
Vertex corrections in localized and extended systems

Andrew J. Morris,1,* Martin Stankovski,1 Kris T. Delaney,2,† Patrick Rinke,3 P. García-González,4 and R. W. Godby1

1Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

3Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Dahlem, D-14195 Berlin, Germany
4Departmento de Física Fundamental, UNED, Apartado 60141, E-28080 Madrid, Spain

�Received 25 January 2007; revised manuscript received 5 July 2007; published 8 October 2007�

Within many-body perturbation theory, we apply vertex corrections to various closed-shell atoms and to
jellium, using a local approximation for the vertex consistent with starting the many-body perturbation theory
from a Kohn-Sham Green’s function constructed from density-functional theory in the local-density approxi-
mation. The vertex appears in two places—in the screened Coulomb interaction W and in the self-energy
�—and we obtain a systematic discrimination of these two effects by turning the vertex in � on and off. We
also make comparisons to standard GW results within the usual random-phase approximation, which omits the
vertex from both. When a vertex is included for closed-shell atoms, both ground-state and excited-state
properties demonstrate little improvement over standard GW. For jellium, we observe marked improvement in
the quasiparticle bandwidth when the vertex is included only in W, whereas turning on the vertex in � leads to
an unphysical quasiparticle dispersion and work function. A simple analysis suggests why implementation of
the vertex only in W is a valid way to improve quasiparticle energy calculations, while the vertex in � is
unphysical, and points the way to the development of improved vertices for ab initio electronic structure
calculations.
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I. INTRODUCTION

Many-body perturbation theory �MBPT� is a leading
method for computing excited-state electronic properties in
solid-state physics.1–3 Within many-body perturbation theory,
Hedin’s GW method4 is the most widely used approximation
for the self-energy �. The exact one-body Green’s function
G �which contains information about ground- and excited-
state properties of the system� can be written, using a Dyson
equation, in terms of a suitable Green’s function of a “zeroth-
order” system of noninteracting electrons, G0 �constructed
from that system’s one-particle wave functions and energies�,
and the self-energy operator �. The approximation is defined
by the choice of zeroth-order system and by the expression
�typically a diagrammatic expansion in terms of G0� used to
approximate �. The self-energy � contains all the informa-
tion of many-body interactions in the system and can be
obtained by using Hedin’s set of coupled equations,

��12� = i� W�1+3�G�14���42;3�d�34� , �1�

W�12� = v�12� +� W�13�P�34�v�42�d�34� , �2�

P�12� = − i� G�23�G�42���34;1�d�34� , �3�

��12;3� = ��12���13�

+� ���12�
�G�45�

G�46�G�75���67;3�d�4567� , �4�

and the Dyson equation, where P is the polarizability, W the

screened and v the unscreened Coulomb interactions, and �
the vertex function. The notation 1��x1 ,�1 , t1� is used to
denote space, spin, and time variables and the integral sign
stands for the summation or integration of all of these where
appropriate �1+ denotes t1+�, where � is a positive infini-
tesimal in the time argument�. Atomic units are used in all
equations throughout this paper. These are four coupled in-
tegrodifferential equations where the most complicated term
is the vertex �, which contains a functional derivative and
hence, in general, cannot be evaluated numerically. The ver-
tex is the usual target of simplification for an approximate
scheme.

The widely used GW approximation is derived with the
Hartree method as a starting point and hence has a rigorous
foundation only when started from a noninteracting Green’s
function, G0, made from eigenstates of the Hartree Hamil-
tonian. This is because the initial self-energy �0=0 and the
vertex function is correspondingly set to ��12;3�
=��12���13� since ���12� /�G�45�=0.

Solving Hedin’s equations with the vertex fixed in this
expression yields the so-called self-consistent GW approxi-
mation. In this approach, the self-energy operator is formed
from a product of a Green’s function and a screened Cou-
lomb interaction, where the Green’s function used is consis-
tent with that returned by Dyson’s equation. Since the self-
energy depends on G, this procedure should be carried out
self-consistently, beginning with G=G0.

In practice, it is customary to use the first iteration only,
often called G0W0

RPA, to approximate the self-energy opera-
tor. Here, W0

RPA is perhaps the simplest possible screened
interaction, which involves an infinite geometric series over
noninteracting electron-hole pair excitations as in the usual
definition of the random-phase approximation �RPA�. It is
important to make this one iteration as accurate as possible,
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so an initial G0 calculated using the Kohn-Sham density-
functional theory in the local-density approximation �DFT-
LDA� is normally used. This choice of G0 generally pro-
duces much more accurate results for quasiparticle energies
�the correct electron addition and removal energies, in con-
trast to the DFT-LDA eigenvalues5�. However, because this
choice of G0 corresponds to a nonzero �0, there is no longer
a theoretical justification for the usual practice of setting the
vertex to a product of delta functions and different choices
for the exchange-correlation functional may lead to different
Green’s functions.6,7

Using the static exchange-correlation kernel Kxc �which is
the functional derivative of the DFT exchange-correlation
potential Vxc with respect to density n�, Del Sole et al.8 dem-
onstrated how G0W0

RPA may be modified with a vertex func-
tion to make � consistent with the DFT-LDA starting point.
They added the contribution of the vertex into both the self-
energy � and the polarization P. The result is a self-energy
of the form G0W0�LDA.9 The G0W0

LDA approximation is ob-
tained when the vertex function is included in P only. As
commented by Hybertsen and Louie10 and Del Sole et al.,
both these results take the form of GW but with W represent-
ing the Coulomb interaction screened by, respectively, the
test-charge-electron dielectric function and the test-charge-
test-charge dielectric function, in each with electronic ex-
change and correlation included through the time-dependent
adiabatic LDA �TDLDA�.

