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Exact time-dependent density-functional potentials for strongly correlated tunneling electrons
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By propagating the many-body Schrödinger equation, we determine the exact time-dependent Kohn-Sham
potential for a system of strongly correlated electrons which undergo field-induced tunneling. Numerous features
are entirely absent from the approximations commonly used in time-dependent density-functional theory. The
self-interaction correction is strong and time dependent, owing to electron localization, and prominent dynamic
spatial potential steps arise from minima in the charge density, as modified by the Coulomb interaction experienced
by the partially tunneled electron.
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I. INTRODUCTION

The notable prominence of density-functional theory (DFT)
methods in condensed-matter physics stems from the ability
to treat the electrons as noninteracting in the Kohn-Sham
(KS) approach,1 while still, in principle, reproducing the exact
charge density of the real interacting system. In practice, the
exchange-correlation (xc) part of the KS potential must be
approximated, and this is often done on the basis of the
local density1 or its gradient.2 While these approximations
fare surprisingly well in many scenarios, they are known
to break down in a large number of important cases.3,4

In time-dependent DFT (TDDFT), the extension of DFT
to a system evolving from (typically) its ground state, the
time-dependent xc potential depends on the history of the
density. However, most time-dependent calculations today use
an adiabatic approximation, which assumes dependence only
on the instantaneous charge density,5 disregarding the system’s
history and initial state. In this Rapid Communication we study
the field-induced tunneling of interacting, strongly correlated
electrons through a potential barrier, and identify important
features in the exact xc potential that are entirely absent when
adiabatic or local approximations are used.

The successful experimental determination of the transport
characteristics of quantum junctions6,7 provides the opportu-
nity to test the predictive power of TDDFT in the presence
of electron currents. The usual adiabatic local and semilocal
xc approximations prove unreliable. For instance, the current-
voltage (I -V ) characteristics of organic molecules, including
their conductance, often differ from experiment by orders of
magnitude.3,8 Ultra-nonlocal density dependence in the xc
potential, including the formation of pronounced spatial steps,
has been demonstrated recently for a quasiparticle wave packet
added to a model semiconductor,9 and for a one-dimensional
He atom in the presence of a weak oscillatory electric field.10

Electron tunneling and reflection are features of all molecu-
lar devices, but many-body (MB) aspects of these processes are
generally not included in transport calculations. Fundamental
studies of tunneling in strongly correlated systems, such
as Coulomb blockade,11 have shown the importance of a
time-dependent description of electronic correlation. Strong
correlation and tunneling both pose particular challenges for
the usual approximations in TDDFT which remain to be
addressed. To accurately model electron transport there is a
need for studies of the xc potential for systems of multiple

electrons with strong correlation and quantum tunneling.
We calculate the exact xc potential of a one-dimensional
interacting model system, intended to inform the development
of improved approximate functionals suitable for realistic
three-dimensional systems.

II. MODEL TUNNELING SYSTEM

To determine the KS potential we adjust the potential expe-
rienced by noninteracting electrons such that they reproduce,
at all times, the charge and current densities of the interacting
system, calculated by exact numerical propagation of the
time-dependent many-body Schrödinger equation. Our iDEA
(interacting dynamic electrons approach) code describes two
electrons in one dimension, where our spatial and temporal
grid spacings are δx = 0.05 a.u. and δt = 0.002 a.u.

We treat our electrons as spinless, in order to maximize the
richness of the correlation for a given computational effort. For
example, the two interacting electrons experience the exchange
effect (which is not the case for two spinful electrons in an
S = 0 state), and our two Kohn-Sham electrons occupy distinct
KS orbitals so that the density is not simply twice the square
modulus of the orbital. Both these features, crucial in extended
electronic systems, would require a larger number of spinful
electrons in order to become apparent.

