
Quantum computation

Samuel L. Braunstein

Computer Science, University of York, York YO10 5DD, UK

Introduction

1. Computing at the atomic scale

2. Reversible computation

3. Classical universal machines and logic gates

3.1. FANOUT and ERASE

3.2. Computation without ERASE

4. Elementary quantum notation

5. Logic gates for quantum bits

6. Logic gates in the laboratory

7. Model quantum computer and quantum code

8. Quantum parallelism: Period of a sequence

9. The complexity of factoring

10. Security and RSA

11. Shor’s result: Factoring numbers

12. Quantum error correction

13. Prospects

14. Glossary

Appendix

Works cited

INTRODUCTION

A quantum computer is a device that can arbitrarily
manipulate the quantum state of a part of itself. The
field of quantum computation is largely a body of the-
oretical promises for some impressively fast algorithms
which could be executed on quantum computers. How-
ever, since the first significant algorithm was proposed in
1994 [1] experimental progress has been rapid with sev-
eral schemes yielding two [2, 3] and three quantum-bit
manipulations [4]. At the writing of this article it does
not seem unreasonable to expect that small quantum
computers capable of manipulating the quantum states
of five or six two-level systems will be available within
around five years. In addition, with the discovery of
quantum error correction schemes [5] such machines have
the promise of providing long term storage of quantum
information and possibly allowing the ability to manipi-
late many more bits. It is still too early to tell whether
the promises of rapid computation are achievable, nor
is it yet well understood how broad a class of problems
could be significantly speeded up by quantum computers.

Quantum computers were first discussed by Benioff [6]
in the context of simulating classical Turing machines
(very elementary conventional computers) with quantum
unitary evolution. Feynman [7] considered the converse

question of how well classical computers can simulate
quantum systems. He concluded that classical computers
invariably suffer from an exponential slow-down in trying
to simulate quantum systems, but that quantum systems
could, in principle, simulate eachother without this slow-
down. It was Deutsch [8], however, who first suggested
that quantum superposition might allow quantum evolu-
tion to perform many classical computations in parallel.

To demonstrate where such capabilities may lie hid-
den, we review an elementary quantum mechanical ex-
periment [9]. The two-slit experiment is prototypic for
observing one key feature of quantum mechanicals: A
source emits photons, electrons or other particles that
arrive at a pair of slits. These particles undergo unitary
evolution and finally measurement. We see an interfer-
ence pattern, with both slits open, which wholely van-
ishes if either slit is covered. In some sense, each particle
passes through both slits in parallel. If such unitary evo-
lution were to represent a calculation (or an operation
within a calculation) then the quantum system would be
performing computations in parallel. In some sense this
quantum parallelism comes for free without our having
to construct many copies of the ‘processing unit.’ The
output of this system would be given by the constructive
interference among the parallel computations.

In this paper we give a tutorial on how quantum me-
chanics can be used to improve computation. We shall
concentrate on the only known algorithm which demon-
strates an exponential speedup relative to the best known
classical algorithms. Our challenge: solving an exponen-
tially difficult problem for a conventional computer—that
of factoring a large number. As a prelude, we review the
standard tools of computation, universal gates and ma-
chines. These ideas are then applied first to classical, dis-
sipationless computers and then to quantum computers.
A schematic model of a quantum computer is described
as well as some of the subtleties in its programming. The
Shor algorithm [1, 10] for efficiently factoring numbers
on a quantum computer is presented in two parts: the
quantum procedure within the algorithm and the clas-
sical algorithm that calls the quantum procedure. The
mathematical structure within the factoring problem is
discussed, making it clear what contribution the quan-
tum computer makes to the calculation. The complexity
of the Shor algorithm is compared to that of factoring
on conventional machines and its relevance to public key
cryptography is noted. In addition, we discuss the ex-
perimental status of the field and also quantum error
correction which may in the long run help solve some the

2

most pressing difficulties. We conclude with an outlook
to the feasibility and prospects for quantum computation
in the coming years.

1. COMPUTING AT THE ATOMIC SCALE

Quantum computers will perform computations at the
atomic scale [9, 11]. We might ask at this point how
close conventional computations are to this scale already?
Fig. 1 shows a survey made by Keyes in 1988 [12]: The
number of dopant impurities in the bases of bipolar tran-
sistors used for digital logic against the year. This plot
may be thought of as showing the number of electrons
required to store a single bit of information. An ex-
trapolation of the plot suggests that we might be within
reach of the atomic-scale computations within the next
two decades.

N
u
m

b
e
r

o
f
im

p
u
ri
ti
e
s

Year

1950 1970 1990 2010
1

102

104

106

108

1010

1012

FIG. 1: Plot from Ref. [12] showing the number of dopant
impurities involved in logic in bipolar transistors with year.
(Copyright 1988 by International Business Machines Corpo-
ration, reprinted with permission.)

