XC energies are fairly close to the LDA
values, thus giving further confidence about the reliability of
the optimization method. On the contrary, the non-optimized
implementations of the ACFDT(RPA, Cor and ALDA)
maintains the overall trend present for the HEG. Among
these non-optimized approaches, the best approach is, as ex-
pected, that based on the Corradini kernel, although it over-
estimates the correlation energy by a few mhartree per elec-
tron compared to the energy-optimized data. Since a similar

discrepancy exists for the uniform gas where the energy op-
timized data are the most accurate, one suspects that the
energy-optimized data are superior for the inhomogeneous
situation as well.

Much more relevant is the interaction energy between two
metal films, since the usual KS functionals often fail to re-
produce binding energies quantitatively. For two joined
slabs, the binding energy per electron is given by

D0 = «Ls`d − «Ls0d, s9d

where «Lsad is the energy per electron of two slabs with
thicknessL at a distancea (note that«Ls`d is the energy per
electron of a single slab with widthL). The different contri-
butions toD0 are shown in brackets in Table I using the
KS-LDA and ACFDT models for the correlation part. Note
that the inclusion of local-field corrections is less relevant in
this case.

The close similarity of all the OH2 results to those of
OH1 indicates the insensivity to the density-averaging pro-
cedure, and in much of the rest of this paper we will not
consider OH2.

For all the metallic densities, the corrections beyond the
RPA (except those implemented through the ALDA) system-
atically lower the RPA correlation binding energy by about
5%, thus approaching the KS-LDA value. These results fol-
low the trend anticipated by Yanet al.44 about the role of
non-RPA effects in the interaction between thick metal films.
However these same results seem to contradict the recent
findings by Pitarke and Perdew,13 since these authors state
that such effects have a marginal quantitative influence in the
total surface energy[which is related to the limitL→` of
Eq. (9)]. We will return to this issue in the next section.

In the limit of high densities the configuration of two
adjacent thin slabs is not stable(that is,D0,0), which is a
concomitant consequence of the well-known instability of
the jellium model for low values ofrs.

45,46 Nonetheless, the

TABLE I. Different contributions of energy per electron(in mhartree) for one isolated jellium slab of thicknessL=6.4rs using the
KS-LDA and the ACFDT schemes quoted in the text. Between parentheses we represent the different contributions to the binding energy per
electronD0 for a system oftwo slabs of thicknessL=3.2rs at zero separation. The KS-LDA correlation energies given are the differences
between the KS-LDA exchange-correlation energy and the exact exchange(EXX) energy, as explained in the text; the latter is also included
in the table for comparison, as well as the KS kineticsTSd and total classical electrostatic(EL) energies. The numerical error bar of the RPA
and OH1/2 correlation energies is 0.01 mhartree. However, due to the reasons explained in Sec. II, the uncertainties of the DW, Cor, and
ALDA methods are 0.2 mhartree for the total correlation energies and 0.05 mhartree for the binding correlation energies.

rs KS-LDA

ACFDT

EXX TS ELRPA OH1 OH2 DW Cor ALDA

2.0 −42.23 −58.93 −41.90 −41.86 −42.6 −39.5 −28.8 −220.55 258.18 4.07

(2.35) (2.56) (2.38) (2.42) (2.40) (2.40) (2.45) (8.72) s−17.92d (3.98)

3.0 −35.07 −50.62 −34.82 −34.79 −35.3 −31.9 −21.2 −148.86 117.45 1.21

(2.08) (2.24) (2.13) (2.17) (2.15) (2.15) (2.20) (3.32) s−4.96d (1.00)

4.0 −30.44 −45.16 −30.28 −30.25 −30.6 −27.1 −16.4 −112.44 67.13 0.55

(1.56) (1.72) (1.64) (1.68) (1.65) (1.65) (1.70) (1.83) s−1.90d (0.48)

5.0 −27.09 −41.16 −27.01 −26.97 −27.3 −23.7 −12.8 −90.40 43.52 0.35

(1.22) (1.37) (1.29) (1.33) (1.30) (1.30) (1.35) (1.08) s−0.71d (0.29)
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two jellium interacting films will be at mechanical equilib-
rium at a distanceaeq, where the interaction energy curve
between the slabs«L

intsad=«Lsad−«Ls`d reaches a minimum.
To analyze the role played by the local-field corrections, we
will compare the equilibrium properties for two films with a
background densityrs=1.25 and thicknessL=3a0 using the
RPA and the OH1.

