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Intrinsic exchange-correlation magnetic fields in exact current density functional theory
for degenerate systems

J. D. Ramsden and R. W. Godby
Department of Physics, University of York and European Theoretical Spectroscopy Facility (ETSF), Heslington,

York YO10 5DD, United Kingdom
(Received 9 April 2013; published 8 November 2013)

We calculate the exact Kohn-Sham (KS) scalar and vector potentials that reproduce, within current density
functional theory, the steady-state density and current density corresponding to an electron quasiparticle added
to the ground state of a model quantum wire. Our results show that, even in the absence of an external magnetic
field, a KS description of a steady-state system in general requires a nonzero exchange-correlation magnetic field
that is purely mechanical in origin. The KS paramagnetic current density is not, in general, that of the interacting
system in any gauge.
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I. INTRODUCTION

Time-dependent density functional theory1 (TDDFT) in the
Kohn-Sham (KS) scheme2 is a powerful and, in principle, exact
tool for predicting the dynamics of nonequilibrium systems
subject to time-dependent scalar potentials. The success of the
theory lies in the casting of properties of interacting N -particle
systems in terms of systems of N noninteracting (Kohn-Sham)
electrons, and the unique determination of KS potentials by
the time-dependent charge density and the initial state. In the
ground-state limit, the theory approaches the standard density
functional theory (DFT) of Hohenberg, Kohn, and Sham.3,4

In the presence of time-dependent vector potentials, one
needs to know how the potentials couple to the time-dependent
current density. The current density can be decomposed into
two parts: the longitudinal part obeying ∇ × jL(r,t) = 0, and
the transverse part obeying ∇ · jT(r,t) = 0. The longitudinal
part is given entirely by the time-dependent density via the
continuity equation

∂

∂t
n(r,t) + ∇ · jL(r,t) = 0. (1)

The transverse part of the current is not given by the continuity
equation and must be calculated directly from the time-
dependent wave function. The complete current density is
given by

j(r,t) = jp(r,t) + A(r,t)n(r,t), (2)

where

jp(r,t) = 〈�(t)| ĵp(r) |�(t)〉 (3)

is the paramagnetic current density operator, A(r,t) is the
time-dependent external vector potential, n(r,t) is the time-
dependent density, and |�(t)〉 is the time-dependent many-
body wave function.

It has been shown5 that, even in the absence of external vec-
tor potentials in the time-dependent regime, the corresponding
KS system will generally have an exchange-correlation (XC)
vector potential that couples to the full current density. As
such, one needs a time-dependent current density functional
theory (TDCDFT) to fully describe the dynamics of electronic
systems. Such a theory exists6 and is representable in a KS
scheme7 in which the KS potentials are unique functionals

of the initial state and the time-dependent physical current
density.

For ground-state systems, two CDFTs based on the physical
current have been proposed8,9 but neither fulfill the require-
ments of uniqueness and amenability to a KS minimiza-
tion scheme.10,11 The most complete theory of ground-state
current-carrying systems subject to external scalar and vector
potentials remains the current and spin density functional
theory (CSDFT) of Vignale and Rasolt (VR)12 which takes as
its basic variables the ground-state charge and paramagnetic
current densities (n,jp). It has been shown that the ground-state
wave function, and therefore the universal functional

F [n,jp] = 〈�|T̂ + Û |�〉, (4)

is uniquely defined by these quantities. However, at present
there exists no current density functional theory (CDFT) for
ground-state systems to which TDCDFT approaches in the
steady, ground-state limit.

In the KS scheme for CSDFT, one then constructs a system
of noninteracting electrons having the same charge and param-
agnetic current density as the interacting system it represents.
There are two problematic aspects of such an approach. First,
the KS system will typically not have the same physical current
as the system it represents and, as such, is not approached by
TDCDFT in the ground-state limit. Different schemes for the
construction of KS systems is the primary focus of this work.