Another way of viewing this plot is perhaps even more
relevant for the development of quantum computation:
Conventional computers have been improving in speed
and miniaturization at an exponential rate since their
earliest days. Clearly there is a bound to our ability
to miniaturize conventional electronics and we will likely
be touching that limit within the next twenty years. The
question is raised, can we continue to expect to see an ex-
ponential improvement in performance twenty and more
years from now? As we approach some of the physi-
cal limits to conventional computational construction we
may begin to see a slow-down of this exponential rate.
A detailed study of quantum computation may help us
understand the fundamental physical limitations upon
computation, conventional or otherwise.

2. REVERSIBLE COMPUTATION

What are the difficulties in trying to build a classical
computing machine on such a small scale? One of the
biggest problems with the program of miniaturizing con-
ventional computers is the difficulty of dissipated heat.
As early as 1961 Landauer studied the physical limita-
tions placed on computation from dissipation [13]. Sur-
prisingly, he was able to show that all but one opera-
tion required in computation could be performed in a
reversible manner, thus dissipating no heat! The first
condition for any deterministic device to be reversible is
that its input and output be uniquely retrievable from
each other. This is called logical reversibility. If, in ad-
dition to being logically reversible, a device can actually
run backwards then it is called physically reversible and
the second law of thermodynamics guarantees that it dis-
sipates no heat.

The work on classical, reversible computation laid the
foundation for the development of quantum mechanical
computers. On a quantum computer, programs are exe-
cuted by unitary evolution of an input that is given by
the state of the system. Since all unitary operators U are
invertible with U−1 = U †, we can always “uncompute”
(reverse) a computation on a quantum computer.

3. CLASSICAL UNIVERSAL MACHINES AND

LOGIC GATES

We now review the basic logic elements used in com-
putation and explain how conventional computers may
be used for any “reasonable” computation. A reasonable
computation is one that may be written in terms of some
(possibly large) Boolean expression, and any Boolean ex-
pression may be constructed out of a fixed set of logic
gates. Such a set (e.g., AND, OR and NOT) is called
universal. In fact we can get by with only two gates,
such as AND and NOT or OR and NOT. Alternatively,
we may replace some of these primitive gates by others,
such as the exclusive-OR (called XOR or often controlled-
NOT); then AND and XOR form a universal set. The
truth tables for these gates are displayed in Table I. Any
machine which can build up arbitrary combinations of
logic gates from a universal set is then a universal com-
puter. Further, which universal set of gates is chosen
makes little difference: A theorem by Muller states that
the complexity of the simplest circuits needed to com-
pute any reasonable Boolean function is affected by at
most a constant multiplicative factor [14].

Which of the above gates is reversible? Since AND,
OR, and XOR are many-to-one operations information is
lost and they are not, as they stand, logically reversible.
Before we discuss how these logic gates may be made
reversible we consider some non-standard gates that we
shall require.

3

A B AND OR XOR NOTB
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 1
1 1 1 1 0 0

TABLE I: Truth table defining the operation of some simple
logic gates. Each row shows two input values A and B and the
corresponding output values for gates AND, OR and XOR.
The output for the NOT gate is shown only for input B.

3.1. FANOUT and ERASE

Although the above gates are sufficient for the mathe-
matics of logic, they are not sufficient to build a machine.
A useful computer will also require the FANOUT and
ERASE gates (Fig. 2).

A

A

(b)

AA

FANOUT ERASE(a)

FIG. 2: Two non-standard gates that are required to build
a computer, in addition to a universal set of logic gates, are:
(a) the FANOUT gate which duplicates an input A and (b)
the ERASE gate which deletes its input.

First consider the FANOUT gate: Is it reversible? Cer-
tainly no information has been destroyed so it is at least
logically reversible. Landauer showed that it could also
be physically reversible [13]. Let us describe a simple
model for FANOUT based on Bennett’s scheme for a re-
versible measurement (Fig. 3) [15] (We note, however,
that the concepts involved in this scheme come from
Fredkin and Toffoli [16, 17].) Here a dark ball is used
to determine the presence or absence of a second (light)
ball inside a trap. The trap consists of a set of mirrors
and may be thought of as a one-bit memory register. If
the trap is occupied then the dark ball is reflected and
leaves along direction M (with the light ball continuing
along its original trajectory); otherwise it passes unhin-
dered towards N . Upon leaving the trap, the dark ball’s
direction is used to populate, or not, another trap.

Let us now consider the ERASE operation, required
to “clean out” the computer’s memory periodically. One
type of erasure can be performed reversibly: If we have
a backup copy of some information, we can erase further
copies by uncomputing the FANOUT gate. The difficulty
arises when we wish to erase our last copy, referred to
here as the primitive ERASE.

