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We study the effect of electron-vibron interactions on the inelastic transport properties of single-molecule
nanojunctions. We use the nonequilibrium Green’s functions technique and a model Hamiltonian to calculate
the effects of second-order diagrams [double-exchange (DX) and dressed-phonon (DPH) diagrams] on the
electron-vibration interaction and consider their effects across the full range of parameter space. The DX diagram,
corresponding to a vertex correction, introduces an effective dynamical renormalization of the electron-vibron
coupling in both the purely inelastic and the inelastic-resonant features of the inelastic electron tunneling
spectrum. The purely inelastic features correspond to an applied bias around the energy of a vibron, while the
inelastic-resonant features correspond to peaks (resonance) in the conductance. The DPH diagram affects only
the inelastic resonant features. We also discuss the circumstances in which the second-order diagrams may be
approximated in the study of more complex model systems.
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I. INTRODUCTION

Junctions consisting of a single organic molecule between
two metallic leads hold great promise for future nanoscale
devices, where their potential applications include switches,
transistors, and sensors. Experimentally, it has proved difficult
to control their production in an atomistic manner, and so
theoretical studies are crucial for a full understanding of their
behavior. It is known that inelastic effects play an important
role in the behavior of such devices,1–10 but as yet we lack a
full understanding of the processes at play that will lead to a
complete interpretation of experimental results.

In this paper, we use a model-system nanojunction includ-
ing electron-vibration coupling11–61 in order to determine, by
investigating the whole parameter space, what level of dia-
grammatic expansion is appropriate to describe the electron-
vibration interaction in such junctions. We cover the entire
parameter space, thus accounting for all the physical analogs
to our model. The parameters we can vary correspond to
the lead-molecule-lead coupling, the electron-vibron coupling
strength, and the resonance of the electronic level with the
leads’ electronic states.

In general, an organic molecule-based nanojunction is un-
likely to have its highest occupied molecular orbital (HOMO)
or lowest unoccupied molecular orbital (LUMO) levels in
alignment with the equilibrium Fermi level of the leads,
and so such a nanojunction will be dominated by what we
term the off-resonant regime with strong tunneling at low
bias. Moreover, coupling between the leads and the central
molecule is likely to be relatively weak, in the sense that
the corresponding coupling to the leads is much smaller than
the corresponding hopping integrals in the leads themselves.
Conversely, a system consisting of a nanoconstriction in a
gold wire will have electronic levels in the constriction that
are close to those of the leads, and a larger coupling between
the central region and the leads, closer to the tight-binding
hopping parameter of the leads.

This paper will distinguish between these regimes and
discuss for which physical systems diagrams beyond

the self-consistent Born approximation (SCBA)
become relevant for electron-phonon coupling. We study
this using a full nonequilibrium Green’s function (NEGF)
technique11,16,21,23,24,26,27,29–33,38,48,57 which allows us to
study all the different transport regimes in the presence
of electron-vibron interaction. Following the spirit of
many-body perturbation theory and Feynman diagrammatics,
we include the commonly used SCBA diagrams as well
as second-order diagrams in terms of the electron-vibron
interaction. A detailed description of the formalism and
the numerical implementation of the NEGF code we have
developed is given in Ref. 57. In this work we studied the
equilibrium and nonequilibrium electronic structures of the
nanojunctions in the presence of electron-vibron coupling. In
the present paper, we now give and analyze results for the full
nonequilibrium transport properties, namely, the nonlinear
I (V ) characteristics, the conductance G(V ) = dI/dV , and
especially the IETS signal d2I/dV 2 calculated with our NEGF
code.

The paper is structured as follows. In Sec. II we summarize
the key aspect of our methodology detailed in Ref. 57.
Results for the effects of the second-order diagrams on the
nonequilibrium nonlinear transport properties are presented in
Sec. III. They are separated into the features we observe for
the purely inelastic effects in the inelastic electron tunneling
spectrum (IETS) signal at bias equal to an integer multiple
of the vibron energy, and for the inelastic resonant features
related to the vibron replica of the electronic resonances. Our
conclusions are given in Sec. IV. In addition, we explain in
detail in the Appendix how one of the second-order diagrams
acts as a vertex correction to the Fock-like electron-vibron
diagram.