We first describe our system through MB quantum me-
chanics. Our MB spinless electrons interact via the softened
Coulomb term (|xi − xj | + 0.1)−1 in the Hamiltonian, as is
appropriate in one dimension. Our confining potential consists
of two wells separated by a long flat barrier, Vext = αx10 −
βx4, where α = 5 × 10−11 and β = 1.3 × 10−4. For t > 0
a polarizing uniform electric field −εx, where ε = 0.1, is
applied (Fig. 1), driving the electrons to the right.

The interacting ground-state MB wave function, including
full correlation effects, is calculated by first evolving an
arbitrary, exchange-antisymmetric trial wave function through
imaginary time12 in the chosen external potential, including
the interaction term. We then apply the electric field and
evolve the ground-state wave function through real time. The
Crank-Nicolson method13 is used for both imaginary- and
real-time propagation. The interacting density is

n0(x,t) = 2
∫

dx2|�(x,x2,t)|2. (1)
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FIG. 1. (Color online) The unperturbed external potential (Vext =
αx10 − βx4, t � 0, solid red) and its perturbed counterpart (the
uniform field −εx added, t > 0, dashed green) (top figure). The
interacting charge density (bottom figure) at t = 0 and at a later time
t = 5.3 a.u. The inset shows a close-up of the density in the tunneling
region; at the later time a minimum appears in the density (arrow) as
a result of an interference effect (see text).

As suggested by the form of the ground-state charge density,
the Pauli exclusion principle, for two spinless electrons, tends
to localize the electrons in opposite wells, and this strong-
correlation effect is enhanced by the Coulomb repulsion. Thus,
the barrier region of the system has vanishingly small density
(Fig. 1).

The initial application of the electric field begins to establish
oscillatory motion of the electrons within their respective
wells. Prolonged exposure to the E field causes the left
electron to tunnel through the potential barrier towards the
right well, experiencing the Coulomb repulsion. This then
allows a current to build in the low-density barrier region.
The strength of the E field relative to the confining potential
means that both electrons acquire considerable kinetic energy
within their respective wells. In the right-hand well this
results in standing-wave-like “ripples” in the density, due to
interference between the waves incident on, and reflected from,
the right-hand wall. (This phenomenon does not itself rely
on the interaction; we have checked that similar interference
ripples occur for a single electron in a single perturbed well.)
When tunneling begins, the time evolution of the density is
affected by the Coulomb repulsion, as the two electrons try
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FIG. 2. (Color online) A zoomed view of the interacting charge
density (n) in the central region (short dashed blue) and the nonin-
teracting charge density (dotted purple), together with the interacting
current density (j ) (solid red) and the noninteracting current density
(dashed green), at t = 5.3 a.u. The regions of particularly high
current-to-charge ratio are indicated by arrows; the modification of
this ratio by the Coulomb interaction is evident.

to distance themselves from one another within the right-hand
well.

Figure 2, which is a further close-up, shows the charge and
current density in the central part of the tunneling region, for
t = 5.3 a.u., together with the corresponding quantities in the
absence of Coulomb interaction. Two effects are evident. First,
as the left electron tunnels into the right well, the effect of the
Coulomb repulsion is to suppress the current density on the
right-hand side of the region shown. Second, the arrows in
both Figs. 1 and 2 indicate locations where the ratio of current
density to charge density is particularly high.

III. TDDFT DESCRIPTION

TDDFT describes the evolution of the interacting charge
density using an auxiliary noninteracting system, with an
effective potential VKS which we now calculate. We use
the same numerical methods, where appropriate, for the
noninteracting and interacting systems, to minimize numerical
error. The time-dependent (TD) KS potential allows the
dynamics of the density to be completely described by the
single-particle KS orbitals which obey

i
∂

∂t
φk (x,t) =

{
−1

2

∂2

∂x2
+ VKS (x,t)

}
φk (x,t) ,

and yield the electron density through

n(x,t) =
2∑

k=1

|φk(x,t)|2. (2)

At t = 0, before the system becomes dynamic, the ground-
state KS potential describes the system. We determine this by
iteratively correcting a trial potential using