Second, and also very pertinent to this study, the KS
potentials are not determined by the two basic densities
(in contrast to other KS-DFTs). One area of research in
DFT that is quickly growing in activity is the calculation
of exact KS systems from exactly solvable systems for the
purpose of advising the construction of better functionals,
including the exact KS potentials required to reproduce the
analytic two-particle wave function solutions of the time-
dependent Schrödinger equation,13,14 the exact potentials for
time-dependent Hubbard chains,15 and the time-dependent
potentials required to model a nonequilibrium quasiparticle
(QP) described by a nonlocal model self-energy operator.16

Here, we take a related approach to the steady-state regime.
We consider a three-dimensional steady-state infinite wire
whose QPs are, once again, taken to be described by the
model self-energy operator employed in Ref. 16. The systems
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with which we concern ourselves are those in which the N

ground-state electrons fill the valence band together with the
standing state at the bottom of the conduction band, yielding a
convenient nondegenerate ground state of zero current density.
The (N + 1)th electron is a QP added to one of the next-lowest-
energy, degenerate, current-carrying Bloch states. As such, the
system approximates a quantum wire bridging two electron
reservoirs held at slightly different chemical potentials.

Degenerate systems (for which the DFT and VR existence
proofs are not intended to hold) may have a current even in the
absence of an external vector potential, making an interesting
study. The external scalar potential of a system subject to no
external vector potential is uniquely determined by n(r) alone
(or, more accurately, the density ensemble of all degenerate
states17) and thus is amenable to description by DFT. However,
the ground-state wave function is uniquely defined by (n,jp)
together, as in VR theory, and thus the system is also amenable
to study within current density functional theory (CDFT) for
spinless systems. A key question is if and how the exact
KS schemes differ between DFT, the CSDFT of Vignale and
Rasolt, and a CDFT wherein the KS and interacting systems
share the same physical current.

A second question, central to the study in this paper,
concerns the construction of KS systems. Having chosen the
basic variables that characterize a many-electron system, it
does not necessarily follow that the KS representation will have
the same values of other variables as the interacting system,
which is particularly important if those other variables are
measurable properties of the system. In particular, in order
to have a bearing on the TDCDFT, it is necessary that the
physical current density be reproduced by the KS system at
all times. We investigate the implications of different rules for
constructing current-carrying KS systems.

II. THE QUASIPARTICLE CURRENT DENSITY

The wave equation governing the added QP is (in atomic
units as throughout)[

−1

2
∇2 + vext(r) + vH(r) − EQP

]
ψQP(r)

+
∫

d3r′�(r,r′)ψQP(r′) = 0, (5)

where EQP is the quasiparticle energy, vext(r) the external po-
tential to which the entire system is subject, vH(r) the Hartree
potential, and � the self-energy operator. Since the QP is
to be added to the lowest-energy unoccupied state, the QP
lifetime is expected to be infinite and therefore the self-energy

real. Generally the self-energy is an energy-dependent opera-
tor; however, it has been shown18 that this energy dependence
yields rather small quantitative changes to the band structure
in ground-state semiconductors and as such is not expected
to give rise to any qualitatively different features in the
corresponding KS potential. As such, we take the self-energy
to be nonlocal but energy independent and Hermitian.

The electrons are confined to the wire by the scalar potential

vext + vH = Hr6 (6)

in cylindrical polar coordinates. Thus, in the ground state, the
external and Hartree potentials due to the underlying lattice
are assumed to approximately cancel. (In reality, there will
be some periodic variation in vext + vH in the z direction.
However, this contribution will be the same in both the QP and
KS descriptions, and, since we are interested in the differences
between the two, such a term can be safely neglected without
altering the physics being addressed.)

The spin- and current-independent self-energy operator
employed19 has been shown to approximate the GW self-
energy of nearly-free electronic materials18 and is of the form

�(r,r′) = f (z) + f (z′)
2

g(|r − r′|) (7)

where g(|r − r′|) = exp( − (|r − r′|/w)2)/
√

πw introduces
the nonlocal operation of the self-energy on the quasiparticle
wave function, while f (z) = −F0 [1 − cos(2πz/a)] imposes
the periodicity along the wire of the underlying crystal lattice.
As before, we choose a = 4 a.u. and F0 = 4.1 eV. The
parameter w is chosen as 0.5 a.u. to approximate the Wigner-
Seitz radius rs = (3n/4π )1/3 on the axis of the nanowire. These
parameters approximately model a one-atom-thick silicon
nanowire. For the confining potential, H = 3 eV a.u.−6 ensures
that the charge and current density go to zero smoothly at the
edge of the wire and that all occupied electron states lie within
the first subband.