II. MODEL AND THEORY

A fully atomistic description of the nonequilibrium inelastic
transport properties we wish to study is, unfortunately, beyond
the reach of current ab initio methods. Instead we use a model
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system which retains the essential physics of the junction while
reducing the calculations to a tractable size. A full description
of both the model and our methodology is given in Ref. 57,
and so we review only the most salient features here.

We use the single-site single-mode model (SSSM), in which
the central molecule of the junction is represented by a single
molecular level coupled to a single vibrational mode. We
have already used this model and discussed its validity in
our previous study on the equilibrium and nonequilibrium
electronic structures of such a system coupled to two electron
reservoirs.57

The total Hamiltonian for the nanojunction is given by

Htotal = HL + HR + VLC + VCR + He
C + Hvib + He-vib. (1)

In this work, we represent the Hamiltonian of the left (L) and
right (R) leads HL,R with a noninteracting tight-binding model
with semielliptic bands, although in principle it can take any
valid form. The hopping between leads and the central region
is given by VαC = t0α(c†αd + d†cα), where t0L,R is the hopping
integral between the α = L,R lead and the central region. The
central region contains the electron-vibron interactions. We
choose that an electron couples linearly, via its density, to the
displacement of a single vibration mode. The Hamiltonian for
the central region in the SSSM model is then given by

HC = He
C + Hvib + He-vib

= ε0d
†d + h̄ω0a

†a + γ0(a† + a)d†d, (2)

where d† (d) creates (annihilates) an electron in the molecular
level ε0, which is coupled to the vibration mode of energy ω0

via the coupling constant γ0.
A detailed analysis of the formalism of the nonequilibrium

transport properties from NEGF and for an interacting system
is provided in Ref. 58. The current Iα passing through each lead
α is expressed in terms of two time Green’s functions.62 It is
transformed into frequency representation for the steady-state
regime to give

Iα = 2e

h̄

∫
dω

2π
Tr{�<

α (ω) G>(ω) − �>
α (ω) G<(ω)}. (3)

We vary the applied bias by moving the chemical potentials of
the left and right leads. With the equilibrium Fermi energies
μ

eq
L = μ

eq
R = μeq = 0, we introduce a quantity ηV such that

μL = μeq + ηV eV and μR = μeq − (1 − ηV )eV following
Ref. 63. In this way we can create several forms for the
potential drop across the junction. By setting ηV = 1, for
example, we create an asymmetric drop whereby μR remains
constant while μL is changed, whereas ηV = 0.5 gives a
symmetric potential drop where μL rises (lowers) as μR lowers
(rises) by the same amount.

It now remains to construct our nonequilibrium Green’s
functions (details given in Ref. 57). The retarded and advanced
Green’s functions are calculated using a Dyson equation

Gr,a = g
r,a
C + g

r,a
C �r,aGr,a, (4)

while the greater (G>) and lesser (G<) Green’s functions are
obtained from a quantum kinetic equation with the form

G>,< = (1 + Gr�r )g>,<
C (1 + �aGa) + Gr�>,<Ga, (5)

FIG. 1. The Fock-like (F) and Hartree-like (H) diagrams.

where gC is the noninteracting Green’s function of the isolated
central region.

In this paper we consider both first- and second-order
contributions to the electron-vibron coupling. The first-order
diagrams are shown in Fig. 1, and, if calculated self-
consistently, equate to the commonly used self-consistent Born
approximation (SCBA). We also make use of the two second-
order diagrams, those which involve two phonon excitations
(Fig. 2). The first of these is similar in structure to the GW

skeleton for electron-electron interactions, and consists of a
Fock-like diagram where the phonon is dressed by a single
electron-hole bubble (hence the appellation DPH for dressed-
phonon diagram, Fig. 2, left-hand side). The second, which
we call the double-exchange (DX) diagram (Fig. 2, right-hand
side), includes two phonons simultaneously, with the second
being emitted before the first is reabsorbed. The DX diagram
is part of the skeleton diagrams corresponding to vertex
corrections. We use these diagrams to construct expressions for
the electron-vibron self-energy57 as the (total or partial) sum
of each diagram: �total

e-vib = �F
e-vib + �H

e-vib + �DPH
e-vib + �DX

e-vib.
Note that in order to handle numerically sharply peaked

functions or strongly discontinuous functions, we have found
it necessary to include a very small but finite imaginary part
in our expression for the bare vibron Green’s function.57 This
also allows us to perform calculations with a smaller number
of ω-grid points, as long as our imaginary part η in the bare
vibron Green’s function is approximately two to three times the
ω-grid spacing. We have already discussed in detail the effects
of the corresponding extra broadening on the line shape of the
spectral functions and on the values of the linear conductance
in Ref. 57.