Consider a single bit represented by a pair of equally
probable classical states of some particle. To erase the in-
formation about the particle’s state we must irreversibly
compress phase-space by a factor of two. If we allowed
this compressed phase-space to adiabatically expand, at

FIG. 3: A reversible measurement of the existence of a (light)
ball in a trap of mirrors (dark rectangles) [15]. A (dark) ball
enters the trap from Y . In the absence of a light ball in the
trap the dark ball will follow the path HN . In presence of
a light ball (timed to start at X) the dark ball will deflect
the light one from its unhindered trajectory ABCDEF to
ABGDEF and will follow the path HIJKLM itself. (Copy-
right 1988 by International Business Machines Corporation,
reprinted with permission.)

temperature T , to its original size, we could obtain an
amount of work equal to kBT ln 2 (where kB is Boltz-
mann’s constant). Landauer concluded, based on simple
models and more general arguments about the compres-
sion of phase-space, that the erasure of a bit of informa-
tion at temperature T requires the dissipation of at least
kBT ln 2 heat (a result known as Landauer’s principle)
[13].

3.2. Computation without ERASE

Fortunately, the primitive ERASE is not absolutely
essential in computation. To see why, consider what is
required to compute arbitrary functions using reversible
logic (where the primitive ERASE is forbidden). Lan-
dauer showed how any function f(a) could be made one-
to-one by keeping a copy of the input:

f : a→
(((

a, f(a)
)))

.

Here the bold parentheses represent an ordered set of
values, in this case, two. Extra “slots” will be added (or
removed) as required in our discussion below.

How can this trick be used to perform reversible logic?
One solution, developed by Toffoli and Fredkin and
known as the Toffoli gate, is shown in Fig. 4 [13, 16, 17].
The output of this gate may be decomposed into various

4

gates:

B ⊕ (A.C) =

A.C , for B = 0 (AND)
A⊕B , for C = 1 (XOR)
A , for B = C = 1 (NOT)
A , for B 6= C = 1 (FANOUT)

where A.B represents an AND gate, A⊕B represents an
XOR gate and A represents a NOT gate. We see that this
gate is universal, because it performs AND, XOR, NOT
or FANOUT depending on its inputs. A combination of
many such gates could then be used for any computation
and would still be reversible.

C

A

C

B B ⊕ (A.C)

A

FIG. 4: Three-input three-output universal reversible Toffoli
gate. This gate is clearly reversible since a second application
of it retrieves the original input.

As noted by Landauer, this procedure leads to an im-
mediate problem because of the absence of the primitive
ERASE. The more gates we employ, the more “junk” bits
we accumulate: At each gate we must save input bits in
order to preserve reversibility. In other words a computer
built out of reversible logic instead of conventional, irre-
versible logic gates would behave like

f : a→
(((

a, j(a), f(a)
)))

,

with many extra junk bits j(a).
Bennett solved this problem by showing that the junk

bits could be reversibly erased at intermediate steps with
minimal run-time and memory costs [18–20]. The spirit
of Bennett’s solution may be understood in terms of the
following procedure:

f : a →
(((

a, j(a), f(a)
)))

FANOUT :
(((

a, j(a), f(a)
)))

→
(((

a, j(a), f(a), f(a)
)))

f† :
(((

a, j(a), f(a), f(a)
)))

→
(((

a, f(a)
)))

,

where f † denotes uncomputing f , as opposed to com-
puting f−1. First, f is computed, producing both junk
bits and the desired output. Then the FANOUT gate is
applied to duplicate the output. Finally, we uncompute
the original function f by running its computation back-
wards. This procedure removes the junk bits and the
original output. The duplicate, however, remains!

This completes our discussion of the construction of
classical, reversible computers. We have found that re-
versibility does not bar the logical design of computing
machines. Before mapping these ideas to quantum sys-
tems, however, we introduce some elementary quantum
mechanical notation.

4. ELEMENTARY QUANTUM NOTATION

A simple quantum system is the two-level spin- 1
2 par-

ticle. Its basis states, spin-down | ↓ 〉 and spin-up | ↑ 〉,
may be relabelled to represent binary zero and one, i.e.,
|0〉 and |1〉, respectively. The state of a single such par-
ticle is described by the wavefunction ψ = α|0〉 + β|1〉,
i.e., a linear superposition amongst any of the possible
‘classical’ states of the system. The squares of the com-
plex coefficients |α|2 and |β|2 represent the probabilities
for finding the particle in the corresponding states. Gen-
eralizing this to a set of k spin- 1

2 particles we find that

there are now 2k basis states (quantum mechanical vec-
tors that span a Hilbert space) corresponding say to the
2k possible bit-strings of length k. Freely moving between
decimal, binary and spin labels then we might write, for
example for k = 5, a state |25〉 = |11001〉 = |↑↑↓↓↑ 〉.

The dimensionality of the Hilbert space grows expo-
nentially with k. In some very real sense quantum com-
putations make use of this enormous size latent in even
the smallest systems.

5. LOGIC GATES FOR QUANTUM BITS

In this section we describe how arbitrary logic gates
may be constructed for quantum bits. We start by con-
sidering various one-bit unitary operations and a single
two-bit one—the XOR operation. Combinations of these
are sufficient to construct a Toffoli gate for quantum bits
or indeed any unitary operation on a finite number of
bits.