For this model system, the binding energy per electron
D=−«L

intsaeqd given by the RPA(see Fig. 4 and Table II) is far
greater than the KS-LDA one, and slightly larger than that
obtained through the OH1 method. Hence, we have a similar
trend as in the case of two slabs at zero separation(and hence
out of equilibrium), but now the differences between the KS-
LDA and the ACFDT methods are more important. Interest-
ingly, the KS-LDA and OH1 equilibrium distances are prac-
tically the same, but the RPA underestimatesaeq by more
than 2%. That means that the absence of local field correc-
tions tends to reduce the bond length between the slabs, a
tendency already observed by Fuchs and Gonze for the Be2
dimer.10 Finally, there are significant differences in the elas-
tic constant per particle, that we define asC'=d2«sad /da2

(at a=aeq): the RPA value is about 10% larger than OH1,
whereas the KS-LDA is a similar amount smaller. The poor
performance of the LDA for the binding energy here contin-
ues a trend noted by Dobson and Wang47 for the LDA layer-
layer binding energy to be worse for lowerrs values. The
error is worse here than for the regular metallic densities

s2, rs,6d treated by Dobson and Wang, and constitutes a
significant failing of the LDA. As an illustrative fact, the
interaction energy curve is not binding when the non-local
exact exchange is combined together with the LDA correla-
tion energy, suggesting that energy functionals with similar
precision should be used for the exchange and correlation
energies. This means that the interaction energy given by the
LDA correlation energy is far too small compared to the
non-local results whereas the LDA exchange, which is more
binding than the exact exchange, cannot compensate for this
failure. While the LDA usually predicts overbinding in
molecules10 it is remarkable to find this opposite behavior for
the binding between the slabs. This fact indicates that the
LDA will be specially unsuitable in regions where the weak
non-local dispersion forces are more relevant than in usual
atomic or molecular systems. The GGA has also been shown
to be insufficient for describing layer-layer interaction ener-
gies when long-ranged effects play an important role.25

The KS-LDA not only fails to describe the bonding en-
ergy around the equilibrium distance, but also in the limit of
higher separations. Ifa.aeq, the covalent bond between the
slabs ceases to exist and van der Waals(vdW) dispersion
forces play a prominent role. In this case, the non-local ef-
fects are manifest and the KS-LDA behavior clearly fails.
This effect can be seen very clearly in the tail of Fig. 4, but
also in Fig. 5, where we represent the interaction force per
electronfsad=−d«Lsad /da for this model system. Ifa,aeq,
where the films tend to repel each other, the three approxi-
mations show the same performance. However, ifa.aeq the
LDA underestimates the attractive force between the films. It
is worth noting that, as before, the inclusion of a non-local
fXC partially compensates for the difference between the
RPA and the KS-LDA.

It is very likely that the general trends we have described
in this section will also be valid for real layered materials
(like BN or graphite), as suggested by Dobsonet al.27

through an estimation of the many-body corrections to the
interacting energy between layers in bulk graphite. Neverthe-
less, it is important to point out that the RPA might overcor-
rect the local density results. In this respect, the sophisticated
XC functional approximation by Rydberget al.,25 which is
constructed such that the long-distance vdW forces are incor-
porated in a seamless way, seems to underestimate the bind-
ing energy and the elastic constant of graphite(considering

FIG. 4. Interaction energy per electron for two interacting jel-
lium slabs of thicknessL=3a0 and background densityrs=1.25 as a
function of the distancea. The inset shows in more detail the bind-
ing curve around the mechanical equilibrium distance. Thick solid
line: OH1; thin solid line: RPA; dashed line: KS-LDA. We can see
how the KS-LDA underestimates the binding energy, whereas the
RPA predicts a smaller bond-length than the OH1 and KS-LDA.