We sample the band structure at the �-point for a system
of length Lz = 10a, thus the quasiparticle is normalized to
a supercell of 10 unit cells with each unit cell contributing
one spinless electron to the ground-state charge density, plus
one additional electron added to the standing wave state at
the bottom of the conduction band. The QP is added to the
lowest right-going unoccupied eigenstate of the Hamiltonian,
yielding a total of 12 electrons per supercell.

The divergence of the QP current density is given by the
continuity equation and the time-dependent form of Eq. (5)
(EQP → i∂t ):

∇ · j(r,t) = − ∂

∂t
n(r,t) = iψ∗

QP(r,t)
[
−1

2
∇2ψQP(r,t) +

∫
dr′�(r,r′)ψQP(r′,t)

]
+ c.c.

= ∇ · j0(r,t) + 2Re
∫

dr′iψ∗
QP(r,t)�(r,r′)ψQP(r′,t), (8)

where j0(r,t) = 〈ψQP(t)| ĵp(r) |ψQP(t)〉. Choosing our axes such that the current density is in the positive z direction gives a
steady-state QP current density of

j(r) = j0(r) − 2
∫ z

−∞
dz′

∫
dr′′Im ψ∗

QP(r′)�(r′,r′′)ψQP(r′′). (9)
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(Note that the paramagnetic current operator acting on the
QP wave function does not generally give the paramagnetic
current density of the many-body system.)

One may note that the second term in Eq. (9) is zero for
the homogeneous electron gas (HEG) for a real-valued and
spherically symmetric self-energy operator. As such, the QP
current would have no explicit dependence on the nonlocal
range of the operator, as one would expect since the QP wave
function varies spatially only in its phase. Thus exact KS-DFT
should generally be able to reproduce the current-density of a
degenerate HEG. For spatially varying systems, however, the
current density will explicitly depend on the k-dependent self-
energy, and therefore the Coulomb strength of the interacting
system, with the gradient of the current given by

∇ · j(r)=∇ · j0(r) − 2

V
Im

∑
α,β

c∗
αcβσ (kβ) exp [i(kα − kβ) · r],

(10)

where V is the volume of the supercell and

ψQP(r) =
∑

α

cα exp (ikα · r), (11)

�(r,r′) =
∑

α

σ (kα) exp [ikα · (r − r′)]. (12)

For spatially varying systems, therefore, the current density
depends nonlocally on the system and explicitly on the interac-
tion strength. It is possible, then, that two degenerate systems
having the same charge density and different self-energy oper-
ators will not have the same current density, and therefore not
have V -representable (i.e., representable by a noninteracting
scalar potential only) charge and current densities.

III. THE APPLICATION OF DFT TO
CURRENT-CARRYING SYSTEMS

Figure 1 shows (a) the charge density of the steady-state
system, along with (b) the exact DFT scalar potential which
reproduces it in the KS scheme. The scalar potential is
calculated first using the van Leeuwen-Baerends20 procedure
which iteratively multiplies the potential by nKS/n, and is
then further refined by iterative addition of nKS − n, achieving
an accuracy of 0.005%. The net effect of the additional
DFT potential, besides yielding the correct density amplitude
along the wire, is to make the effective external potential
somewhat less confining to reflect the additional electron-
electron repulsion.