Start with a single quantum bit. If we represent the
states |↓ 〉 and |↑ 〉 (i.e., |0〉 and |1〉) as the vectors (1

0) and

(0
1), respectively, then the most general unitary transfor-

mation corresponds to a 2× 2 matrix of the form

Uθ ≡
(

ei(δ+σ/2+τ/2) cos(θ/2) ei(δ+σ/2−τ/2) sin(θ/2)
−ei(δ−σ/2+τ/2) sin(θ/2) ei(δ−σ/2−τ/2) cos(θ/2)

)

,

where we typically take δ = σ = τ = 0 [21]. Using this
operator we can flip bits via:

Uπ|0〉 = −|1〉 , and Uπ|1〉 = |0〉 .

The extraneous sign represents a phase factor that does
not affect the logical operation of the gates and may be
removed if we wish, now or at a later stage. Such one-bit
computations are illustrated schematically as a quantum
circuit in Fig. 5 [21, 22].

Another important one-bit gate is U−π/2 which maps
a spin-down particle

U−π/2|0〉 =
1√
2
(|0〉+ |1〉) ,

to an equal superposition of down and up. Consider a
string of k spin- 12 particles initially spin-down. If we

5

|A〉 Uθ Uθ |A〉

FIG. 5: Schematic of the quantum circuit diagram for a one-
bit gate. The line represents a single quantum bit (such as
a spin- 1

2
particle). Initially, this bit has a state described by

|A〉; after it has “passed” through this circuit it comes out in
the state Uθ |A〉.

apply this gate independently to each particle we obtain
a superposition of every possible bit-string of length k:

|0〉 −→ 1√
q

q−1
∑

a=0

|a〉 ,

where q = 2k. Our computer is now in a superposition
of an exponentially large number of integers a from 0
to 2k − 1. Suppose further, that we could construct a
unitary operation which maps a pair of bit-strings |a; 0〉
into the pair |a; f(a)〉 for some function f(a). Then such
a unitary operator acting on the superposition of states

1√
q

q−1
∑

a=0

|a; 0〉 −→ 1√
q

q−1
∑

a=0

|a; f(a)〉 ,

would compute f(a) in parallel an exponentially large
number of times for the various inputs a. This follows
from the linearity of quantum mechanics.

To see how such unitary operators may be constructed
from a few elementary ones we must also consider the
XOR gate [21, 22]. Writing the two-particle basis states
as the vectors

|00〉 =

1
0
0
0

 , |01〉 =

0
1
0
0

 ,

|10〉 =

0
0
1
0

 , |11〉 =

0
0
0
1

 ,

we may represent the XOR gate as a unitary operator

UXOR ≡

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Here the first particle acts as a conditional gate to flip
the state of the second particle. It is easy to check that
the state of the second particle corresponds to the action
of the XOR gate given in Table I. The quantum circuit
for an XOR gate is illustrated in Fig. 6. This circuit is
equivalent to the elementary instruction

if (|A〉 = 1) |B〉 = NOT |B〉

which may be thought of as example of quantum com-
puter code [23]. The ket-brackets | 〉 are reminders that
we are dealing with quantum rather than classical bits.
The XOR gate allows us to move information around as
is illustrated in Fig. 7.

|A〉|A〉

|B〉 |A⊕B〉

FIG. 6: Quantum circuit diagram for an XOR gate. The
lower bit |B〉 is flipped whenever the upper bit |A〉 is set.

|A〉
|A〉
|B〉

|B〉

FIG. 7: Circuit for swapping a pair of bits.

How do we construct the Toffoli gate? One major
problem with this gate is that it requires three bits in
and three out. Quantum mechanically, this seems to cor-
respond to a scattering process involving three-particle
collisions [24] calling for a (possibly) unreasonable con-
trol of the particles [9]. Fortunately, the Toffoli gate
may be constructed by two-particle scattering processes
alone [22, 25–28]. In particular, we show a construction
here involving the XOR gate and some one-bit gates Uθ

(Fig. 8) [21]. Not only is the XOR sufficient for all logic
operations on a quantum computer, but it can be used
to construct arbitrary unitary transformations on any fi-
nite set of bits. Numerous proposals for producing such
gates have been considered [10, 11] and we discuss some
promising experimental results in the next section.

U−1

π/4

|A〉

|B ⊕ (A.C)〉

|C〉

|A〉

|B〉

|C〉

Uπ/4 Uπ/4 U−1

π/4

FIG. 8: Toffoli gate built from two-bit XOR gates plus some
one-bit gates [9, 21]. This circuit introduces some extra signs
in the unitary matrix UXOR which may be removed at a later
stage.

6. LOGIC GATES IN THE LABORATORY

In this section we briefly review two recent experiments
which demonstrate conditional dynamics of a type which
is promising for constructing quantum logic gates [2, 3].
These two results appeared back-to-back in the same is-
sue of Physical Review Letters.