III. RESULTS

In this section we present the effects of the second-order
diagrams on the full nonequilibrium transport properties of the
nanojunction in the presence of electron-vibron coupling. Cal-
culations of the Green’s functions are performed with different
levels of approximation for the electron-vibron self-energies
(Figs. 1 and 2). Fully self-consistent calculations using the

FIG. 2. The dressed-phonon (DPH) and double-exchange (DX)
diagrams.
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first-order diagrams are annotated SCBA, and those using one
or both second-order diagrams are annotated SC(BA + DX),
SC(BA + DPH), or SC(BA + DX + DPH) as appropriate. In
addition, we have performed non-self-consistent second-order
corrections, i.e., by using the SCBA Green’s functions to
calculate the second-order diagrams, we then determine the
different Green’s functions without full self-consistency. These
calculations are annotated SCBA + DX or SCBA + DPH.

The inelastic properties of the system are present in the
current I (V ) but are better represented by the second derivative
of the current d2I/dV 2 as it is the signal that is directly
measured experimentally in the form of the IETS.1

The IETS curves present features, peaks, or dips23,58 at
biases corresponding to the energy of a specific excitation,
in our case to the energy of one or several excitations of the
vibration mode. The peak feature is commonly associated with
the opening of a new inelastic channel for the conductance
of nanojunctions in the off-resonant regime, i.e., when the
electronic level ε0 is sufficiently far from the equilibrium
Fermi level. In the case of the resonant transport regime (when
ε0 is close to μeq), a dip feature is obtained in the IETS. It
is associated with electron-vibron backscattering effects and a
decrease in the conductance at the threshold bias. Furthermore,
being the derivative of the conductance, the IETS curves
also present features at biases corresponding to peaks in the
conductance. We have found57 that in order to get a better
aspect ratio for the IETS features corresponding to vibron
excitations, it is more convenient to normalize the IETS curves
by the dynamical conductance, i.e., [d2I/dV 2]/[dI/dV ] =
d/dV ln G(V ) as in Refs. 1,3–5,7,8,10.

We divide our results into two sections: the first for
purely inelastic features, and the second for inelastic features
associated with the electron resonance effects. The first
category corresponds to features observed in the IETS signal
at bias equal to an integer multiple of the vibron energy
nω0, i.e., a tunneling electron excites n vibrons. The second
category corresponds to inelastic resonant tunneling via the
vibron replica associated with the main electronic resonance
at ε̃0 ∼ ε0 − γ 2

0 /ω0, and hence are observed in the IETS
signal for biases V ∼ ε̃0 ± nω0. We will see below that the
second-order diagrams have different effects on the IETS
features depending upon their correspondence to one of these
two categories.

A. Purely inelastic features

We consider first of all the off-resonant regime. In this limit
the IETS features associated with inelastic resonant tunneling
are sufficiently far (or sufficiently small for the higher vibron
replica) from the inelastic feature at V = ω0. We can thus
avoid a superposition of the two different kinds of features.

Results are presented in Fig. 3 for different electron-vibron
couplings and for both symmetric and asymmetric potential
drops. We note that, as would be expected intuitively, the size of
the feature increases with the electron-phonon coupling γ0—in
fact the height with respect to the baseline is proportional
to γ 2

0 . As t0L,R is increased, the IETS signal decreases in
overall magnitude, although the feature at ω0 itself remains
clear (Fig. 3 inset).
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FIG. 3. (Color online) The inelastic peak in the IETS around
V = ω0 = 0.3 for an asymmetric potential drop (ηV = 1.0, left-
hand panel) and a symmetric potential drop (ηV = 0.5, right-hand
panel). Results are shown for three different lead-molecule coupling
parameters t0 = t0L,R (black, red, and blue lines), and for two
different electron-vibron couplings (medium γ0 = 0.195, solid lines
and triangles; strong γ0 = 0.25, dashed lines and circles). Lines
represent calculations at the SCBA level, symbols SC(BA + DPH),
from which we can see there is no distinguishable contribution to the
inelastic peak from DPH for any parameter set. The other parameters
are ε0 = +1.5, ω0 = 0.3, η = 0.030.

