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State-of-the-art simulation tools for nonequilibrium quantum transport systems typically take the current-
carrier occupations to be described in terms of equilibrium distribution functions characterized by two different
electrochemical potentials, while for the description of electronic exchange and correlation, the local density
approximation �LDA� to density functional theory is generally used. However, this involves an inconsistency
because the LDA is based on the homogeneous electron gas in equilibrium, while the system is not in
equilibrium and may be far from it. In this paper, we analyze this inconsistency by studying the interplay
between nonequilibrium occupancies obtained from a maximum entropy approach and the Hartree-Fock ex-
change energy, single-particle spectrum and exchange hole, for the case of a two-dimensional homogeneous
electron gas. The current dependence of the local exchange potential is also discussed. It is found that the
single-particle spectrum and exchange hole have a significant dependence on the current, which has not been
taken into account in practical calculations since it is not captured by the commonly used functionals. The
exchange energy and the local exchange potential, however, are shown to change very little with respect to
their equilibrium counterparts. The weak dependence of these quantities on the current is explained in terms of
the symmetries of the exchange hole.
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I. INTRODUCTION

One of the uncontrollable approximations introduced in
ab initio calculations of the transport properties of nanoscale
conductors consists in the application of density functional
theory �DFT�, a ground state theory, outside the equilibrium
regime. An immediate consequence of this approximation is
that these properties are typically calculated at the level of
the local density approximation �LDA�, which is derived
from the case of a homogeneous electron gas in equilibrium.
The extent to which these approximations might affect the
calculated electronic structure of the nonequilibrium systems
remains largely unknown, and thus, a comparison between
electronic properties calculated exactly for an admittedly
highly idealized nonequilibrium system and those of the
same system in equilibrium constitutes a particularly simple
way of approaching and illustrating this problem.

In order to put these ideas into practice, we will consider
a two-dimensional electron gas in equilibrium and in a model
nonequilibrium state. To model a homogeneous electron gas
outside equilibrium, we will assume that the nonequilibrium
steady state of the two-dimensional electron gas can be char-
acterized by the average total energy of the electron gas and
by different average numbers of left- and right-moving elec-
trons, and that the nonequilibrium steady state is given by the
density matrix that maximizes the entropy of the electron gas
with constraints on the above-mentioned averages.

Such an assumption leads in the noninteracting case to a
momentum distribution characterized by two Fermi hemi-
spheres of different radii; we take a pragmatic approach here
and ignore the problems associated with the discontinuous
character of this momentum distribution for the time being
since we are interested in the question of how these current-

inducing constraints affect the electronic properties of the
two-dimensional electron gas. Note that this type of momen-
tum distribution is precisely of the form used in Landauer-
Büttiker type of approaches and thus is familiar to the ab
initio quantum transport community,1–4 which constantly
makes use of it. Similar momentum distributions are pre-
dicted by semiclassical transport theories in two-dimensional
quantum point contacts.5 Alternatively, and perhaps also
more physically, a current constraint may be used instead of
the above-mentioned constraint to search for the nonequilib-
rium maximum entropy density matrix.6–9

To summarize, we will maximize the entropy of a two-
dimensional homogeneous electron gas with constraints on
the average numbers of left- and right-moving electrons to
obtain a description of a steady state at the Hartree-Fock
level of approximation, which can then be used to obtain the
electronic structure of the gas in the presence of a current
and to compare it with the usual approximations. The rest of
the paper is organized as follows: In the next section, we
discuss our theoretical approach to the problem and its nu-
merical implementation. In Sec. III, we discuss the current
dependence of the Hartree-Fock pair probability distribution,
single-particle spectrum, total energy, and local exchange po-
tential. We conclude with a discussion of the relevance of our
work for practical calculations.

II. THEORY

In order to proceed, let us consider the entropy per unit
area of the two-dimensional electron gas to be a functional of
the electronic occupancies given by10
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S�f�k�� = − �
R

2

d2k

2�2 �f�k�ln f�k� + �1 − f�k��ln�1 − f�k��� .

�1�

The electronic occupancies are written as

f�k� = � fL�k� if kx � 0

fR�k� if kx � 0,
	

where k= �kx ,ky� and fL/R are the occupation functions to be
varied independently in order to maximize Eq. �1� with con-
straints on the average total energy per unit area and different
average numbers of left- and right-moving particles per unit
area. In our model, the two-dimensional electron gas is as-
sumed to be embedded between two reservoirs characterized
by two different electrochemical potentials. The reservoirs
effectively constrain the numbers of left- and right-moving
states to be different in the gas, and hence, we add this con-
straint to our maximization procedure. We represent our
knowledge about the system’s constituents and their interac-
tions by the many-electron interacting Hamiltonian together
with the Hartree-Fock �i.e., exchange-only� approximation to
the many-body wave function. In such a model, at zero or
nonzero temperatures, the expectation value of the Hamil-
tonian is given by