TABLE II. Mechanical equilibrium properties(see the text) of
two interacting jellium slabs of thicknessL=3a0 and rs=1.25 ob-
tained using the KS-LDA, the ACFDT-RPA, and the ACFDT-OH1.
Note the coincidence between the KS-LDA and the OH1 equilib-
rium distance.

aeq (bohr) D (mhartree) C' smhartree/bohr2d

KS-LDA 3.38 0.53 0.45

RPA 3.32 0.79 0.55

OH1 3.38 0.75 0.49

FIG. 5. As in Fig. 4, but representing the interaction force per
electron. Whereas the three models behave similarly ifa,aeq, the
KS-LDA deviates from the ACFDT results ifa.aeq.
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the experimental uncertainties). In real layered systems there
is a delicate combination of trends that results from the ex-
istence of local atomic bonds and weak dispersion forces.
Then, it is very unlikely that a KS calculation, even with
very elaborate functional approximations, would be able to
describe these situations properly, where several phenomena
characterized by different length scales co-exist. A full
many-body analysis of the structural properties of such real
systems is a challenge for the immediate future. While the
many-body methods incorporate more clearly the relevant
physical features the technical subtleties associated with
these calculations may be even more delicate than those of
the current approach. Total energy calculations based on
many-body perturbation theory either in the GW approxima-
tion or derived from Luttinger-Ward functionals along with
their self-consistent conserving extensions open a promising
field for future research for describing real materials.

IV. SURFACE ENERGIES

In a series of important papers,5,13,48 Pitarke and co-
workers have given further insight into the long-standing
puzzle of the surface energy of simple metals. Their findings
suggest that the deviations of the statistical DQMC49 and
Fermi hypernetted chain50 calculations from the KS-LDA
surface energies could be due to inconsistencies in the ex-
trapolation procedures required to infer the values associated
with a semi-infinite geometry from finite-size calculations, as
well as in the comparison between the energies of the inho-
mogeneous system and the HEG. As a consequence, the KS-
LDA jellium surface energies may be considered as a fairly
good approximation to the(still unknown) exact values. The
results presented in Sec. III, as well as qualitative analysis
made, among others, by Yanet al.44 indicate that such exact
values would lie between the LDA and the RPA. Pitarke and
Perdew13 have recently shown that the RPA correlation sur-
face energy exhibits a clear cancellation of errors between
low- and high-qi contributions(qi is the component of the
momentum parallel to the surface). Strikingly, by including
the local-field correction using the Corradini kernel, they
found that such cancellation is almost complete. Therefore,
their estimation of the surface energies is much closer to the
RPA than to the LDA. Without questioning at all the physical
arguments reported by Pitarke and Perdew, we note that
these conclusions, about the role played by the local-field
effects, do not follow the general trends presented in Table I.
However, as we mentioned in Sec. II, the static Corradini
kernel has a physical finite short wavelength contribution
that dominates over the bare Coulomb potential 4p /q2, lead-
ing to ACFDT calculations that are much harder to converge
than the conventional RPA ones. Since surface energies are
very delicate quantities, a painstaking analysis of the results
is required.

The correlation contribution to the jellium surface energy
can be written as

sC = lim
L→`

sCsLd, s10d

with the finite-size correlation surface energysCsLd given
by51

sCsLd =E
−`

+`

dz1dz2E
0

+`

dqi exps− qiz12d

3 E
0

+`

du

4p
Fnsz1d

n
Dxhomsz12d − Dxsz1,z2dG

; E
0

+`

dqigCsqid ; E
0

+`

duzCsiud.

Here,z12;uz1−z2u, L is the thickness of a jellium slab with
background densityn, andnszd is the electron local density.
To simplify the notation, we have not included the depen-
dence onu andqi into the inhomogeneoussxd and homoge-
neoussxhomd response functions, and we have defined the
operator

Dx̂ =E
0

1

dlsx̂l − x̂0d.

In Figs. 6 and 7 we plot the differences between the RPA
distributionsgC

RPA sqid and zC
RPA siud and those correspond-

ing to an ACFDT calculation using the OH1 and CorfXC

FIG. 6. Local-field corrections to theqi-dependent distribution
gCsqid−gC

RPAsqid for a jellium slab of thicknessL=12.52rs srs=2d.
Solid line: OH1, dashed line: Cor.