Del Sole et al. found that G0W0�LDA yields final results
almost equal to those of G0W0

RPA for the band gap of crys-
talline silicon and that the equivalent results from G0W0

LDA

were worse when compared to G0W0
RPA. It should perhaps be

mentioned that the inclusion of other types of vertex correc-
tions has been studied before as well, most notably correc-
tions based on various approximations of a second iteration
of Hedin’s equations, starting with G0W0

RPA.11,12 However,
these have usually been applied with initial Kohn-Sham �KS�
Green’s functions, which are still not theoretically consistent
with that starting point. The correct theoretical treatment of a
second-iteration vertex from KS Green’s functions is quite
complicated and still absent in the literature.

The purpose of the present work is to make a systematic
study, for both localized and extended systems, of a simple
ab initio vertex correction whose form is determined by the
starting approximation for the self-energy ��0=Vxc for DFT-
LDA�. Related vertex corrections, including others derived
from Kxc, have been investigated in an earlier work. For
example, Northrup et al.13 used LDA bulk calculations as a
starting point and a plasmon-pole calculation of the response
function in conjunction with a G0W0

LDA-like vertex correction
in the screened interaction. They found a narrowing of the
bandwidths of Na, Li, and K,14 in agreement with the experi-
ments of Jensen and Plummer15 who had noted that the ex-
perimental bandwidth was significantly narrowed ��23% �
compared to the free-electron result. Hedin’s G0W0

RPA �Ref.
4� calculations only gave a narrowing of about 10% for a
homogeneous electron gas of the same mean density, indicat-
ing a large impact of further many-body effects. This led to
additional experimental and theoretical investigations16–21

but the issue remains controversial.22–25

For individual atoms, GW quasiparticle properties have
been investigated previously by Shirley and Martin26 �in-

cluding an exchange-only vertex� and, more recently, total
energy studies on atoms and molecules using the variational
functionals of Luttinger and Ward27 have been performed by
Dahlen et al.,28,29 Stan et al.,30 and Verdonck et al.31 These
studies have shown that G0W0

RPA in general gives quasiparti-
cle properties which are much improved over DFT and
Hartree-Fock methods and that, when calculated self-
consistently, GW also provides reasonably good total ener-
gies for atoms �with differences versus highly accurate ref-
erence methods being on the order of tens of millihartree/
electron�. To its merit, self-consistent GW is also a
conserving approximation in the Baym-Kadanoff32 sense.
However, non-self-consistent total energies in G0W0

RPA are
noticeably less accurate. Conversely, the good agreement be-
tween the quasiparticle energies and experiment is destroyed
when performing self-consistent calculations.

The answer to why this happens must, by definition, lie
with the only approximated quantity, the vertex correction.
This study is meant to address the need for a precise �includ-
ing a full treatment in frequency� comparative study of the
vertex corrections proposed by Del Sole et al. for localized
and extended systems within G0W0.

II. METHOD

Hybertsen and Louie10 comment that it is possible to start
a GW calculation from an initial self-energy, �0�12�
=��12�Vxc�1�. This approach gives a theoretical basis for be-
ginning a G0W0 calculation from DFT-LDA orbitals. Adopt-
ing this idea, we see from Eq. �4� that the second term is now
nonzero, unlike in the GW approximation. Since the electron
density is n�1�=−iG�11+�, then

���12�
�G�45�

=
���12�
�n�4�

�n�4�
�G�45�

, �5�

=− i
�Vxc

LDA�1�
�n�4�

= − iKxc
LDA�1� , �6�

where delta functions are to be understood in all other vari-
ables. In an appendix, Del Sole et al.8 show how to add this
approximate vertex to both W and �, and into W only, by
forming two different effective W’s. Our method follows that
of Del Sole et al.8 by modifying the dielectric function �
from its form in the RPA. The screened Coulomb interaction
in MBPT is written as

W = �−1v , �7�

where �−1 is the inverse dielectric function. We use the full
polarization without recourse to plasmon-pole models. The
RPA dielectric function is

� = 1 − v�0. �8�

Del Sole et al. show that adding the form of the vertex from
Eq. �6� into both � and W modifies the RPA dielectric func-
tion to

�̃ = 1 − �v + Kxc��0, �9�

which leads to the introduction of an effective screened Cou-

lomb interaction W̃. This is trivial to implement into a GW
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computer code as it requires a simple matrix addition once

Kxc is calculated. The result of this modification is that W̃
contains not only the screened Coulomb interaction but also
an exchange-correlation potential. We shall refer to this
method as G0W0�LDA as we have added the correct DFT-
LDA vertex to the GW method; hence, the method is a one-
iteration GW� �G0W0�0� calculation beginning with a DFT-
LDA Green’s function.