Also shown is (c) the radial variation of the resultant QP
and DFT current densities. Since we are in the steady-state
(indeed ground-state) regime, any spatial variation in the
current density must be due to a purely transverse component.
Without vector potentials, the current densities of both the
QP and DFT representations are purely paramagnetic. In the
steady-state regime, the continuity equation merely constrains
the divergence of the current density to be zero. Since all of
the current is in the axial direction, the radial and azimuthal
dependence of the current must be calculated directly from
the wave function. The DFT calculation of this current density
yields an error of 5.1% in the center of the wire21 due to the
differences in the band structures, and thus the group velocities,
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FIG. 1. (Color online) The axial and radial dependence of (a) the
charge density of the system governed by the nonlocal self-energy,
and (b) the KS scalar potential which reproduces the charge density
exactly. The quasiparticle current density (c) varies only radially in
the steady-state regime. The current density predicted by this DFT
scalar potential (blue dashed) underestimates the true current density
(red solid) by 5%. The underestimate is due to the difference in band
structures (inset) which have different gradients in the region of the
highest occupied state (denoted by squares and circles respectively).
In a standard CSDFT approach, the correct paramagnetic current can
be obtained with the inclusion of a KS vector potential (d); however,
such a potential corresponds only to a gauge transformation: it leaves
the charge and physical current density (circles) unchanged, and thus
gives no improvement over the DFT description of the system.

of the QP and DFT electrons. This reflects the known fact that
exact KS-DFT calculations may yield qualitatively inaccurate
band structures.22
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It follows that DFT does not generally yield the correct
current density of a ground-state system subject only to an
external electric field. This is a time-independent variation of
the phenomenon observed in time-dependent systems subject
only to external scalar potentials demonstrated by D’Agosta
and Vignale.5 Thus the necessity of moving to a current density
functional theory lies not in the presence of an external vector
potential, but in the spatial variation of the current-carrying
system.

It is worthy of note that there are no magnetic phenomena
at all in the model interacting system. The external vector
potential is everywhere zero and the 12 electrons are spinless.
An exact self-energy operator calculated self-consistently from
Hedin’s equations would not contain current dependence, and
the model self-energy employed above introduces no such
effects.

IV. THE PARAMAGNETIC CURRENT IN THE KS SCHEME

Let us first consider the CSDFT approach of VR, in which
KS systems are constructed to yield the same (n,jp) as the
interacting systems they represent. The Hamiltonian for a KS
system of spinless electrons subject to both scalar and vector
potentials is

Ĥ = 1
2 [p̂ + AKS(r)]2 + vKS(r). (13)

While the KS wave functions are uniquely determined by
(n,jp), the potentials (vKS,AKS) are not,23 and so one cannot
generally speak of the exact KS vector potential per se. Figure
1(d) shows a reverse-engineered vector potential that achieves
our desired densities (the corresponding scalar potential is
simply that of the DFT calculation). However, this vector
potential corresponds only to a gauge transformation of the
KS single-particle wave functions of the form

ψKS,k(r) ← eiλ(r)ψKS,k(r), (14)

where λ(r) is the scalar field such that A(r) = −∇λ(r). This
vector potential ensures that (n,jp) of the KS system are those
of the interacting system [Fig. 1(c)], but no physical quantity
has changed as a result and the physical current of the VR KS
system is identical to the ordinary DFT prediction. Since the
wave function is uniquely determined by (n,jp), it follows that
an alternative choice of (vKS,AKS) that yields the same (n,jp)
also corresponds to a gauge transform of the DFT result. Thus,
as was the case with DFT, the VR formulation of CSDFT
does not in general reproduce the correct physical current.
For instance, it follows that the VR theory is not the limit of
time-dependent CDFT in the steady-current limit.