FIG. 7. Local-field corrections to the frequency-dependent
distribution gCsiud−gC

RPAsiud for a jellium slab of thickness
L=12.52rs srs=2d. Solid line: OH1, dashed line: Cor.
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functionals for a jellium slab withrs=2 and thickness
L=12.52a0. At a first glance there are not qualitative differ-
ences between both ways to include local-field corrections.
We may observe that the OH1qi-distribution is slightly
closer to the RPA than is the Cor one except in a region
aroundqi .3.5, but in both cases the cancellation of low and
intermediateqi local-field corrections is evident. The same
holds for the decomposition in imaginary frequencies(Fig.
7) since smallu-dependent local field corrections tend to
increase the surface energy, but this is compensated by con-
tributions from higheru. However, as we may see in the

inset in Fig. 7, due to the reasons explained in Sec. II, the
function zC

Cor siud decays very slowly. Whence, small nu-
merical uncertainties in the treatment of this high-u region
might be the origin of a certain overestimation of the
ACFDT-Cor correlation surface energies.

To confirm this possibility, we have calculated the local-
field corrections to the exchange-correlation surface energy
through the OH1, OH2, and Cor functional approximations.
Note that we do not need to make a fully converged calcu-
lation of sXC for each case, but just of the difference
sXC−sXC

RPA.52 This can be done through a systematic elimi-
nation of possible sources of error, as we may see in Fig. 8.
The finite-size approximation to the XC surface energy
sCsLd exhibits clearly defined regions limited by the onset of
the occupancy of a newz-subband. A way to find the limit
L→` of sXCsLd is the evaluation of the mean value in each
oscillation. An alternative is the Pitarke-Eguiluz extrapola-
tion procedure,5 which makes use of values taken from two
consecutive oscillations. Both methods give the same results
but, whereas they converge extremely fast under the KS-
LDA, the ACFDT finite-size energies reach the infinity limit
more slowly. Fortunately, as may be inferred from the data
represented in Fig. 8, the differences between the RPA and
the OH1 energies are very stable as a function of the slab
thicknessL. As a consequence, by choosing only one suitable
geometry we can calculate the differencesXC−sXC

RPA with
very high precision. We take a slab whose KS-LDA finite-
size XC surface energies equal the corresponding infinite
limit and then we calculate the difference between the RPA
and the OH1 energies. Although they do not match the infi-
nite width limits separately, the difference does. Presuming
that the same reads for the OH2 and Cor functional approxi-
mations, we can fairly predict the correction to the RPA en-
ergy. We have chosen a geometry with eight occupied
z-subbands, which gives us a balance between size-
convergence and numerical ease, since the wider the slab the
more difficult to converge the ACFDT calculation. Nonethe-
less, even with these precautions, the numerical uncertainty
of the ACFDT-Cor is many times greater than the OH1 and
OH2 ones.

Our results are presented in Table III, where we also show
the KS-LDA, KS-MGGA,44 and our converged RPA XC en-
ergies, the latter being practically identical to that reported

FIG. 8. The finite-size XC surface energy forrs=2 using the
KS-LDA, RPA, and OH1 approximations. The open circles repre-
sent the averages over each oscillation, whereas the closed circles
are the estimations of the surface energy following the procedure by
Pitarke and Eguiluz(Ref. 5). In each panel, the hollow square
marks the single slab geometrysL=12.52rsd used to estimate the
local field corrections to the RPA.

TABLE III. The ACFDT and KS exchange-correlation contributionssXC to the jellium surface energy, in
erg/cm2. An estimation of the numerical uncertainties of our ACFDT values is also shown, as well as the
width of the slab(between parentheses in units ofrs) used to evaluate the local field corrections to the RPA
energies. Note how such local field corrections systematically shift down the RPA surface energies, although
they do not reach the predictions from a mixed RPA+GGA calculation. The values corresponding to the
RPA+GGA (see the text) and the KS−MGGA have been extracted from Ref. 44. All the results have been
obtained from self-consistent LDA wave functions.