An alternative choice for the effective dielectric function,

�̃ = 1 − �1 − Kxc�
0�−1v�0, �10�

corresponds to adding Kxc into W only. We term this method
G0W0

LDA as the LDA vertex is inserted into the screened Cou-
lomb interaction W only. This is equivalent to the one-
iteration GW approximation G0W0 but with W calculated us-
ing the adiabatic LDA.

The vertices presented are thus dynamical, i.e., frequency
dependent, due to the inclusion of �0, and must include the
excitonic effects of the corresponding jellium due to the ap-
pearance of Kxc. Another way of looking at it is that this
corresponds to a treatment beyond G0W0 where at the level
of the vertex corrections, the system is modeled by the ho-
mogeneous electron gas. It is not likely, however, that these
methods would be able to capture any satellite structure be-
yond that provided by Kxc as the calculations are non-self-
consistent.

III. COMPUTATIONAL APPROACH

The quasiparticle energies �i and wave functions �i are
formally the solution of the quasiparticle equation,

�− 1
2�2 + Vext�r� + VH�r���i�r� +� ��r,r�;�i��i�r��dr�

= �i�i�r� , �11�

where Vext and VH are the external and Hartree potentials,
respectively.

In the case of a spherically symmetric system, it is suffi-
cient to describe all nonlocal operators in the GW formalism
by two radial coordinates and one angular coordinate, 	, that
denotes the angle between the vectors r and r�. The self-
energy � then assumes the much simpler form

��r,r�,	;�� = �
l=0




��l�r,r�;���Pl�cos 	� , �12�

where Pl�cos 	� is a Legendre polynomial of order l.
The Legendre expansion coefficients of the self-energy �

are calculated directly, thereby circumventing the need for a
numerical treatment of the angular dependence. We use a
real-space and imaginary time representation33 to calculate
the self-energy from the noninteracting Green’s function G0.
The self-energy on the real-frequency axis, required for solv-
ing the quasiparticle equation, is obtained by means of ana-
lytic continuation.33 The current implementation has been
successfully applied to jellium clusters34 and light atoms.7,35

To obtain the quasiparticle energies and wave functions,
the quasiparticle equation �Eq. �11�� is fully diagonalized in

the basis of the single particle orbitals of the noninteracting
Kohn-Sham system. For localized systems, the quasiparticle
wave functions can differ noticeably from the wave functions
of the noninteracting system or in certain cases even have a
completely different character, as was demonstrated for im-
age states in small metal clusters.34

Ground-state total energies were calculated using the
Galitskii-Migdal formula36 transformed to an integral equa-
tion over imaginary frequency. This avoids the analytic con-
tinuation of the self-energy, which would be unreliable for
large frequencies.

For jellium, the homogeneous electron gas, we solve He-
din’s equations in wave vector and real-frequency space.
This avoids analytic continuation and enables accurate and
easy extraction of spectral properties. Again, we do not use
plasmon-pole models, but the full frequency-dependent po-
larization.

IV. TOTAL ENERGIES

The MBPT total energy results are compared against con-
figuration interaction �CI� and quantum Monte Carlo �QMC�
methods �variational Monte Carlo �VMC� and diffusion
Monte Carlo �DMC��. The CI and QMC families of methods
usually yield the most accurate estimates of ground-state en-
ergies and are variationally bound, meaning that the lowest
energy is the most accurate.

The G0W0 result with G0 constructed from DFT-LDA
eigenstates �G0W0

RPA� is in poor agreement with CI in all
three cases. It is known that there is a large self-interaction
error in the LDA, especially noticeable in smaller atoms.
Hartree-Fock, which is self-interaction-free by construction,
is more accurate than DFT-LDA. Hence, the self-interaction
error is introduced via the LDA orbitals into the Green’s
function, G0

LDA, which gives rise to the G0W0
RPA total ener-

gy’s consistent poor agreement with CI. �By way of illustra-
tion, using a G0 from the superior Krieger, Li, and Iafrate
�KLI� method,43 an optimized effective potential that is for-
mally free of self-interaction error for a two-electron system,
greatly improves the DFT and GW total energies. The
G0

KLIW0
RPA results for He, Be, and Ne are −1.4550�3�,

−3.6780�2�, and −12.843�1�, respectively.�
For all three atoms, the vertex in W alone �G0W0

LDA�
shows little difference to G0W0

RPA �Table I and Fig. 1�,
whereas G0W0�LDA raises the total energy with respect to
G0W0

RPA. This change is due not to the LDA self-interaction
but to the nature of the vertex. The result of adding the LDA
vertex to G0

KLIW0 mirrors that of adding it to G0
LDAW0. There

is an increase of the total energy when the vertex is applied
in both W and � �G0

KLIW0�LDA� but the vertex in W only
�G0

KLIW0
LDA� results in a similar total energy to G0

KLIW0
RPA.