E� = 2�
R

2

d2k

�2��2 f�k�
k2

2

− �
R

2

d2k�

�2��2�
R

2

d2k

�2��2 f�k�f�k��v�k,k�� , �2�

where v�k ,k��=2� / �k−k�� is the Fourier transform of the
Coulomb interaction in two dimensions. The number of left-
and right-moving electrons per unit area can be written as

nL�R� =
2

�2��2�
kx����0

d2kfL�R��k� . �3�

In order to maximize the entropy functional with respect to
fL/R subject to the above-mentioned constraints, we use the
method of Lagrange multipliers and consider the auxiliary
functional

L�f�k�� = S − ��
E� − �LnL − �RnR� , �4�

together with the extremal condition

�L
�fL/R

= 0. �5�

A straightforward calculation shows that the occupation
functions that maximize the entropy functional with con-
straints in the above-mentioned averages are given by

fL,R�k� =
1

1 + exp���k2/2 + �x�k� − �L,R��
, �6�

where

�x�k� = −
1

�2��2
�
kx�0

d2k�fL�k��v�k,k��

+ �
kx�0

d2k�fR�k��v�k,k��� , �7�

i.e., the occupations that maximize the entropy are similar to
those of the Landauer-Büttiker approach but with a modified
exchange part of the spectrum. In the calculation, we fix the
ratio nL /nR that together with the charge neutrality condition
nL+nR=1/�rs

2 completely determines both nL and nR. With
the equilibrium spectrum as a trial �x�k�, we solve Eq. �3� for
�L and �R. With these values of �L,R, a new spectrum is
constructed using Eq. �7�, and the iteration is completed and
subsequently repeated until the input and output spectra are
identical to each other within the desired tolerance. All the
results presented here are obtained in the �→	 limit, where
our approach is equivalent to that of Hershfield11 in the
Hartree-Fock approximation.14 Once the self-consistent spec-
trum and occupation factors are obtained, other quantities
such as the exchange energy and exchange hole can be easily
obtained. From these, we can study how the local exchange
potential of the electron gas depends on the current density.15

III. RESULTS

A. Hartree-Fock pair distribution function

Let us begin by discussing the current dependence of the
Hartree-Fock pair distribution function for spinlike electrons,
which is given by

g�r,r�� = 1 − �1

n
� d2k

�2��2 exp�− ik · �r − r���f�k��2

�8�

and shown for nL /nR=0.5 in Fig. 1�a�. For nL=nR, g is
spherically symmetric, while for nL�nR is elongated in the
direction of the current. Similar phenomenology has been
reported previously by Skudlarski and Vignale for the three-
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FIG. 1. �Color online� �a� Pair distribution function for like
spins in the nonequilibrium regime �nL /nR=0.5�. In the nonequilib-
rium regime, the exchange hole is elongated along the direction of
the current. The contours are at g=0.5, 0.75, 0.9, and 0.95. �b�
Difference between the equilibrium and nonequilibrium holes, 
g
�see text�. The contours are drawn at 0.1 �dashed�, −0.1 �dotted�,
and 0 �dotted�. 
g is oscillating, integrates to zero, and has a
marked antisymmetric character. Thus, the current dependence of
the local exchange potential and exchange energy is expected to be
weak.
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dimensional electron gas in the presence of a magnetic
field,12 where the exchange hole is elongated in the direction
of the field. In Ref. 12, the elongation arises from the change
of occupancies associated with the Zeeman splitting due to
the externally applied magnetic field. In the present case, the
elongation of the hole can be understood in terms of the
change in the electronic occupancies that results from our
constrained maximization of the entropy functional. In both
cases, the elongation of the hole is the result of the change in
the polarizability induced by the change in the
occupancies.12 As argued in Ref. 12, when correlations are
included the isotropy of the Coulomb interaction will bring
the shape of the pair-probability distribution back to a more
spherical form and, thus, closer to equilibrium.

Note that the difference between the equilibrium and non-
equilibrium exchange holes, 
g=geq−gneq, shown in Fig.
1�b�, has a strong antisymmetric character; i.e., defining
R=r−r�= �X ,Y�, then 
g�X ,Y��−
g�Y ,X�. We shall re-
turn to this point later when discussing the weak dependence
of the exchange energy on the current density.

B. Single-particle spectrum

Figure 2 shows the self-consistent single-particle energy
spectrum. Figure 2�a� shows the total �kinetic+exchange�
spectrum, while in Fig. 2�b�, we plotted only its exchange
part on the ky =0 line as given by Eq. �7� for nL=nR and
nL /nR=0.5.