rs sXC
KS−LDA sXC

RPA sXC
OH1 sXC

OH2 sXC
Cor sXC

RPA+GGA sXC
KS−MGGA

2.0 (12.52) 3355 3470±2 3422±2 3435±2 3440±20 3415 3402

2.3 (12.65) 2019 2099±1 2066±1 2075±1 2075±20 2061 2048

3.0 (12.84) 764.1 803±1 788±1 793±1 795±10 783 779

4.0 (13.01) 261.5 279.0±0.5 273.0±0.5 276.0±0.5 277±5 269 266

5.0 (13.11) 111.1 119.5±0.5 116.5±0.5 118.5±0.5 119±5 113 113
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by Pitarke and collaborators.5,13 We have also included the
results obtained from the addition of a GGA functional to the
ACFDT-RPA.44 We can see thatall the ways to include
local-field corrections lower the RPA XC surface energy,
thus following the trend we found for thinner slabs. More-
over, the surface energies are rather insensitive to the details
of the functional form offXC. However, the corrections based
on the hybrid RPA+GGA prescription are greater than the
fully ACFDT ones, especially for lower densities. Thus, the
main conclusions reached by Pitarke and Perdew in Ref. 13
are confirmed: surface energies are closer to the RPA ones
than previously expected and the accuracy of the RPA is due
to a systematic cancellation of errors. The small, but in prin-
ciple relevant, differences between our Cor results and those
reported before13 should be solely attributed to the difficul-
ties of such an ACFDT calculation.

V. van der WAALS DISPERSION FORCES BETWEEN
METAL FILMS

To close the analysis that we are presenting on the influ-
ence by local-field corrections on correlation energies, we
present in this section several results concerning the interac-
tion force between simple jellium films at large separation.
As has been stated before many times,6,8,16,27this limit shows
a genuine manifestation of long-ranged correlation effects
through the appearance of van der Waals dispersion forces.
Then, when the electron densities of each film have an ex-
ponentially small overlap, the interaction energy«L,C

int sad still
takes a non-zero value. We have already shown this fact in
Fig. 4, and it can be seen in Fig. 9 as well.

Such long-distance behavior can be explained in terms of
the coupling between two-dimensional(2D) collective
modes confined in each metal film.27 Therefore, local-field
effects would be only important in the limita@0 if they led

to a correction of theqi→0 contributions to the correlation
energy. This is not the case, since in this limit the bare Cou-
lomb potential dominates, and the leading term of the
asymptotic behavior of«L,C

int sad must be the same for all the
ACFDT prescriptions. Indeed, as we may see in Fig. 9, the
differences between the RPA and OH1 approximations are
relevant only in the limit of short separations(already dis-
cussed in Sec. III). In this limit, the local field corrections
shifts the binding curve up very slightly, making it closer to
the KS-LDA one. By using their energy optimized local
kernel,8 Dobson and Wang obtained the very same trend
which also appears in many-body GW calculations of the
total energy of a similar model system.16

Besides these qualitative considerations, we can provide
further insights about the long-distance energy interaction
between conducting films. Its asymptotic form can be written
as

«L,C
int sad < −

C

sa + bdp , s11d

with fitting constantsC, b, and p. Electron hydrodynamic
theory, which properly takes into account the main geometri-
cal features of the problem, predicts a valuep=5/2 for thin
metallic slabs andp=2 for semi-infinite metals.27 In the limit
of infinite separation, Sernelius and Björk confirmed the
p=5/2 power-law decay after a RPA calculation for a pair of
perfectly 2D quantum wells.53 Hence, for our fully micro-
scopic calculations, we must expect thep=5/2 decay as
well. To numerically obtain the values in the asymptotic
form (11), we have sampled energy values corresponding to
separation distances within the range[20, 25] bohr. However,
any fixed value ofp between 2.0 and 2.5 guarantees a perfect
fit in this range. Nonetheless, only a value very close to 2.5
also yields an equally excellent fitoutside the mentioned
fitting region, including those corresponding to distances up
to a=50 a.u. As a consequence, we have assumed the power
decayp=5/2, andthis is the asymptotic behavior plotted in
Fig. 9. As expected, the RPA and OH1 interaction energies
share the same dominant behaviorC=32.5±0.5 mhartree
3bohr5/2 for the considered geometry(two slabs of thickness
L=12.8 a.u., and mean densityrs=4). The local field correc-
tions only affect the constantb, which takes the values 0.9
and 0.8 a.u., respectively. That is, within the numerical pre-
cision of our calculations, beyond RPA effects yield a 10%
change over the second-order term of the long-distance in-
teraction between these metal films.