�The total energies per electron for G0
KLIW0�LDA and

G0
KLIW0

LDA for He are −1.4235�10� and −1.4475�5�, respec-
tively.�

In jellium the trend is the same for all densities in the
region from rs=2 to 5 �rs is the density parameter, where
rs= � 3

4�n
�1/3 and n is the electron density in a.u.�, as can be

seen in Table II. G0W0
LDA lowers the total energy of jellium
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slightly as compared to G0W0
RPA and G0W0�LDA makes the

energy too high. G0W0
RPA is on average �5% lower than the

QMC result. G0W0�LDA is �10% too high and G0W0
LDA is

�6% lower than the QMC result.
For jellium, neither method leads to a result more accurate

than G0W0
RPA. It is apparent, however, that the vertex added

solely in the polarization has the minor effect of lowering the

total energy. When the vertex is subsequently added into the
self-energy there is a major positive shift in the total energy
as seen in the atomic results as well. Self-consistent GW
calculations41,44 for jellium show that the self-consistent total
energy is about 4%–5% higher than the G0W0

RPA ones in the
range of rs=2–5, and the essentially exact QMC energies are
about 0.5%–1% lower than the self-consistent GW values.
Assuming to a first approximation that the vertex corrections
are independent and additive corrections to self-consistency,
this would indicate that the G0W0�LDA energies would still
be much too high, but the G0W0

LDA energies might end up
very close to the QMC results if self-consistency is achieved,
since they lower the G0W0

RPA energies to roughly the same
extent as the difference between QMC and self-consistent
GW energies.

V. QUASIPARTICLE ENERGIES

The quasiparticle energy corresponding to the first ioniza-
tion energy63 is presented for helium, beryllium, and neon in
Fig. 2. The MBPT methods are consistently more accurate
than DFT-LDA Kohn-Sham eigenvalues �Table III�. How-
ever, again, G0W0

LDA is roughly equivalent to G0W0
RPA for

helium and beryllium, and in all cases G0W0�LDA causes an
increase in quasiparticle energy, in agreement with Del Sole
et al.8 In general, G0W0�LDA worsens QP energies as com-
pared to G0W0

RPA.
For jellium, different quantities are accessible at different

stages of the iteration of Hedin’s equations. The pair-
correlation function g�r�, for example, can be obtained from
the �isotropic� inverse dielectric function �−1�k ,�� by the
integration

g�r� = 1 +
3

2rkF
3�

0




dk k sin�kr��S�k� − 1� , �13�

where the static structure factor

TABLE I. Total energy data �hartrees/electron� �see Fig. 1—a
comparison of various methods for total energy calculations�.
Hartree-Fock, density-functional theory, one-iteration GW
�G0W0

RPA�, the two approximate vertex GW methods, variational
Monte Carlo, diffusion Monte Carlo, and configuration interaction.
�CI usually yields the most accurate estimate of the ground-state
energies for localized systems.�

Method He Be Ne

HF −1.4304a −3.6433b −12.8547a

DFT-LDA −1.4171 −3.6110 −12.8183

G0W0
RPA −1.4117�5� −3.5905�9� −12.777�1�

G0W0
LDA −1.4120�2� −3.590�1� −12.775�15�

G0W0�LDA −1.3912�2� −3.573�1� −12.745�10�
VMC −1.45176a −3.66670c −12.891�5�a

DMC −1.45186a −3.66682c −12.89231a

CI −1.45189d −3.66684d −12.89370d

aSee Ref. 37.
bSee Ref. 38.
cSee Ref. 39.
dSee Ref. 40.

TABLE II. �xc �Ha�, the exchange-correlation energy for jel-
lium. The total energy per particle is given by �= 3

5�F+�xc, where
�F= 1

2kF
2 = 1

2 � 1
rs

�2 and = � 4
9�

�1/3. The energies under heading GW
are from self-consistent calculations by García-González and
Godby �Ref. 41� for reference. G0W0

RPA is lower than the QMC
energy by �5% on average. G0W0

LDA is �6% lower and G0W0�LDA

is �10% too high. The DMC values are evaluated by Perdew and
Zunger’s �Ref. 42� parametrization of Ceperley and Alder’s DMC
calculations.

rs 2 3 4 5

G0W0
RPA −0.2826�3� −0.1967�1� −0.1522�1� −0.1247�1�

G0W0
LDA −0.2857�4� −0.2002�2� −0.1560�1� −0.1288�1�

G0W0�LDA −0.2525�2� −0.1678�1� −0.1241�1� −0.0972�1�
GWa −0.2727�5� n/a −0.1450�5� −0.1185�5�
QMC �DMC�b −0.2742�1� −0.1902�1� −0.1464�1� −0.1202�1�
aSee Ref. 41.
bSee Ref. 42.
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FIG. 1. Total energies of atoms. We compare a number of
GW-based approaches to Hartree-Fock �Ref. 37�, DFT with an LDA
exchange-correlation functional consistent with the Kxc used, quan-
tum Monte Carlo �Ref. 37� �VMC and DMC�, and CI �Ref. 40�. The
dotted line is the CI value and is there to guide the eyes. In all
cases, G0W0�LDA behaved poorly in comparison with G0W0

RPA,
whereas G0W0

LDA makes no improvement to G0W0
RPA. The MBPT

methods are not as accurate as the computationally cheaper mean-
field calculations but G0W0

RPA and G0W0
LDA are the better of the

three MBPT methods.
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S�k� = −
k2rs

3

3
�

0


 d�

�
I��−1�k,��� . �14�

g�r� is shown in Fig. 3 for rs=1.0. The RPA displays the
well-known failure to be positive definite for rs�0.78. This
is remedied by the local vertex, but the result appears to be
an overcorrection �note that G0W0

LDA and G0W0�LDA are
equivalent at this stage since � has not yet been calculated�.