6

The first experiment, by Turchette et al [2], demon-
strated that the phase of a weak coherent optical field
could be controlled by the intensity of a second coherent
field at a slightly different frequency. The chief result is
that such a high non-linear susceptibility was achieved
that a large phase shift (up to 16◦) was produced by a
change in intensity corresponding to a single photon in
the second field. The coupling between the optical fields
was obtained using the hyperfine level structure of ce-
sium. A stream of Cs atoms was dropped through an op-
tical cavity which effectively restrained the atomic decay
modes to the cavity modes. This allowed the atoms to
strongly couple to the optical fields passing through the
cavity with minimal incoherent emission into free space.
Since coherent instead of single-photon states were used
in this experiement, however, there could be no direct
demonstration of the coherence retained in the final state
of the optical fields. In this scheme a qubit would need to
be represented by single photon states rather than weak
coherent states, but that does not appear to be a great
difficulty.

The second experiment by Monroe et al [3] involved a
direct demonstration of an XOR gate in a radio-frequency
ion trap (also known as a Paul trap). Here the lowest
vibrational excitation of a single 9Be+ ion in the trap and
its hyperfine state represented the two qubits. A pair of
off-resonant laser beams were used to drive stimulated
Raman transitions between the basis states of these two
qubits. The XOR gate was executed using three laser
pulses as had been suggested by Cirac and Zoller [29].
The coherence of the qubits in this system was reported
to have survived for around to 10 to 20 XOR operations
[30].

This single-ion trap experiment was based on a the-
oretical proposal for a complete quantum computer by
Cirac and Zoller [31]. They suggested using a linear
ion trap to hold a set of ions in a well localized man-
ner by mutual electrostatic repulsion. Each ion would be
‘addressed’ separately their own lasers. By tuning the
lasers shining on individual ions to the approriate lev-
els either single-qubit operations could be performed or
the internal ionic state could be transferred to that of
the lowest two vibrational modes of the trap. In this
way two-qubit gates could be simulated between even
non-contiguous ions via their interactions with the traps
vibrational modes. This ability significantly reduces the
complexty of elementary operations over other proposals
[32]. The fact that this theoretical proposal was imple-
mented within a few months, though in a slightly mod-
ified form, suggests that few qubit processors could be-
come a reality within a relatively short period of time. In
section 13 below we will discuss the short term prospects
for such machines.

In quantum computation we normally aim at hav-
ing the qubits maximally couple to eachother and min-
imally to the outside world. This lessens the actions of
environment-induced decohernce. From this perspective
the latter scheme involving ion-traps appears more ideal.

However, there is another class of quantum logic pro-
cessor which aims at communicating quantum informa-
tion between various, possibly distantly, separated sub-
systems. This might allow for the combining of smaller
quantum computers into larger ones operating on more
qubits through combination. It is likely also to be impor-
tant for the area of quantum communication and poten-
tial technologies which few-bit quantum logic processors
might enable. For such tasks the former scheme involv-
ing ‘flying’ qubits appears a more likely direction. It is
possible that a mature quantum computation technol-
ogy would have components incorporating the positive
aspects of both the above schemes.

7. MODEL QUANTUM COMPUTER AND

QUANTUM CODE

In this section we describe a simple abstract model for
a quantum computer based on a classical computer in-
structing a machine to manipulate a set of spins. This
model has some intrinsic limitations which make design-
ing algorithms in a high-level language somewhat tricky.
We discuss some of the rules for writing such quantum
computer code as a high-level language and give an ex-
ample.

Consider the following model for the operation of a
quantum computer: Several thousand spin- 1

2 particles
(or two-level systems) are initially in some well defined
state, such as spin-down. A classical machine takes sin-
gle spins or pairs of spins and entangles them (performing
an elementary one-bit operation Uθ or the two-bit XOR
gate); see Fig. 9a, b and c. These stages are repeated
on different pairs of spins according to the instructions
of a conventional computer program. Since the spins are
entangled, we must not look at the spins at intermediate
stages: We must keep the quantum superposition intact.
Furthermore, nothing else may interfere with the spins
which could destroy their orientation or interrupt their
unitary evolution. Once this well-defined cycle of ma-
nipulation is complete the orientations of the spins are
measured (Fig. 9d). This set of measured orientations is
the output of the computation.

Given this paradigm for a quantum computer, what
might its high-level language (its computer code) look
like? The most serious difficulty that must be dealt with
is that the quantum information is manipulated by a
conventional computer in a completely blind manner—
without any access to the values of this quantum informa-
tion. This means that the program cannot utilize “short-
cuts” conditional on the value of a quantum variable (or
register or bit). For example, loops must be iterated
through exactly the same number of times independent
of the values of the quantum variables. Similarly, con-
ditional branches around large pieces of code must be
broken down into repeated conditions for each step. In
addition, each instruction performed upon the quantum
bits must be logically reversible. Thus, ordinary assign-

7

↑ ↓ ↑ ↑ ↓ ↓

↓ ↑

↑

a)

↑ ↑ ↓ ↓

b)

↑ ↓

c)

d)
↑ ↑ ↓ ↓↓↓

↑

FIG. 9: Model quantum computer as pictured by Shor [33].
Initially all particles are spin-down. Stage a) a classical ma-
chine takes a single or pair of spins and in stage b) it performs
a selected one-bit or two-bit operation; in stage c) the “entan-
gled” particles are returned to their original locations. These
three stages are repeated many times in accord with the in-
structions given by an ordinary classical computer. When this
cycle is complete stage d) consists of measuring the state of
the particles (leaving them in some particular bit-string); this
bit-string is the result of the computation.

ments of a value to a variable, such as |a〉 = n, are not
legal and must instead be performed as increments on an
initially zeroed variable, such as |a〉 = |a〉 + n.