In the off-resonant regime, we do not find any difference to
the curves when the second-order DPH diagram is included.
Possible reasons for this are discussed in Sec. III B.

We also note that the results are dependent on the symmetry
of the potential drops at the left- and right-hand contacts.
As shown in the separate panels of Fig. 3, the curves for
symmetric potential drops have a much lower baseline than for
the asymmetric potential drops, although the inelastic features
have the same line shape, position, and magnitude (see Figs. 3,
4, and 7). This is because (for positive bias) in the asymmetric
case, μL is rising bias while μR is kept fixed at its equilibrium
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FIG. 4. (Color online) Normalized IETS signal for the inelastic
peak at ω0 = 0.35. Results for SCBA and SC(BA + DPH) are
virtually identical. However, including the DX diagram, either self-
consistently (solid red line) or non-self-consistently (red diamonds)
raises the amplitude of the peak. This effect can be approximated
by an SCBA calculation done with a larger γ0 (black triangles),
indicating that DX generates an effective renormalization of γ0. The
other parameters are ε0 = +1.5, ω0 = 0.35, t0L,R = 0.10, η = 0.039,
ηV = 0.5.

085433-3



L. K. DASH, H. NESS, AND R. W. GODBY PHYSICAL REVIEW B 84, 085433 (2011)

value. Thus μL is approaching the electron resonance twice
as fast as in the symmetric case, where μL rises at the same
rate as μR falls. The symmetric case therefore contains much
less effect from the tail of the main electron resonance, and
allows us to further isolate the purely inelastic part of the IETS
signal.

We now consider the effect of the double-exchange diagram
(Fig. 2, right-hand side) on the inelastic peak at ω0. Calculation
of �DX

e-vib is extremely computationally intensive, as it can be
reduced neither to a simple convolution product, nor even
to a simple double-convolution product.57 Calculations for the
integration in the energy representation of the Green’ functions
and the self-energies scale as the cube of the number Nω of
points in the energy grid.57 Moreover, as the finite imaginary
part η we have included in the vibron Green’s function causes
extra broadening, if taken too large it washes out much of
the effect of the DX diagram. In order to decrease η we
need to increase the number of grid points, and thus, even
for our minimal model, a fully self-consistent calculation
of the double-exchange diagram becomes intractable with
Nω > 2000. Hence for the DX calculations, we usually work
with Nω ∼ 1500–2000, giving η ∼ 0.03–0.04 for the total
spectral width considered in our calculations.

We work around this by calculating the effects of the DX
diagram both in a self-consistent manner SC(BA + DX) or
non-self-consistenly as a second-order correction to the SCBA
result.

The results of this are plotted in Fig. 4. We see that the effect
of the DX diagram is to both increase the height of the feature
and to raise its baseline. For the set of parameters shown the
self-consistency in the DX diagram calculations is not crucial.

We see that the effect of DX can also be reproduced with
a SCBA calculation in which we increase the value of γ0.
Therefore, the DX diagram has the effect of renormalizing
γ0 as it is part of the skeleton family of vertex correction, as
shown in Fig. 5. We can thus approximate the effect of the
DX diagram in the IETS with a Fock-like diagram with one
renormalized vertex γ̃0.

The amplitude of the peak at ω0, instead of varying as
γ 2

0 , therefore now depends on γ̃0γ0, and so we can define an
effective electron-vibron coupling constant γ̄0 = √

γ̃0γ0, with
γ̄0 > γ0. This allows us to make a more quantitative analysis
of γ̃0 by fitting the SCBA + DX curve to a SCBA curve with
electron-vibron coupling γ̄0, as shown in Fig. 4.

Furthermore, we can study how γ̃0 and γ0 are correlated
by performing a series of calculations for different values of
the parameters γ0 and ω0, and then fitting the SCBA + DX
results to those from SCBA calculations. The results of this
are shown in Fig. 6, from which we can see that, to a
first approximation, the DX diagram consistently raises the

FIG. 5. Second-order double-exchange (DX) diagram reexpres-
sion as a vertex correction to the Fock-like diagram, with a
renormalized γ0 → γ̃0 vertex.
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FIG. 6. (Color online) Effective static renormalized electron-
vibron coupling parameter γ̄0 as a function of the nominal coupling
parameter γ0, from a fit of several sets of data comparing SCBA + DX
curves to SCBA (as in Fig. 4). The data for all three values of ω0 lie
on a straight line with slope 1.03 (the straight line with slope 1 is
shown for comparison), implying that the vertex correction increases
the effective electron-vibron coupling by 3%.

effective electron-vibron interaction by ∼3% within the range
of parameters we used.