The tendency of G0W0�LDA to overshoot—the reason for
which we will defer to the closing discussions—is apparent
in all subsequent results. Once � has been calculated, the QP
dispersion can be extracted. Presented in Fig. 4 is the real
part of the self-energy evaluated at the self-consistent eigen-
values, i.e., the correction Re��k��k�� to the quasiparticle
dispersion as found by

�k = �k
0 + Re��k��k�� , �15�

where �k
0 is the noninteracting dispersion. Care has been

taken to align the Fermi energy of noninteracting and inter-
acting systems so that the Dyson equation is consistent36 and
all quantities are calculated in real frequency. The self-
consistent quasiparticle energy should be used when one has
a self-consistent �, but for a G0W0 calculation there is still
controversy about whether the self-consistent eigenvalues �k
or the zeroth-order eigenvalues �k

0 are best used as the argu-
ment of �k in Eq. �15�.1,50 The self-consistent approach was
chosen in this paper.

The difference between the quasiparticle energies at k
=kF and k=0 is known as the bandwidth, which therefore
takes the form of the free-electron value �kF

2 /2� corrected by
the change in Fig. 4 between k=kF and k=0. This bandwidth
is shown in Table IV and Fig. 5. It consistently seems that
vertex corrections applied in the screened Coulomb interac-
tion only give the best results. This is corroborated by the
fact that this quasiparticle dispersion has a better bandwidth

TABLE III. First ionization energy �eV�, a comparison of vari-
ous methods for quasiparticle energy calculations: DFT-LDA,
G0W0

RPA, and the two approximate GW methods. CI denotes the
ionization potential calculated from the difference in CI total ener-
gies and Expt. is the measured value.

Method He Be Ne

DFT-LDA −15.4877 −5.5909 −13.503

G0W0
RPA −24.20�4� −9.24�2� −20.55�10�

G0W0
LDA −24.05�5� −9.25�3� −19.48�10�

G0W0�LDA −22.5�1� −7.56�6� −18.85�5�
CI −24.5930a −9.3226a −21.6034a

Expt. −24.587b −9.3227c −21.5645d

aSee Ref. 40.
bSee Refs. 45 and 46.
cSee Ref. 47.
dSee Ref. 48.
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FIG. 2. QP energies of atoms. The first ionization energy is
plotted. We compare the GW-based approaches to DFT-LDA; the
experimental �Refs. 45–47� answer �Expt.� and the values calcu-
lated from the differences in CI �Ref. 40� calculations �CI�. The
helium, beryllium, and neon values are plotted with circles, dia-
monds, and squares, respectively. The dotted lines go through the
CI value and are there to guide the eyes. All of the GW calculations
are more accurate than the mean-field method. For helium and be-
ryllium, the G0W0

RPA and G0W0
LDA methods give similar results. In

all cases, G0W0�LDA is shifted to a higher energy than G0W0
RPA.

�This shift for G0W0�LDA was also found by Del Sole et al. �Ref. 8�
and Fleszar and Hanke �Ref. 49�.�

FIG. 3. �Color online� The pair-correlation function—evaluated
at rs=1.0. The RPA goes negative for small r, which is a well-
known unphysical behavior of this approximation. Including the
vertex makes the W0

LDA fit the �essentially exact� QMC �Ref. 51�
curve better, but then the p.-c. function goes too positive instead.
The W0

LDA curve does not go to infinity when r→0, it just goes to
a very high value ��2000�. The horizontal lines are there to guide
the eyes.
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and that the G0W0�LDA introduces little change to the band-
width. These results are in agreement with those of Mahan
and Sernelius52 obtained for a model Hubbard vertex.

VI. CHEMICAL POTENTIAL OF JELLIUM

To get another indication of whether the large absolute
positive shift of the quasiparticle dispersion is physical, we
compare with experimental work functions of Al �100�,
�110�, and �111� surfaces �see Table V�. We assume that the
electron density of the surface region and therefore the elec-
trostatic surface-dipole energy barrier are well described by
LDA calculations including the crystal lattice. The work
function � will, however, be sensitive to the quasiparticle
bulk Fermi level, which we use here as a discriminator be-
tween self-energy approximations in the bulk. Treating the
bulk metal as jellium, we obtain a shift in the work function
due to the new chemical potential,

� = �LDA + �� = �LDA − 	Re��kF
��F�� − Vxc
 , �16�

where �� is the correction due to the shift of the bulk Fermi
energy for a GW jellium calculation. The LDA work function
is defined as the shift between the vacuum potential �vac and

the chemical potential from the LDA surface calculation,
�LDA. Since the exact self-energy for jellium must fulfill the
condition

Re��kF
��F�� = Vxc, �17�

we see that the LDA �taken from highly accurate QMC cal-
culations� corresponds to the exact result if one assumes that
the bulk is accurately modeled by jellium. Comparing with
Table V and Fig. 6, we see that G0W0

RPA is closest to the
exact result and G0W0

LDA is slightly further away, while
G0W0�LDA is even worse.