An example of such code that could run on this ma-
chine might look like this [23]:

do 10 k = 1, worstdiv

|a〉 = |a〉 - n

if (|a〉 >= 0) |q〉 = |q〉 + 1

10 continue

do 20 k = 1, worstdiv

if (k > |q〉) |a〉 = |a〉 + n

20 continue

This code fragment could be used to calculate the quo-
tient and the remainder, placed in |q〉 and |a〉, respec-
tively, for the division of |a〉 by n; the constant worstdiv
is the worst-case number of times the loop must be tra-
versed. Here |q〉 is initially zero. Each instruction here
is either a conventional computer instruction or one in-
volving some quantum variables. The former are direct
instructions for the external computer, while the latter
must be interpreted as a sequence of manipulations to
be performed upon the quantum bits. As it stands, this

code is not reversible (neither is it very efficient), e.g.,
the label 10 gives no specification of which routes might
be used to get to it. It can, however, be easily rewritten
[23].

8. QUANTUM PARALLELISM: PERIOD OF A

SEQUENCE

We now have sufficient ingredients to understand how
a quantum computer can perform logical operations and
compute just like an ordinary computer. In this section
we describe an algorithm which makes use of the quan-
tum parallelism that we have hinted at already: finding
the period of a long sequence.

Consider the sequence

f(0), f(1), . . . , f(q − 1) ,

where q ≡ 2k; we shall use quantum parallelism to find its
period. We start with a set of initially spin-down parti-
cles which we group into two sets (two quantum registers,
or quantum variables):

|0; 0〉 = |↓, ↓, . . . ; ↓, ↓, . . . 〉 ,

the first set having k bits; the next having sufficient for
our needs. (In fact other registers are required, but by
applying Bennett’s solution to space management they
may be suppressed in our discussion here.) On each bit of
the first register we perform the U−π/2 one-bit operation,
yielding a superposition of every possible bit-string of
length k in this register:

−→ 1√
q

q−1
∑

a=0

|a; 0〉 .

The next stage is to break down the computation, corre-
sponding to the function f(a), into a set of one-bit and
two-bit unitary operations. The sequence of operations
is designed to map the state |a; 0〉 to the state |a; f(a)〉
for any input a. Now we see that the number of bits re-
quired for this second register must be at least sufficient
to store the longest result f(a) for any of these compu-
tations. When, however, this sequence of operations is
applied to our exponentially large superposition, instead
of the single input, we obtain

−→ 1√
q

q−1
∑

a=0

|a; f(a)〉 .

An exponentially large amount of computation has been
performed essentially for free.

The final computational step, like the first, is again
a purely quantum mechanical one. Consider a discrete
“quantum” Fourier transform on the first register

|a〉 −→ 1√
q

q−1
∑

c=0

e2πiac/q|c〉 .

8

It is easy to see that this is reversible via the inverse
transform and indeed it is readily verified to be unitary.
Further, an efficient way to compute this transform with
one-bit and two-bit gates has been described by Copper-
smith (Fig. 10) [11, 34, 35].

Xn
0 0 1 0
0 0 0 e2πi/2n

0 1 0 0
1 0 0 0

=

()

X1

|ak−1〉

|ak−2〉

|ak−3〉

Uπ/2

Uπ/2

Uπ/2

X2

X1

FIG. 10: Circuit for the quantum Fourier transform of the
variable |ak−1...a1a0〉 using Coppersmith’s fast Fourier trans-
formation approach [11, 34, 35]. The two-bit “Xn” gate may
itself be decomposed into various one-bit and XOR gates [21].

When this quantum Fourier transform is applied to our
superposition, we obtain

−→ 1

q

q−1
∑

a=0

q−1
∑

c=0

e2πiac/q|c; f(a)〉 .

The computation is now complete and we retrieve the
output from the quantum computer by measuring the
state of all spins in the first register (the first k bits).
Indeed, once the Fourier transform has been performed
the second register may even be discarded [36].

What will the output look like? Suppose f(a) has pe-
riod r so f(a+ r) = f(a). The sum over a will yield con-
structive interference from the coefficients e2πiac/q only
when c/q is a multiple of the reciprocal period 1/r [37].
All other values of c/q will produce destructive interfer-
ence to a greater or lesser extent. Thus, the probability
distribution for finding the first register with various val-
ues is shown schematically by Fig. 11.

One complete run of the quantum computer yields a
random value of c/q underneath one of the peaks in the
probability of each result prob(c). That is, we obtain a
random multiple of the inverse period. To extract the pe-
riod itself we need only repeat this quantum computation
roughly log log r/k times in order to have a high probabil-
ity for at least one of the multiples to be relatively prime
to the period r—uniquely determining it [1]. Thus, this
algorithm yields only a probabilistic result. Fortunately,
we can make this probability as high as we like.