The combined effect of the constraints and the exchange
interaction shifts the spectrum toward higher values of kx.
Note also that, when compared to the equilibrium spectrum,
the minimum of the nonequilibrium spectrum is less nega-
tive. Hence, we expect the total nonequilibrium exchange
energy to increase with respect to the equilibrium one. Note
that the constraints alter the total kinetic energy of the sys-
tem, but do not change the kinetic contribution to the single-
particle spectrum, since this contribution does not depend on
the electronic occupancies. Hence, the changes in the single-
particle spectrum are entirely due to the exchange interac-
tion, which raises �lowers� the single-particle energy of elec-
trons with kx�0 �kx�0�. The anomalous behavior in the
kx=0 plane inherited from the discontinuous character of the
maximum entropy momentum distribution can be seen
clearly in Fig. 2�a�, between �L and �R.

The interplay between nonequilibrium occupancies and
the single-particle spectrum observed here is just a conse-
quence of the orbital dependence of the Fock operator and
will also be seen in any practical calculation that combines a
nonequilibrium theory such as the Landauer-Büttiker ap-
proach or the Keldysh-nonequilibrium Green’s function
�NEGF� formalism, with an orbital-dependent description of
the interactions between the electrons, such as the Hartree-
Fock approximation.

We would like to point out that practical implementations
of NEGF formalism typically take the electronic structure of
the leads to be that of the equilibrium system �see Ref. 13
and references therein�,16 and hence, the dependence of the
single-particle spectrum on the nonequilibrium current �and
vice versa� is commonly ignored. The validity of this ap-

proximation is geometry dependent: it works in quantum
point contact geometries, while it does not in planar elec-
trode geometries at high currents. As a consequence, under
the “noninteracting equilibrium lead approximation,” the dis-
tribution of incoming electrons would be current indepen-
dent, while, as this example shows,17 the unavoidable pres-
ence of interactions in the leads induces a current
dependence in the nonequilibrium occupancies through the
exchange part of the single-particle spectrum. Unless the ge-
ometry is adequately chosen, the distribution of incoming
electrons will be that of a nonequilibrium lead such as ours.

In order to capture this subtle effect within the NEGF type
of approaches, the coupling self-energy needs to be obtained
from the lead’s Green’s function, which includes the neces-
sary current dependence of the Fock operator. This can be
achieved within a self-consistent scheme where not only the
central region but also the leads’ Green’s functions are cal-
culated self-consistently, as we have discussed in Ref. 13,
with the nonlocal Fock operator being used within the whole
system �electrodes and the central region�.

C. Total energy

Once the self-consistent single-particle spectrum is calcu-
lated, the total exchange energy Ex can be obtained from the
second term in the right hand side of Eq. �2�. Figure 3 shows
the dependence of the rs-invariant quantity −Ex /Ex

eq on
�1−nL /nR�. For nL /nR=0.25, the exchange energy deviates
by about 1%–2% from its equilibrium value. We also see
that, even though the non-self-consistent results provide a
good estimate to the self-consistent ones, full self-
consistency is needed in the nonequilibrium case, even for a
homogeneous gas. The error bars in the self-consistent re-
sults are estimated by comparing the exact exchange energy
in equilibrium with the exchange energy obtained from our
code for nL=nR and different values of rs. Therefore, the
exchange energy depends on the current density, but this
dependence is extremely weak in our model system. One
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FIG. 2. �Color online� �a� Contour plots of the total single-
particle energy spectrum of the model nonequilibrium electron gas
for nL /nR=0.25 and rs=4. The contours corresponding to
�L=−1.110−2 a.u. and −9.210−2 a.u. are labeled. The other
contours shown correspond to ��L+�R� /2 �short dashes�,
�L−0.510−2 �a.u.� �solid�, and �R+0.510−2 �a.u.� �dot-dashed�. �b�
Exchange contribution to the single-particle energy spectrum, �x�k�,
evaluated on the ky =0 line calculated for nL=nR �solid� and
nL /nR=0.25 �dashed�. The main effect of the nonequilibrium con-
straints used in our variational approach is to shift the exchange part
of the single-particle spectrum toward higher values of kx.
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could now proceed to calculate this current density explicitly
and work out a current dependent local density approxima-
tion from the dependence of Ex on the current density. How-
ever, the weak dependence of the exchange energy on the
current density deduced from Fig. 3 means that the current
dependence of the local exchange functional is also very
weak, and the changes it will induce in the associated LDA–
Kohn-Sham effective potential will be well within the error
bar of the LDA itself.