This leads us to conclude that G0W0�LDA is unphysical in
the sense that a vertex correction derived from a self-energy
approximation with a completely local dependence on the
density �like the LDA� will have pathological features. This
is most probably due to the improper behavior of the spectral
function of the screened interaction, as is demonstrated in the
final section of this paper.

VII. DISCUSSION AND CONCLUSIONS

We have presented G0W0
LDA and G0W0�LDA calculations

for isolated atoms and jellium. We see that G0W0�LDA wors-
ens results in all cases compared to the common G0W0

RPA

approximation.
A proper ab initio vertex correction for calculations on an

arbitrary system should be derived from the starting approxi-
mation for the self-energy. In this work, we have shown that
in practice, vertex corrections derived from a local-density
approximation to the self-energy �like the LDA� are patho-
logical when applied to both the self-energy and the screened
interaction. The work function of aluminum was used to con-
firm that the value of the chemical potential in G0W0�LDA is
far from the correct result.

An indication of why a local correction in both W and �
performs so poorly has been discussed previously by
Hindgren and Almbladh58 and investigated in excitonic ef-
fects on wide-band-gap semiconductors by Marini and
co-workers.59,60 Both types of vertex corrections lead to a

modified screened interaction W̃= �̃−1v. The spectral function

TABLE IV. Occupied bandwidths of jellium for different rs

�eV�—evaluated at the self-consistent eigenenergy.

rs G0W0
RPA G0W0�LDA G0W0

LDA Expt.

�Al� 2.07 11.5445 11.6444 11.1814 10.60±0.10a

�Li� 3.28 4.4644 4.4853 4.2129 3.00±0.20b

�Na� 3.96 2.9837 2.9889 2.7777 2.65±0.05c

�K� 4.96 1.8625 1.8579 1.7044 1.60±0.05d

�Rb� 5.23 1.6669 1.6610 1.5191 1.70±0.20e

�Cs� 5.63 1.4287 1.4215 1.2944 1.35±0.20e

aSee Ref. 53.
bSee Ref. 54.
cSee Ref. 21.
dSee Ref. 20.
eSee Ref. 55.
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of this, which is required to be positive semidefinite for �
�0 and negative semidefinite otherwise, is given by

Bq��� = −
sgn���

�
Im�W̃q���� =

sgn���
�

Im��̃q����
��̃q����2

vq,

�18�

so it inherits whatever properties of definiteness the imagi-
nary part of the dielectric function has. Now, for G0W0�LDA,
this is given by

Im��̃q���� = − �vq + Kxc�Im��q
0���� . �19�

Since the RPA response function �0 will have the correct
analytical properties by construction, this expression will ob-
viously change sign whenever Kxc—which is strictly nega-
tive for all densities and a negative constant for jellium—is
larger in magnitude than vq, which decays as 1/q2. This will
thus lead to a spectral function with the wrong sign, which is
entirely unphysical. For jellium, isolated atoms, or any
sparse enough condensed state, this is guaranteed to happen

because Kxc→−
 for low densities. Inspection of the dielec-
tric function in G0W0

LDA,

Im��̃q���� = −
vq Im��q

0����
�1 − Kxc�q

0����2
, �20�

illustrates that it cannot suffer from the same pathology.
Since Eq. �20� ensures that the static structure factor has the
correct behavior for both G0W0

LDA and G0W0�LDA, no con-
clusions can be drawn on the reason for the overly positive
value of the pair-correlation function of jellium when r→0,
except that it must depend on the high k behavior of the
denominator. We note that none of the calculations have been
carried out self-consistently; it is possible that the vertices
presented here go some way to improve self-consistent GW
results.64

One possibility of the failure of the LDA starting point
with the inclusion of the theoretically consistent vertex is the
self-interaction error the LDA orbitals carry with them. Any
starting point with an inherent self-interaction error should
lead to correcting terms in the diagrammatic expansion. It is
possible that the first-order correction, such as G0W0�LDA, is
not enough and higher order corrections must be applied. A
vertex derived from a second iteration of Hedin’s equations
does indeed lead to further and more complicated diagrams
than the equivalent vertex from a Hartree starting point. Un-
fortunately, these diagrams are of prohibitive complexity for
practical calculations.