All the above work may appear a little anti-climactic.
We have gone to a lot of trouble to design a quantum

c/q

prob(c)

0 1/r 2/r 3/r

FIG. 11: Idealized plot of the probability of each result
prob(c) versus c/q. Constructive interference produces nar-
row peaks at multiples of the inverse period of the sequence
1/r. (The discrete approximation means that the peaks will
actually peaks have a non-zero width [37].)

computer to find the period of a sequence. The point
is, however, that the sequence is calculated in parallel
and is exponentially long—even for a small value of say
k = 270 bits in the first register the quantum computer
has calculated and stored more results than there are
particles in the universe.

This algorithm for finding the period of an exponen-
tially long sequence on a quantum computer lies at the
heart of efficiently factoring numbers. We first proceed to
review the computational difficulty of factoring for con-
ventional computers. Then we shall discuss the implica-
tions this computational difficulty has had for the secure
transmission of private information via public key cryp-
tosystems. We will then follow these discussions with
Shor’s new result for efficient factoring [1].

9. THE COMPLEXITY OF FACTORING

How can we quantify the difficulty of solving a problem
with a conventional computer? Surely once the computer
program is written and debugged we may simply let it
run and wait for the answer. But this brings us to the
crux of the difficulty: For a given problem how long must
we expect to wait for the solution? When more carefully
phrased this becomes the simplest measure of computa-
tional difficulty of an algorithm, yielding the ‘algorithmic
complexity’ of the problem.

To be more specific, without getting into technicalities,
let us consider the problem of factoring a number N into
its prime factors (e.g., the number 51688 may be decom-
posed as 23× 7× 13× 71). A convenient way to quantify
how quickly a particular algorithm may solve this, or any,
problem is to ask how the number of steps to complete
the algorithm scales with the size of the “input” the algo-
rithm is fed. For the factoring problem, this input is just
the number N we wish to factor; hence the length of the
input is logN . (The base of the logarithm is determined

9

by our numbering system. Thus a base of 2 gives the
length in binary; a base of 10 in decimal. For example,
the number 51688 requires 16 binary digits, but only five
decimal digits to specify it.) ‘Reasonable’ algorithms are
ones which scale as some small-degree polynomial in the
input size (with a degree of perhaps 2 or 3). One famous
example of a fast algorithm is the Fast Fourier Trans-
form which requires roughly O(M log2M) steps to per-
form the discrete Fourier transform of M points (so for a
fixed precision the input scales asM); by contrast, a con-
ceptually simpler algorithm equivalent to matrix multi-
plication would require O(M 2) computational steps [38].
This modest improvement from a quadratic to a roughly
linear complexity has made many image processing ap-
plications possible with even quite modest computers.

On conventional computers the best known factoring
algorithm runs in O

(((

exp[(64/9)1/3(lnN)1/3(ln lnN)2/3]
)))

steps [39]. This algorithm, therefore, scales exponen-
tially with the input size logN . For instance, in 1994
a 129 digit number (known as RSA129 [40]) was suc-
cessfully factored using this algorithm on approximately
1600 workstations scattered around the world; the en-
tire factorization took eight months [41]. Using this to
estimate the prefactor of the above exponential scaling,
we find that it would take roughly 800,000 years to fac-
tor a 250 digit number with the same computer power;
similarly, a 1000 digit number would require 1025 years
(significantly longer than the age of the universe). This
difficulty is, however, almost certainly exaggerated since
it takes no account of the constant improvement in fac-
toring algorithms and the constant speedup of computer
hardware. In fact, both of these components have shown
a more or less exponential improvement over the last few
decades [39], with each contributing roughly equally to
the increased computational power. The difficulty of fac-
toring large numbers is crucial for public-key cryptosys-
tems, such as ones used by banks. There, such codes rely
on the difficulty of factoring numbers with around 250
digits.

10. SECURITY AND RSA

Cryptography as a discipline aims at minimizing the
affect of the dishonest. One such situation is the need
for secure communication between two parties across an
insecure channel. The sender encrypts a plaintext mes-
sage with an encryption key yielding the cyphertext. The
message is sent across an insecure media where we must
assume an eavesdropper may have access. The receiver
takes the cyphertext and uses a decryption algorithm to
restore the plaintext. If we assume that the eavesdropper
has access to the decryption algorithm then the receiver
must have something in addition to ensure the security of
the transmitted message; this is the decryption key. Ac-
cording to Shannon’s information theory the cyphertext
must contain some information about the plaintext mes-
sage unless the decyption key is at least as long as the

message itself [42]. Such a perfect cipher was invented
in 1917, and is known as the Vernam cipher or one-time
pad; it requires a key equal in size to the plaintext mes-
sage. Thus, for perfect security we have the problem of
distributing the key itself, which must be done over a
secure channel such as by trusted courier. In many sit-
uations, such as banking transactions where the volume
of information is very large, this is unreasonable.