D. Local exchange potential

The weak dependence of the local exchange potential on
the current density can be seen clearly in terms of the sym-
metries of the exchange hole. Consider the expression for
Slater’s exchange potential, vx

s, in terms of the Hartree-Fock
pair distribution function:

vx
s�r� =� d2r�

�g�r − r�� − 1�
�r − r��

n�r�� , �9�

where n�r�� is the electron density and g�r−r�� is the ex-
change hole. Then, the difference between equilibrium and
nonequilibrium exchange potentials is, for our homogeneous
system, given by


vx
s � d2R


g�R�
�R�

, �10�

where R and 
g are defined as above. From Eq. �10�, it
follows that


g�X,Y� = − 
g�Y,X� ⇒ 
vx
s = 0, �11�

and hence, only the symmetric part of 
g�X ,Y� contributes
to the deviation of exchange potential with respect to its
equilibrium value. Note that 
g�X ,Y� is an oscillatory func-
tion that integrates to zero, which also has a marked antisym-
metric character shown in Fig. 1�b�. This explains the weak
dependence of Ex and vx on the current density.

IV. CONCLUSIONS

In conclusion, we have maximized the entropy of a two-
dimensional homogeneous electron gas with constraints on
the average total energy and average numbers of left- and
right-moving electrons to obtain a simplified description of
the steady state within the Hartree-Fock approximation. Our
results show that both the single-particle spectrum and the
exchange hole depend significantly on the current density,
while averaged quantities such as the local exchange poten-
tial or the exchange energy do not. Our results provide sup-
port to the idea that within a static-DFT approach to quantum
transport problems, nonequilibrium corrections to the
exchange-correlation functional—at least at the exchange-
only level—may be neglected without substantial loss of ac-
curacy.

ACKNOWLEDGMENTS

The authors gratefully acknowledge useful discussions
with J. J. Palacios and J. Fernández-Rossier. The authors are
grateful to Matthieu Verstraete for useful comments on the
manuscript. This work was supported by the EU’s 6th
Framework Programme through the NANOQUANTA Net-
work of Excellence �NMP4-CT-2004-500198�, ERG pro-
gramme of the European Union QuaTraFo �Contract No.
MERG-CT-2004-510615�, the Slovak grant agency VEGA
�Project No. 1/2020/05�, and the NATO Security Through
Science Programme �EAP.RIG.981521�. H.M. acknowledges
support from the Danish Research Agency through the
NABIIT program Molecular design using grid technology.

1 S. Datta, Electronic Transport in Mesoscopic Systems �Cambridge
University Press, Cambridge, England, 1997�.

2 H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and
Optics of Semiconductors �Springer Verlag, Berlin, 1996�.

3 J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407
�2001�.

4 M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stok-
bro, Phys. Rev. B 65, 165401 �2002�.

5 A. G. M. Jansen, A. P. van Gelder, and P. Wyder, J. Phys. C 13,
6073 �1980�.

6 T. K. Ng, Phys. Rev. Lett. 68, 1018 �1992�.

7 O. Heinonen and M. D. Johnson, Phys. Rev. Lett. 71, 1447
�1993�.

8 P. Bokes and R. W. Godby, Phys. Rev. B 68, 125414 �2003�.
9 P. Bokes, H. Mera, and R. W. Godby, Phys. Rev. B 72, 165425

�2005�.
10 T. N. Todorov, J. Hoekstra, and A. P. Sutton, Philos. Mag. B 80,

421 �2000�.
11 S. Hershfield, Phys. Rev. Lett. 70, 2134 �1993�.
12 P. Skudlarski and G. Vignale, Phys. Rev. B 48, 8547 �1993�.
13 H. Mera, P. Bokes, and R. W. Godby, Phys. Rev. B 72, 085311

�2005�.

1 − nL/nR

−E
x
/
E

e
q

x

0.80.70.60.50.40.30.20.10

-0.984
-0.986
-0.988
-0.99

-0.992
-0.994
-0.996
-0.998

-1
-1.002

FIG. 3. �Color online� Exchange energy �in units of the
equilibrium exchange energy� versus 1−nL /nR. In equilibrium,
1−nL /nR=0. The dashed line shows the self-consistent results with
estimated error bars. The non-self-consistent results are also shown
with points calculated for different values of rs, showing that the
exchange energy scales with rs as 1/rs. The lines are fits to para-
bolic functions.
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14 That is, to find the Slater determinant that minimizes the

expectation value of the effective Hamiltonian F̂= ĤHF−�LN̂R

−�LN̂R.
15 For two Fermi hemispheres of radii kL and kR, the noninteracting

electronic current is related to these densities by the expression
j= 2

3�2�
�nL+nR��nR

3 −nL
3�.

16 In particular, Eq. �22� of Ref. 13 applies also to our considerations
here, where �HL/R contains contributions from the Fock operator
that do not vanish for any finite length of the central region.

17 We may view our two-dimensional electron gas as a simple
model of one of the leads to which the nanoscale conductor is
attached.
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