V. THE PHYSICAL CURRENT IN THE KS SCHEME

For this reason, we consider instead a Kohn-Sham scheme
that reproduces the physical current density of the ground-state
nanowire. Putting aside the question of which basic variables
uniquely determine the ground-state properties of a current-
carrying system, one may retain from the approaches of Diener
and of Pan and Sahni the convention of constructing the
auxiliary KS systems to have the same (n,j) as the interacting
system. In the absence of an external vector potential, the

exact KS vector potential arises purely from exchange and
correlation (XC) and can be calculated iteratively using

Axc(r) ← Axc(r) + j(r) − jKS(r)

n(r)
. (15)
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FIG. 2. (Color online) (a) The intrinsic KS vector potential and
(b) the magnetic field to which it corresponds. These, along with the
scalar potential of Fig. 1(b), reproduce the exact charge and current
density of the nanowire. The magnetic field is purely azimuthal
and increases with radius [(c), shown for z = 0]. The resulting KS
current density [(d), red solid] is now that of the QP system (black
squares), but now comprises both paramagnetic (green dashed) and
diamagnetic (blue dotted) components.
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Generally, transverse components to the reverse-engineered
vector potential will result in a change in the charge density
and therefore necessitate a recalculation of the scalar potential.
However, the stronger the confinement in the transverse
direction, the smaller the perturbation of the charge density. As
a result, the converged CDFT scalar potential is almost exactly
that of DFT (Fig. 1). We have confirmed that the sensitivity of
the charge density to external vector potentials returns as one
makes the confining electric field weaker.

The XC vector potential and the current density that it
yields are shown in Fig. 2. One can see that, due to the
large confining external potential, the vector potential becomes
large in magnitude at large radii where n and jp (and thus
the effect of the vector potential) is smallest. Because of the
necessary presence of the nonzero KS vector potential, the
physical current density in the KS system is no longer purely
paramagnetic, in contrast to both the QP and DFT systems.
Instead, the physical QP current is reproduced by finding
the correct combination of paramagnetic and diamagnetic
KS current densities for a given charge density. Thus in
constructing KS functionals, it is necessary to go beyond the
paramagnetic current density if one wishes to describe the
KS system exactly. Furthermore, because of the distribution
of the current density between paramagnetic and diamagnetic
parts, 12% of the current density is now carried by the N

lowest-energy KS electrons, whose counterpart in the QP
description of the system contributed zero current.

As in the time-dependent regime, the vector potential
calculated corresponds to an exchange-correlation magnetic
field Bxc = ∇ × Axc, also shown in Fig. 2. The manner in
which the magnetic field fixes the physical current density
while keeping the charge density fixed can be characterized as
the interplay between two distinct effects.

First, the Kohn-Sham magnetic field is entirely azimuthal,
which for an axial current corresponds to a radial, velocity-
dependent force which augments the radial force arising from
the Kohn-Sham scalar potential.24 In the current-carrying
region, the ratio of the magnetic and electric radial forces (as
measured by uzBxc,φ/∂rvKS) is around 2–3%, comparable to
the 5% adjustment to the current density that CDFT needs

to achieve. The magnitude of the XC magnetic field may
be gauged from the fact that it is similar in strength to the
elementary Biot-Savart magnetic field that the current density
generates, in the vicinity of the wire.

Second, the vector potential “tunes” the band structure such
that the current density (both paramagnetic and diamagnetic)
of all of the current-carrying electrons in the KS system,
determined in part by the local gradient of the band structure,
sum to the correct current of the quasiparticle.

What is unusual in this case is that the interacting system
being modeled does not require the existence of magnetic fields
or magnetic interactions at all: the electrons are spinless; there
are no external magnetic fields applied, and the self-energy
operator contains no current or spin dependence. The XC
vector potential is therefore purely mechanical in nature, even
though it enters into the Kohn-Sham equations as a magnetic
field.

VI. SUMMARY AND CONCLUSIONS

In conclusion, even in the absence of spin and external
magnetic fields, current-carrying systems cannot generally be
represented exactly by density functional theory and require
a purely XC magnetic field that is mechanical in nature and
depends on the charge and physical current density of the
system. This XC magnetic field arises from the construction of
the KS scheme such that the noninteracting physical densities
are those of the interacting system, irrespective of the choice of
basic variables in the underlying CDFT. We have demonstrated
a method for the calculation of the necessary exact XC
magnetic fields, finding them to be dependent on both the
charge and current density of the interacting system. Generally,
the exact KS representation of a ground-state current-carrying
system does not carry the paramagnetic current density of the
interacting system that it represents.
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