It is still not understood why a correction in W only �in a
TDDFT-like manner� seems to work as well as it does. There
is a similarity here with the way that the Bethe-Salpeter
equation �BSE� is usually applied for the calculation of op-
tical spectra. There too, it is well known that, in theory, in-
clusion of a screened interaction in electron-hole excitations
should be accompanied by an inclusion of the double-
exchange term in � but this has been proven to worsen re-
sults. Recently, Tiago and Chelikowsky62 have used a
G0W0

LDA vertex in conjunction with an efficient numerical
implementation of the BSE for isolated molecules and have
shown that the inclusion of a TDLDA vertex gives very good
results over a wide range of structural configurations in ex-
cited states.

For atomic helium and beryllium, G0W0
LDA is very similar

TABLE V. The work function of aluminum �rs=2.07�—compared to experiment. The last four columns
show the deviation from the experimental value. The LDA surface calculation corresponds to the exact result
if jellium is used to model the bulk Fermi energy. G0W0

RPA and G0W0
LDA are closer, while G0W0�LDA is much

worse.

� Al
Expt.
�eV�a LDAb G0W0

RPA G0W0�LDA G0W0
LDA

�100� 4.41 −0.14 0.28 −1.19 0.45

�110� 4.06 −0.18 0.24 −1.23 0.41

�111� 4.24 −0.06 0.36 −1.11 0.53

aSee Ref. 56.
bSee Ref. 57.
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to the G0W0
RPA result but slightly worse in neon, while in

jellium, the bandwidth is improved. Hence, G0W0
LDA may be

a local and easily implementable way to improve quasiparti-
cle results in extended systems.

Overall, vertices based on the local density clearly have
their limitations, arriving in part from the wave vector inde-
pendent character of Kxc. It should be fruitful to explore ver-
tices that incorporate nonlocal-density dependence and re-
flect the nonlocal character of the original self-energy
operator.

ACKNOWLEDGMENTS

The authors would like to thank Ulf von Barth, Carl-Olof
Almbladh, Peter Bokes, Arno Schindlmayr, Matthieu Ver-
straete, Steven Tear, and John Trail for helpful discussions.
This research was supported in part by the European Union
�Contract No. NMP4-CT-2004-500198, “Nanoquanta” Net-
work of Excellence�, the Spanish MEC �Project No.
FIS2004-05035-C03-03�, and the Ramón y Cajal Program
�PGG�.

*Present address: Theory of Condensed Matter Group, Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue,
Cambridge CB3 0HE, United Kingdom; ajm255@cam.ac.uk

†Present address: Materials Research Laboratory, University of
California, Santa Barbara, CA 93106-5121.

1 W. G. Aulbur, L. Jönsson, and J. W. Wilkins, Solid State Phys.
54, 1 �2000�.

2 F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237
�1998�.

3 L. Hedin and S. Lundqvist, Solid State Phys. 23, 2 �1969�.
4 L. Hedin, Phys. Rev. 139, A796 �1965�.
5 R. W. Godby, M. Schlüter, and L. J. Sham, Phys. Rev. Lett. 56,

2415 �1986�.
6 P. Rinke, A. Qteish, J. Neugebauer, C. Freysoldt, and M. Schef-

fler, New J. Phys. 7, 126 �2005�.
7 W. Nelson, P. Bokes, P. Rinke, and R. W. Godby, Phys. Rev. A

75, 032505 �2007�.
8 R. Del Sole, L. Reining, and R. W. Godby, Phys. Rev. B 49, 8024

�1994�.
9 We have modified the notation of Del Sole et al. to clarify the

precise nature of the different approximate vertices: we use
G0W0�LDA in place of GW� and G0W0

LDA in place of GWKxc.
10 M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 �1986�.
11 A. Schindlmayr and R. W. Godby, Phys. Rev. Lett. 80, 1702

�1998�.
12 F. Bechstedt, K. Tenelsen, B. Adolph, and R. Del Sole, Phys. Rev.

Lett. 78, 1528 �1997�.
13 J. E. Northrup, M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett.

59, 819 �1987�.
14 M. P. Surh, J. E. Northrup, and S. G. Louie, Phys. Rev. B 38,

5976 �1988�.
15 E. Jensen and E. W. Plummer, Phys. Rev. Lett. 55, 1912 �1985�.
16 Kenneth W.-K. Shung, B. E. Sernelius, and G. D. Mahan, Phys.

Rev. B 36, 4499 �1987�.
17 X. Zhu and A. W. Overhauser, Phys. Rev. B 33, 925 �1986�.
18 H. O. Frota and G. D. Mahan, Phys. Rev. B 45, 6243 �1992�.
19 H. Yasuhara and Y. Takada, Phys. Rev. B 43, 7200 �1991�.
20 B. S. Itchkawitz, I.-W. Lyo, and E. W. Plummer, Phys. Rev. B 41,

8075 �1990�.
21 I.-W. Lyo and E. W. Plummer, Phys. Rev. Lett. 60, 1558 �1988�.
22 Y. Takada, Phys. Rev. Lett. 87, 226402 �2001�.
23 W. Ku, A. G. Eguiluz, and E. W. Plummer, Phys. Rev. Lett. 85,

2410 �2000�.
24 H. Yasuhara, S. Yoshinaga, and M. Higuchi, Phys. Rev. Lett. 85,

2411 �2000�.