However, we would like to point out that although the
apparent effects of the DX diagram on the IETS signal is to
renormalize the coupling constant γ0, the reality is much more
subtle. In the Appendix we discuss in detail the renormalization
effect of the DX diagram in terms of vertex corrections,
and we show that such vertex corrections do not simply
correspond to a mapping of the SSSM Hamiltonian onto
a similar Hamiltonian with a static renormalization of the
electron-vibron coupling constant, i.e., γ0 → γ̄0 = γ0 + |	|.
Rather, the vertex correction actually generates a dynamical
renormalization of the electron-vibron coupling constant, i.e.,
γ0 → γ̄0(ω,ω′).

This can be seen more clearly by considering SCBA
calculations, for different values of the electron-vibron cou-
pling parameter, and checking which of such calculations
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FIG. 7. (Color online) Normalized IETS signal for biases around
ω0 showing different SCBA fits for the renormalized electron-vibron
coupling. The SCBA (dashed line) and SC(BA + DX) (solid red
line) are shown for γ0 = 0.34, together with SCBA calculations for
γ0 = 0.35 and 0.3525. Although these provide a good approximation,
neither gives an exact fit to the line shape of the SC(BA + DX)
curve. The other parameters are ε0 = +1.5, γ0 = 0.34, ω0 = 0.35,
t0L,R = 0.10, η = 0.039, ηV = 1.0.
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FIG. 8. (Color online) Normalized IETS signal for biases around
2ω0 for different levels of approximation: The SCBA (solid black
line) and SC(BA + DPH) (red circles) are virtually identical, as for
the feature at ω0. A SCBA calculation approximating the effect of
DX is also included (dashed line). A straight baseline is included for
clarity. The other parameters are ε0 = +1.5, γ0 = 0.335, ω0 = 0.35,
t0L,R = 0.10, η = 0.009, ηV = 0.5.

correspond the best to a SC(BA + DX) calculation. The result
is shown in Fig. 7. Although the difference between the best
SCBA fits and the SC(BA + DX) are not large, it is quite clear
that a renormalized SCBA calculation does not provide exactly
the same line shape as a full SC(BA + DX) calculation for all
the range of biases V around the inelastic peak at ω0.

Finally we expect to see a peak feature at V ∼ 2ω0 in the
IETS for the off-resonant transport regime. This peak feature is
the two-vibration excitation equivalent of the feature observed
at V = ω0. Since this a higher-order process, the amplitude
of the feature should be γ 2

0 times smaller than the feature
at V = ω0. This feature has a rather small amplitude for all
the electron-vibron coupling constants we have considered
in this paper since γ0 < 1. An example of a closeup of the
IETS feature at V ∼ 2ω0 is given in Fig. 8. We find that the
amplitude of the peak with respect to the linear baseline is
indeed approximately γ 2

0 = 0.112 (one order of magnitude)
smaller than the corresponding amplitude of the peak at V =
ω0 (shown in Fig. 4). Once more we find that the effects of the
DPH diagram are negligible for this part of the IETS signal. In
Fig. 8 we also include the results of a SCBA calculation for a
larger coupling γ0 = 0.34 which mimics the renormalization
effects of the DX diagram as discussion above.

B. Inelastic resonant features

The main electron-resonance peak occurs at the polaron-
shifted value of ε̃0 ∼ ε0 − γ 2

0 /ω0, and consists of a peak-dip
feature in the IETS, as it corresponds to a resonant peak
feature in the conductance. With no electron-phonon coupling
(γ0 = 0), the IETS curve has no features other than the one
corresponding to the resonant transmission in the conductance
at V = ε0. Once the electron-phonon coupling is turned on,
phonon side-band peaks emerge in the spectral function at
energies ω = ε̃0 ± nω0. The +nω0 features correspond to
phonon emission (vibration excitation) by an electron, while
the −nω0 features correspond to phonon-emission by a hole.
In the IETS, they appear as peak-dip features (derivatives of
an inelastic resonant peak in the conductance) with amplitude
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FIG. 9. (Color online) Normalized IETS signal. Top: Inelastic
resonant features for different values of γ0. With no electron-vibron
coupling (solid black line), there is a single feature at ε0 = 0.7. With
electron-vibron coupling (red and blue dashed lines), the main peak
moves to ε̃0 ∼ ε0 − γ 2