VKS → VKS + μ[n(x)p − n0(x)p], (3)

where 0 < μ � 1, n (x) is the ground-state density produced
by VKS, and n0 (x) is the target ground-state density. This
iterative procedure, which builds on that set out in Ref. 14,
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clearly has the correct fixed point n = n0 for any p, and we
find especially rapid convergence when p ≈ 0.05 and μ = 1.
We monitor the convergence using the integrated absolute error
in the density,

fn =
∫ ∞

−∞
|n(x) − n0(x)|dx. (4)

The use of a small value of p focuses the emphasis of
the iterative procedure on the low-density regions, where
substantial adjustments to the potential are needed, while
avoiding oscillatory instabilities arising from unduly large
adjustments to the potential in the high-density regions.
Reducing fn below 10−11 a.u. is rapid, requiring around 1500
iterations. We have found this method to be robust, accurate,
and fast, for a variety of systems.

When our system becomes dynamic we implement a
variant of the reverse-engineering algorithm of Ramsden and
Godby,9 where we iteratively correct a time-dependent KS
vector potential, AKS, at each time step. For this method we
temporarily switch to an electromagnetic gauge in which the
TD KS potential is split into a static scalar potential (the
ground-state KS potential plus the external applied field) and
a time-dependent vector potential. Working in this gauge
reduces computational cost by eliminating the need for a
spatial integration in every iteration of the algorithm, as well as
improving numerical stability. The vector potential is obtained
using the iterative procedure

AKS → AKS + ν
j (x,t) − j0(x,t)

n0(x,t)
, (5)

where (typically) ν = 0.5, which causes the noninteracting
current density j produced by AKS, to converge towards the
interacting current density j0. We calculate j and j0 directly
from their respective time-dependent charge densities, via the
continuity equation ∂tn + ∂xj = 0, using a numerical time
derivative of the charge density and a numerical integration.
This use of the continuity equation guarantees that the two
densities n and n0 automatically match at each time, in addition
to j and j0, as required.

Having calculated these potentials we transform them to
the gauge where the vector potential is zero, so that the TD
KS potential is represented completely by a time-dependent
scalar potential, as is conventional for finite systems.

The nonlocal density dependence of the xc potential is
already apparent in the ground state. Owing to the double-well
external potential and the Coulomb repulsion, our electrons
begin in a highly localized state, which means that the
dominant effect in the ground-state xc potential is the full
cancellation of the spurious self-interaction described by the
Hartree potential VH. Self-interaction corrections of this sort
are, of course, beyond the capability of the local-density
approximation (LDA). The ground-state Hartree-xc (Hxc)
potential VHxc = VKS − Vext, because it includes both the self-
interaction and its exact cancellation, most clearly displays
the remaining features of the KS potential. The Hxc potential
(Fig. 3) shows a highly non-LDA “bump” (arrow in Fig. 3)
between the wells in the region of low charge density, together
with oppositely signed xc electric fields within each well,15

which together push the KS charge density peaks apart to
account for the interwell Coulomb repulsion. Neither of these
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FIG. 3. (Color online) The Hxc potential in the ground state (t =
0) and at later times t = 3.5 and 5.3 a.u. Steps form and grow as a
result of minima in the charge density in the regions of finite current
density. The distinctive “bump” in the ground-state Hxc potential
remains to serve its initial purpose (arrow).

features is present in local approximations, showing the failure
of the LDA in this system.

In the time-dependent regime, the self-interaction continues
to be exactly canceled within the Hxc potential. The locally
varying corrections to VHxc in the region of highest density
remain minimal. Figure 4, the time-dependent xc potential
alone, shows clearly how Vxc(= VHxc − VH) in the left and
right wells provides the necessary self-interaction corrections,
changing its form in accordance with the moving and tunneling
charge density.

