The iDEA code (interacting Dynamic Electrons Approach) is a Python-Fortran software suite developed in Rex Godby's group at the University of York since 2010. It has a central role in a number of research projects related to many-particle quantum mechanics for electrons in matter.

iDEA's main features are:

- Exact solution of the many-particle time-independent SchrÃ¶dinger equation, including exact exchange and correlation
- Exact solution of the many-particle time-dependent SchrÃ¶dinger equation, including exact exchange and correlation
- Simplicity achieved using spinless electrons in one dimension
- An arbitrary external potential that may be time-dependent
- Optimisation methods to determine the exact DFT/TDDFT* Kohn-Sham potential and energy components
- Implementation of various approximate functionals (established and novel) for comparison
- Established and novel localisation measures
- Many-body perturbation theory

Publications based on the iDEA code so far:

1. "Exact time-dependent density-functional potentials for strongly correlated tunneling electrons", M.J.P. Hodgson, J.D. Ramsden, J.B.J. Chapman, P. Lillystone, and R.W. Godby, Physical Review B (Rapid Communications) ** 88** 241102(R) (2013) [4 pages]. Further information

2. "Role of electron localization in density functionals", M.J.P. Hodgson, J.D. Ramsden, T.R. Durrant and R.W. Godby, Physical Review B (Rapid Communications) **90** 241107(R) (2014) [4 pages]. Further information

3. "Origin of static and dynamic steps in exact Kohn-Sham potentials", M.J.P. Hodgson, J.D. Ramsden and R.W. Godby, Physical Review B **93** 155146 (2016) [11 pages] (Editors' Suggestion). Further information

4. "Local density approximations from finite systems", M.T. Entwistle, M.J.P. Hodgson, J. Wetherell, B. Longstaff, J.D. Ramsden and R.W. Godby, Physical Review B **94** 205134 (2016) [11 pages]. Further information

Back to Rex Godby's home page