0 /ω0 and side-band peaks appear. The inset
shows a tiny feature at ε̃0 − ω0 that only occurs for t0 � 0.1 in SCBA
calculations but reappears for all t0 once DPH is included. Bottom:
The inelastic resonant features for various ε0 at γ0 = 0.15 for both
SCBA (lines) and SC(BA + DPH) (symbols) calculations, showing
the increasing influence of DPH in the resonant transport regime
ε0 → 0. The other parameters are t0 = 0.2, ω0 = 0.3, ηV = 1.0,
η = 0.03.

decreasing as the bias is further increased. At lower biases,
however, there are no features at ω = ε̃0 − nω0 at the SCBA
level except for very low values of the coupling to the leads
(t0L,R � 0.1, Fig. 9, top inset).

Including the DPH diagram, however, introduces a small
peak-dip features at ε̃0 − ω0 just below the main peak-dip
feature at V ∼ ε̃0 in the IETS, as shown in Fig. 9. The DPH
diagram also has a strong influence on the line shape of the
other phonon side-band peaks above ε̃0, increasingly so as ε0

is brought within range of the equilibrium chemical potentials
(i.e., ε̃0 → 0 in Fig. 9, bottom).

We now consider the combined effects of the DPH diagram
as well as of the DX diagram on the specific case of the
IETS feature at ε̃0 − ω0. This is shown in Fig. 10. The
DPH diagram increases strongly the peak-dip feature (at
V ∼ ε̃0 − ω0) obtained from SCBA calculations at medium
and strong electron-vibron coupling. Note here the importance
of the self-consistency in the calculations: The second-order
DPH diagram calculated as a second-order correction to SCBA
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FIG. 10. (Color online) Normalized IETS signal for biases around
the first vibration side-band peak V ∼ ε̃0 − ω0 = 1.19–0.4 ∼ 0.8.
Calculations performed for different approximations for the electron-
vibron self-energy: (Left-hand panel) SCBA (black solid line), SCBA
plus second-order DPH correction (dashed red line), and SC(BA +
DPH) (dotted-dashed blue line); (right-hand panel): SCBA (solid
black line), SC(BA + DX) (dashed red line), and SC(BA + DX +
DPH) (dotted-dashed blue line). The other parameters are ε0 = +1.5,
γ0 = 0.35, ω0 = 0.4, t0L,R = 0.09, η = 0.039, ηV = 1.

(Fig. 10, left-hand side) gives a completely wrong feature in
the IETS.

Interestingly, the self-consistent calculation with the DX
diagram seems to give a similar feature to that observed in
the SCBA calculations, but slightly shifted toward lower bias
(Fig. 10, right-hand side). This is completely consistent with
the renormalization effects of the electron-vibron coupling
by the DX diagram as discussed in the previous section.
Indeed, the DX diagram renormalizes the coupling γ0 toward
a higher value γ̄0. Consequently the renormalization of the
molecular level by −γ̄ 2

0 /ω0 is more important than for SCBA
calculations, and thus the feature is moved toward lower
bias.

The calculations performed with both DX and DPH
diagrams (Fig. 10, right-hand side) generate a hybrid feature
in the IETS in comparison to individual calculations with the
second-order diagrams. However, the new IETS is not simply
obtained by a linear superposition of the individual effects of
the DPH and DX diagrams.

It might at first seem strange that the DPH self-energy
is negligible at V = nω0, where one might expect it to be
influential, but that it has a significant effect at biases � ε̃0.
While this is to some extent related to the strength of the
electron-vibron coupling, there is another, more important,
underlying cause. The DPH diagram involves an electron-
hole bubble, and so for this diagram to become relevant,
simultaneous electron and hole states must be available. This
is not the case when the spectral functions of the coupled
electron-vibron system are mostly empty or mostly filled.
When the bias is significantly low and both Fermi levels μL,R

are below the electron resonance level, these excitations are
inaccessible and so there are no effects from the DPH diagram.
Once the bias is increased to within range of ε̃0, or ε̃0 ± nω0,
however, these electron-hole states become accessible and the
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FIG. 11. (Color online) Maps generated from multiple calcula-
tions of SCBA and SC(DA + DPH) IET spectra for the off-resonant
(left-hand panel) and resonant (right-hand panel) regimes showing
the normalized absolute ratio of the SCBA and SC(BA + DPH)
spectra |1 − IETSSC(BA+DPH)

IETSSCBA
|. It gives a near-zero result (blue and green

areas) when the two calculations give the same spectrum, and a
positive number [red areas, i.e., bottom right-hand corner for SCBA
and bottom left-hand corner for SC(BA + DPH)] where there is a
substantial difference between the two. The other parameters are
ε0 = 1.5/0.0 (off-resonant/resonant), γ0 = 0.195, ω0 = 0.3.