For the time-dependent Hxc potential (Fig. 3) the first
feature occurs at the position of the central density minimum,
xmin (initially 0). As the left electron tunnels through the
barrier, current builds in the central region, and so xmin moves
to the right, as already observed in Fig. 2. The buildup of
current in the vicinity of the density minimum means that the
current-to-charge ratio is large. In the KS regime this high
ratio is replicated by a prominent time-dependent step in the
potential by a positive constant, that later becomes negative
due to the change in sign of the current density (Fig. 3).
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FIG. 4. (Color online) The xc potential at t = 0 and 5.3 a.u. In
addition to the features noted in VHxc, the changing strength of the
self-interaction correction as the left electron tunnels into the right
well is evident.

241102-3



RAPID COMMUNICATIONS

HODGSON, RAMSDEN, CHAPMAN, LILLYSTONE, AND GODBY PHYSICAL REVIEW B 88, 241102(R) (2013)

-1
-0.5

0
0.5

1
1.5

2
2.5

3

-10 -5 0 5 10

-0.2

0

0.2

0.4

0.6
u(

x,
t)

(a
.u

.)

V
H

xc
(t

)-
V

H
xc

(t
=

0
)(

a.
u.

)

x (a.u.)

FIG. 5. (Color online) For t = 5.3 a.u. the velocity field (dashed
green, MB and KS coincide), together with the difference between
the Hxc potential at t = 5.3 a.u. and the ground-state Hxc potential
(solid red). The peaks in the velocity field align with the steps in the
potential. The largest features correspond to the density most affected
by the Coulomb interaction.

After enough time has elapsed, further steps form in the
right-hand region, as a direct result of the standing-wave
effect, associated with the points of high current-to-charge
ratio identified above. This ratio, u (x,t) = j (x,t) /n (x,t),
the velocity field, can account for the steps observed in the
TD KS potential, since it is clear from Eq. (5) that the velocity
field and the TD KS potential are closely linked: In particular,
a feature in the velocity field will in general be associated
with a feature in the TD KS potential. From u it is apparent
that when the current-to-charge ratio is very high, i.e., for
density minima, there is a peak in the velocity field, which
will translate into a TD peak in the KS vector potential. When
subsequently transforming each of these peaks to the gauge
in which AKS = 0 in order to obtain the KS scalar potential,
we integrate its time derivative spatially, giving rise to a step,
particularly if the peak is narrow, as will generally be the case
at density minima. However, the mere presence of a density
minimum is not a sufficient condition for a step: Without the
effect of the Coulomb repulsion, j and j0 in Eq. (5) can be
equal without the need for a correction in the potential. To
achieve any feature, the density in the neighborhood of its

minimum must be modified by the interaction; in this case
this arises primarily from direct interwell Coulomb repulsion.
The arrows in Fig. 2 indicate those density minima that are
significantly reduced in value by the Coulomb interaction.

Figure 5 demonstrates the correlation between peaks in
the velocity field and the step functions in the potential. The
largest steps are in the central region where the density has
been significantly altered by the Coulomb repulsion. Peaks
further from the center correspond to smaller steps because
the strong initial localization of the electrons reduces the effect
of the Coulomb interaction on the velocity field. Our analysis
of the origin of steps in the KS potential is quite general; in
particular, we have checked that it also explains the TD steps
observed in Ref. 9. Since the two ingredients of the velocity
field, the current and charge densities, are always available in
a TDDFT calculation, accounting for prominent features of
the velocity field should be given strong consideration in the
development of improved approximate functionals for use in
general time-dependent systems.

IV. CONCLUSION

In summary, for these strongly correlated tunneling elec-
trons the exact TD KS potential exhibits density dependence
that is ultra-nonlocal in space and nonlocal in time (e.g.,
through current dependence), aspects that are not present in any
local or adiabatic approximations. First, the self-interaction
correction is strong, and time dependent as the tunneling
occurs. Second, steps occur in the TD KS potential as a
consequence of minima in the charge density, combined with
the Coulomb repulsion of the electrons on each side of the
minimum. Such density minima are a natural consequence of
an applied dc electric field, making step functions common
and prominent features in the exact TD KS potential. The
understanding of the origin of these features in the TD
KS potential is crucial information for the development
of improved approximate xc functionals that are suited to
tunneling and transport systems.
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