Although not the main focus of this work, it is interesting
to close this section with a brief discussion on the non-linear
terms appearing in three-body interactions. For complex sys-
tems made up of several interacting systems, it has been
traditional to calculate the long-ranged dispersion energy ap-
proximately as a sum of pairwise contributions retaining
only the leading term corresponding to a two-body system.
Thus, higher order non-additive terms of the interaction be-
tween more than two bodies are neglected. Although in a
different context, a paradigmatic example for this non-
additive behavior is the Axilrod-Teller-Muto54 triple-dipole
dispersion interaction term in a system of three distant neu-

FIG. 9. Correlation contribution to the interaction energy for
two jellium slabs of thicknessL=12.8 a.u. and background density
rs=4, as a function of the distancea. Thick solid line: OH1; thin
solid line: RPA; dashed line: KS-LDA. The latter, obtained by sub-
tracting the exact exchange energy from the KS-LDA exchange-
correlation one, goes very quickly to zero. The ACFDT results ex-
hibit a clear power-law decay(the fitted power isp=5/2) which
reflects the existence of long-distance vdW forces. We also plot the
numerical fit(dashed-dotted line) described in the text of the OH1
results obtained from values betweena=20 anda=25. The inset
shows the difference between the OH1 and RPA energies, which
decays asa−7/2.
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tral atoms. This term depends on the relative angle formed
by the three atoms taking a positive repulsive value for a
triangular shape, but a negative attractive one for the linear
disposition. In order to study the pairwise non-additivity of
the jellium slabs energy we have carried out the calculation
of threeslabs, of equal thicknessL and equal spacinga, as a
function of a, that will be compared to the sum of energies
for pairs of slabs.

The additive part of the correlation«L,C
int3sad to the interact-

ing energy per electron of a three-slab system obtained from
the results«L,C

int sad of two interacting slabs may be written as

«L,C
int3w2sad = 2

3s«L,C
int s2a + Ld + 2«L,C

int sadd. s12d

The first term on the right-hand side accounts for the inter-
action between the farthest external slabs, while the second
term describes the two interactions between the closest pairs.
The factor 2/3 is included to correctly compare the energy
per electron of systems with different number of slabs. The
residual, non-additive, part is shown in Fig. 10, and is largest
for small separation distances. However, this should be at-
tributed to the fact that the energies are being evaluated on
different overlapping electronic density profiles. In fact, the
energy differences shown in Fig. 10 stabilize at a distance
a*7, where the electron overlapping is very small. Then, we
can see unambiguously the non-additive effects which, of
course, are not present in a KS-LDA calculation. Using the
ACFDT-OH1 approximation, such non-additive effects lead
to a decrease of the attractive force at large distances and,
within our numerical error bars, lowering by about 10% the
absolute value of the leading asymptotic term from the addi-
tive 3w2 expression. It would be interesting to obtain a fur-
ther confirmation using, for instance, a model calculation as
that carried out in Ref. 53 due to the implications that this

result might have for simplified descriptions of the interac-
tion forces in complex layered systems.

VI. CONCLUSIONS

In this paper we have presented a static functional ap-
proach to the XC kernel of arbitrary inhomogeneous systems
based on a non-local parametrization of the HEG XC kernel
constructed via an energy optimization procedure. This way
to introduce local field corrections seems to be a very robust
procedure, since the correlation energies obtained are very
similar regardless of the specific details of the functional
construction. To test this prescription, we have calculated
ACFDT correlation energies for highly inhomogeneous sys-
tems, interaction energies between metal films, simple metal
surface energies, and analyzed long-distance correlation
vdW forces.

As a general trend for these systems, local-field correc-
tions correct the RPA results, shifting them toward the KS-
LDA values. Very likely such corrections are less important
than those expected previously from the modeling of effects
beyond RPA using local or semilocal prescriptions.44 This is
specially manifest in the case of jellium surface energies,
where our full ACFDT result lies between the RPA values
and the hybrid RPA+GGA ones that, until now, could be
considered as the best approach to the exact surface energies.

This work provides a firm basis to the use of energy op-
timization procedures for prospective applications of the
TDDFT-ACFDT, but there are several important points that
deserve future attention. The first one is the self-consistency
issue, since so far all the TDDFT and many-body calcula-
tions of correlation energies have been carried out over KS
density profiles. In other words, the set of one-electron wave
functions does not minimize the total energy expression that
contains the ACFDT correlation. Important steps have al-
ready been taken in this direction,55,56but a fully (or, at least,
partially) self-consistent implementation of the TDDFT-
ACFDT at a numerically affordable cost is clearly an attrac-
tive challenge. For the model systems treated in this paper, it
is very unlikely that self-consistency would be important.
However, it would not be the case for many localized sys-
tems and, of course, for any other problem where the KS-
LDA or GGA is not an optimal approach to the exact KS
non-interacting system.