DPH diagram becomes influential (unless the spectral function
is mostly filled). This is also borne out by the increasing
contribution from DPH to the line shape of the phonon
side-band peaks as the electron level ε0 is decreased, moving
DPH’s sphere of influence to lower and lower biases (see the
lower panel in Fig. 9).

C. Summary over the entire parameter range

Having examined the role of the second-order diagrams in
detail for characteristic selected sets of parameters, we now
show results across the entire parameter range. In order to
present this in a concise manner, we have compiled maps
of our IETS results comparing SCBA calculations to those
with SC(BA + DPH), indicating in which regimes the DPH
self-energy has a significant effect. For the off-resonant regime
(Fig. 11, left-hand side), we can see that the greatest effect of
DPH is apparent at higher bias (i.e., approaching the electron
resonance ε0) and when the lead-molecule-lead coupling is
small. For the resonant case, however, we can see that the
DPH self-energy only gives a non-negligible contribution in
the region of parameter space where the coupling to the leads
is small, and at low bias.

This has potential implications for real molecular junctions.
Consider a junction which has its dominant molecular levels
far from the equilibrium Fermi levels of the leads. At suffi-
ciently high bias, the DPH self-energy will have a significant
contribution to the inelastic spectra. This could occur in the
case of a junction formed from an organic molecule if the
electronic level of the molecule is within range of the intended
operational bias of the junction. If, however, the dominant
molecular electronic level is close to the leads’ Fermi levels,
and the coupling to the leads is large (as would be the case, for
example, in a gold nanoconstriction) then DPH will not give a
significant contribution at any applied bias.

IV. CONCLUSIONS

By using the nonequilibrium Green’s functions technique,
we have studied the effect of electron-vibron interaction on
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the inelastic transport properties of single-molecule nanojunc-
tions for a model system. We have included not only the
first-order diagrams (BA) but also the second-order diagrams
[double-exchange (DX) and dressed-phonon (DPH) diagrams]
for the electron-vibration interaction. We have calculated the
inelastic electron tunneling spectrum (IETS) across the full
range of parameters available to our model. The effects of
the second-order DX and DPH diagrams are different and
affect different features of the IETS signal. The effects of
these diagrams are generally less visible in the integrated
quantities, such as the current or the derivated IETS signal,
than in the spectral functions.57 However, their effects are
non-negligible, and are important for the full understanding
of the spectroscopic information conveyed by the IETS
signal.

The effect of the dressed-phonon (DPH) diagram is more
important in the bias regions where one of the leads’ chemical
potentials begins to impinge upon the electron resonance or
one of its vibron replica (i.e., for resonant inelastic features).
Its effect is reduced both by increasing the lead-molecule-
lead coupling and/or reducing the electron-vibron interaction.
The renormalization of the vibron propagator (DPH) has
been shown to be strongly dependent on the self-consistency
of the calculations. It would be interesting now to study
the effects of the full series of the electron-hole bubble
on the renormalized vibron propagator (i.e., full GW -like
diagram).

The double-exchange diagram (DX) affects all the features
in the IETS signal (i.e., resonant inelastic features and purely
inelastic features at V ∼ ω0). The corrections are small in the
weak-to-medium electron-vibron coupling because they are of
the order of O(γ 4

0 ). However, we have shown, numerically and
analytically, that the effect of DX is similar to a dynamical
renormalization of one vertex in the Fock-like diagram.
More interestingly, the complex form of the nonequilibrium
dynamical renormalized electron-vibron coupling γ̃0(ω,ω′)
we have derived analytically can be adequately replaced
in our IETS calculations by a single static renormalized
parameter γ̄0. This important result leads us to believe that
the second-order DX calculations, which are extremely costly
in computing time even for our model system, can be incor-
porated in calculations for realistic systems by an appropriate
renormalization of the vertex in a low-computing-cost SCBA
calculation.
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APPENDIX: NONEQUILIBRIUM VERTEX CORRECTIONS
TO THE FOCK DIAGRAM

In Appendix A of Ref. 57 we have given all the details for
the derivations of the first- and second-order electron-vibron
self-energies. In this Appendix we show how the second-order
double-exchange (DX) diagram can be recast in an effective
first-order Fock-like diagram with a renormalized vertex.