25 H. Yasuhara, S. Yoshinaga, and M. Higuchi, Phys. Rev. Lett. 83,
3250 �1999�.

26 E. L. Shirley and R. M. Martin, Phys. Rev. B 47, 15404 �1993�.
27 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 �1960�.
28 N. E. Dahlen, R. van Leeuwen, and U. von Barth, Phys. Rev. A

73, 012511 �2006�.
29 N. E. Dahlen and U. von Barth, Phys. Rev. B 69, 195102 �2004�.
30 A. Stan, N. E. Dahlen, and R. van Leeuwen, Europhys. Lett. 76,

2988 �2006�.
31 S. Verdonck, D. Van Neck, P. W. Ayers, and M. Waroquier, Phys.

Rev. A 74, 062503 �2006�.
32 G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 �1961�.
33 H. N. Rojas, R. W. Godby, and R. J. Needs, Phys. Rev. Lett. 74,

1827 �1995�.
34 P. Rinke, K. Delaney, P. García-González, and R. W. Godby,

Phys. Rev. A 70, 063201 �2004�.
35 K. Delaney, P. García-González, A. Rubio, P. Rinke, and R. W.

Godby, Phys. Rev. Lett. 93, 249701 �2004�.
36 B. Holm and F. Aryasetiawan, Phys. Rev. B 62, 4858 �2000�.
37 A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs, Phys.

Rev. E 71, 066704 �2005�.
38 C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.

Phys. 32, 186 �1960�.
39 C.-J. Huang, C. J. Umrigar, and M. P. Nightingale, J. Chem. Phys.

107, 3007 �1997�.
40 R. J. Gdanitz, J. Chem. Phys. 109, 9795 �1998�.
41 P. García-González and R. W. Godby, Phys. Rev. B 63, 075112

�2001�.
42 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 �1981�.
43 J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 45, 101

�1992�.
44 B. Holm and U. von Barth, Phys. Rev. B 57, 2108 �1998�.
45 K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst,

Phys. Rev. A 55, 1866 �1997�.
46 S. D. Bergeson, A. Balakrishnan, K. G. H. Baldwin, T. B. Luca-

torto, J. P. Marangos, T. J. McIlrath, T. R. O’Brian, S. L.
Rolston, C. J. Sansonetti, J. Wen, N. Westbrook, C. H. Cheng,
and E. E. Eyler, Phys. Rev. Lett. 80, 3475 �1998�.

47 A. E. Kramida and W. C. Martin, J. Phys. Chem. Ref. Data 26,
1185 �1997�.

48 V. Kaufman and L. Minnhagen, J. Opt. Soc. Am. 62, 92 �1972�.
49 A. Fleszar and W. Hanke, Phys. Rev. B 56, 10228 �1997�.
50 C.-O. Almbladh and A. Schindlmayr �private communication�.
51 P. Gori-Giorgi, F. Sacchetti, and G. B. Bachelet, Phys. Rev. B 61,

7353 �2000�.

MORRIS et al. PHYSICAL REVIEW B 76, 155106 �2007�

155106-8



52 G. D. Mahan and B. E. Sernelius, Phys. Rev. Lett. 62, 2718
�1989�.

53 H. J. Levinson, F. Greuter, and E. W. Plummer, Phys. Rev. B 27,
727 �1983�.

54 R. S. Crisp and S. E. Williams, Philos. Mag. 8, 1205 �1960�.
55 N. V. Smith and G. B. Fisher, Phys. Rev. B 3, 3662 �1971�.
56 H. B. Michaelson, J. Appl. Phys. 48, 4729 �1977�.
57 P. A. Serena, J. M. Soler, and N. García, Phys. Rev. B 37, 8701

�1988�.
58 M. Hindgren and C.-O. Almbladh, Phys. Rev. B 56, 12832

�1997�.
59 Andrea Marini and Angel Rubio, Phys. Rev. B 70, 081103�R�

�2004�.
60 A. Marini, R. Del Sole, and A. Rubio, Time-Dependent Density

Functional Theory, Lecture Notes in Physics Vol. 706, edited by

M. A. L. Marques, C. A. Ulrich, F. Nogueira, A. Rubio, K.
Burke, and E. K. U. Gross, �Springer, New York, 2006�, Chap.
10, pp. 173–178.

61 A. Fleszar and W. Hanke, Phys. Rev. B 71, 045207 �2005�.
62 M. L. Tiago and J. R. Chelikowsky, Phys. Rev. B 73, 205334

�2006�.
63 We compute quantities for the nonrelativistic, all-electron Hamil-

tonian.
64 Recently, Fleszar and Hanke �Ref. 61� have also used the

G0W0�LDA vertex and noted improvement in band gaps and the
energy positions relative to the valence band minimum for the
computationally difficult IIB-VI semiconductors when the
G0W0�LDA method is used in conjunction with G and W par-
tially updated through one previous iteration of Hedin’s equa-
tions.

VERTEX CORRECTIONS IN LOCALIZED AND EXTENDED… PHYSICAL REVIEW B 76, 155106 �2007�

155106-9