A second issue that we would like to emphasize in these
conclusions is related to the functional approximation to the
XC kernel itself. There are limits that are not recovered by
the simple Hubbard-like form we have used here. For in-
stance, the XC-kernel so constructed lacks the inclusion of
self-interaction corrections for one- or two-electron systems.
That means that the energy-optimized functional forms must
be improved to properly account for this limit, which defi-
nitely might be important in systems with highly localized
electrons. Work is currently in progress to include such self-
interaction corrections while keeping the numerical stability
of the functional approximation.
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APPENDIX: NUMERICAL PROCEDURE

For a spin-compensated system exhibiting translational
invariance along theXY plane, the KS orbitals and energies
are fnqi

sr d=cnszdexpsiqi ·r id / s2pd2 and «nqi
=«n+qi

2/2.
cnszd and«n are the solution of the reduced eigenvalue prob-
lem

F−
1

2

]2

]z2 + vSszdGcnszd = «ncnszd sA1d

wherevSszd is the KS effective potential. Then, all the rel-
evant operators can be written in a representation on the
coordinatesz1,2 and theXY relative distancer i= ur i,1−r i,2u
(or, equivalently, on the modulusqi of the XY momentum).
Thus, the ACFDT correlation energy per surface unit can be
written as

EC

S
= −E

0

+`

du

2p
E
0

+`

dqieCsqi,ud, sA2d

where

eCsqi,ud =E dz1dz2e
−qiuz1−z2u 3 3E

0

1

xlsz2,z1,qi; iuddl

− x0sz2,z1,qi; iud4 . sA3d

For eachqi andu, we evaluate the non-interacting response
x0 and obtain the interacting onexl solving the Dyson equa-
tion (3). Thel dependence is represented by an eighth-order
Gauss-Legendre(GL) grid, which is ample because of the
smooth dependencies on the scaling parameterl. The qi

points are distributed in two GL grids(each one typically
comprising 30–40 points). The first grid includes small val-
ues of the momentum, and the second one is a coarser grid
for the high momentum contributions up to a value
qmax.30qF, qF being the Fermi momentum of the HEG with
the averaged densityn of the slabs. The frequencyu is de-
scribed in a similar fashion, with the coarse grid reaching the
cutoff valueumax.40qF

2. Nonetheless, as mentioned in Sec.
II, umax must be increased several times to reach a good
convergence if using DW or Cor kernels. In any case, to
reduce numerical uncertainties like those shown in Fig. 3,
high-u asymptotic contributions are estimated by numerical
extrapolation.

The non-interacting responsex0 can be obtained from an
infinite sum over all(occupied and unoccupied) z-dependent
KS orbitalscmszd:

x0sz1,z2,qi; iud = o
n

occ

cnsz1dcnsz2d

3 o
m

Snmsqi, iudcmsz1dcmsz2d, sA4d

whereSnmsqi , iud are analytical functions.57 In this case, the
number of unoccupied states in Eq.(A4) is a critical param-
eter, and the convergence must be then carefully checked.
Typically, about 150(250) z states are needed to reach the
required accuracy for thin slabs(surface energies) calcula-
tions. Since the KS wave functions themselves are not an
optimal representation of the density response, we solve the
Dyson equation((3)) for eachu, qi, andl using a represen-
tation in an orthogonal set ofNB functions of the sub-space
generated by the product functionscnszdcmszd.

A way to circumvent the infinite sum appearing in Eq.
(A4) is the use of the Green functionGsz1,z2;Vd of the
reducedz-dependent KS Hamiltonian(A1) to evaluate the
non-interacting response.58,59 In this scheme, the interacting
response is evaluated by solving directly(3) in its z repre-
sentation. The second method, if enough care is taken, is
exact up to the numerical errors due to the discretization of
the z space, which is actually the only critical convergence
parameter. The choicedz=0.05rs is enough to reach con-
verged results. We have followed both procedures as a fur-
ther check of the numerical accuracy of our results.
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