We recall that for the SSSM model, the Fock and DX self-
energies defined on the Keldysh contour CK are given by

�F
e-vib(τ1,τ2) = iγ 2

0 D0(τ1,τ2) G(τ1,τ2) (A1)

and

�DX
e-vib(τ1,τ2) = −γ 4

0

3

∫
CK

dτ3 dτ4 G(τ1,τ3)D0(τ1,τ4)

×G(τ3,τ4)D0(τ3,τ2)G(τ4,τ2). (A2)

The DX self-energy can be rewritten as an effective Fock-
like diagram after introducing a renormalized electron-vibron
coupling parameter γ̃0(τ3,τ4; τ2) and the vertex function
�(τ3,τ4; τ2):

�DX
e-vib(τ1,τ2) = iγ0

∫
CK

dτ3 dτ4 γ̃0(τ3,τ4; τ2)

×D0(τ1,τ4)G(τ1,τ3), (A3)

with

γ̃0(τ3,τ4; τ2) = iγ 3
0

3
�(τ3,τ4; τ2), (A4)

and where the vertex function is given by

�(τ3,τ4; τ2) = G(τ3,τ4)D0(τ3,τ2)G(τ4,τ2). (A5)

The above expression for the vertex function is compat-
ible with the second-order expansion of the electron-vibron
interaction. A generalization of the vertex function (see the
Fock-like diagram in Fig. 5) to all orders of the interaction
is possible, though beyond the scope of the present paper.
Note that at the lowest order, the renormalized electron-
vibron coupling parameter would be given by γ̃0(τ3,τ4; τ2) =
γ0�

(0)(τ3,τ4; τ2) with �(0)(τ3,τ4; τ2) = δ(τ3 − τ2)δ(τ4 − τ2).
Hence Eq. (A2) would simply be transformed Eq. (A1) as
expected.

Using the rules of analytical continuation on the real-time
branches given in Appendix A of Ref. 57, we find the different
components of the self-energies. Then after taking the Fourier
transform of the different quantities in the steady-state limit,
i.e., X(t,t ′) = X(t − t ′), we find the following expression
for the different components of the energy-dependent self-
energies:

�
F,ζ1ζ2
e-vib (ω) = iγ 2

0

∫
dv

2π
Gζ1ζ2 (v)Dζ1ζ2

0 (ω − v) (A6)

and

�
DX,ζ1ζ2
e-vib (ω) = iγ0

∫
dv

2π

∑
ζ3,ζ4

ζ3ζ4G
ζ1ζ3 (v)Dζ1ζ4

0 (ω − v)

× γ̃
ζ3ζ4ζ2
0 (ω,v), (A7)

where the nonequilibrium dynamical renormalized electron-
vibron coupling is given by

γ̃
ζ3ζ4ζ2
0 (ω,v) = iγ 3

0

3

∫
du

2π
Gζ3ζ4 (v − u)

×D
ζ3ζ2
0 (u)Gζ4ζ2 (ω − u). (A8)
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[The index ζi = ± labels the branch of the Keldysh time-
loop contour CK and are related to the usual convention: time-
ordered (t = ++), anti-time-ordered (t̃ = −−), greater (>=
−+), and lesser (<= +−) components.]

Because all the quantities are originally defined on
CK and because the vertex function is a three-point
(three times) function, the nonequilibrium dynamical renor-
malized electron-vibron coupling is a complex function
of three indices ζi and of two energy variables. Such
a dynamical renormalization (including nonequilibrium

conditions) is much more complicated than a simple static
renormalization of the electron-vibron constant coupling
γ0 → γ̃0.

In our analysis of the IETS signal in the off-resonant
transport regime, we try to keep the interpretation of the results
as simple as possible, and we show that the renormalization
of the IETS signal due to the DX diagram can be fairly
well approximated by a simple static renormalization of the
coupling constant γ0 for applied bias around the vibration
frequency V ∼ ω0 ± 20%.
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