An understanding of computational complexity allows
us to ‘circumvent’ the restriction of Shannon’s theory: A
pseudorandom number generator can be used to gener-
ate a long almost random key from a much smaller secret
key. If the lack of randomness cannot be discovered ex-
cept through an unreasonable amount of computational
effort by the eavesdropper then we have a secure encryp-
tion system. An excellecent example of such a scheme is
the U.S. Data Encryption Standard (DES) which uses a
56 bit key [43]. One estimate of the security of DES sug-
gests that for around a million dollars a special purpose
machine could be built to try all 256 keys in a few hours,
though security can be easily enhanced by multiple ap-
plication and a larger effective key [44]. Clearly short
keys reduce the burden of key distribution amongst sin-
gle pairs of users, but for n users n(n−1)/2 keys would be
required to allow any pair to communicate securely. This
becomes unwieldy for commercial applications where mil-
lions of users may be involved.

Another approach, also based on computational com-
plexity, is known as public key encryption. The most
popular scheme, and one used in many comercial appli-
cations, is RSA encryption [40]. A person wishing to
receive secret communications simply publishes a pair of
numbers (N, e) which form the public key. Encryption
involves converting the message to numerical data and
dividing it into blocks of numbers mj each smaller than
N . Each block mj of the message is then encrypted by
its modular exponentiation

cj ≡ me
j (mod N) ,

where mod N represents modulo arithmatic (the expres-
sion is computed and only the remainder after division by
N is retained). The encrypted blocks cj are then trans-
mitted to the receiver via a public channel. Thus, RSA
(and any other public key scheme) efficiently solves the
key distribution problem.

Decryption by the receiver requires knowing the inverse
operation, i.e., knowing the d such that

mj ≡ cdj (mod N) ,

reconstructs the original message. The size of N makes
the direct determination of d too difficult. Instead, d
is constructed along with the public key pair (N, e) in
an efficient manner. This construction involves choosing
N = pq as the product of a pair of comparably sized
primes, with e relatively prime to both p − 1 and q − 1,
and solving the much simpler problem:

ed ≡ 1 (mod p− 1)

ed ≡ 1 (mod q − 1) .

10

It is important to note that the best algorithms for find-
ing d proceed by first factoring N , thus the security of
RSA relies on the assumed difficulty of factoring [45].

11. SHOR’S RESULT: FACTORING NUMBERS

Recently, an algorithm was developed by Peter Shor
of AT&T for factoring numbers on a quantum computer
which runs in O

(((

(logN)3
)))

steps [1, 46]. This is cubic
in the input size, so factoring a 250 digit number with
such an algorithm would require only a few billion steps.
The implication is that public key cryptosystems based
on factoring may be breakable. In this section we give
the classical portion of Shor’s algorithm which relates
factoring to finding the period of an exponentially long
sequence and hence makes the problem tractable for a
quantum computer.

We wish to factor the number N . It will be sufficient
to find even a single factor since then we can reduce
the problem to a simpler one. First, select a number
x. Euclid’s algorithm (see appendix) could be used to
efficiently compute the common factors between N and
x, hence reducing our problem. We, therefore, assume
that these numbers are co-prime. Next, consider the se-
quence formed by the function f(a) = xa (modN). This
sequence has the form:

1,

1,

x,

x,

. . . ,

. . . ,

xr−1,

xr−1,
︸ ︷︷ ︸

r−terms

xr,

1,

xr+1,

x,

. . .

. . . ,
︸ ︷︷ ︸

r−terms

1, x, . . .
︸ ︷︷ ︸

r−terms

Here the top row is just the sequence of powers {xa};
the bottom row is the same sequence written in modulo
arithmetic, namely {xa (modN)}. The number r is just
the first non-trivial power where xr ≡ 1 (modN). A close
look at this sequence shows that it has a periodic struc-
ture with period r. Using standard algorithms this period
would not be readily accessible for a long sequence. How-
ever, with the quantum computer algorithm described in
section 8 it could be calculated efficiently. This possibil-
ity opens up a novel way to find the factors of N as we
shall now describe.

Let us suppose that we have obtained the period r
by the above quantum computer algorithm [47]. If this
period is even we may proceed with our factoring algo-
rithm. If not, we must select another x and start again.
A randomly chosen x will yield a suitably even period r
fifty-percent of the time so not too many trials will be
needed [1, 10].

We now proceed with the algorithm: Having chosen
an x so that the sequence {xa (modN)} has an even pe-
riod r, we rewrite the expression xr ≡ 1 (modN) as the
difference of two squares:

(xr/2)2 − 1 ≡ 0 (modN) .

Expressing the left-hand-side as a product between a sum
and difference we obtain

(xr/2 + 1)(xr/2 − 1) ≡ 0 (modN) .

This simply says that the product of the two terms on
the left is a multiple of the number N we wish to factor.
Thus, either one or the other of these terms must have
a factor in common with N . The final step in the algo-
rithm then is to calculate the greatest common divisor
of these terms individually with N (see the appendix for
an efficient classical algorithm); any non-trivial common
divisor will be a factor we have sought, thus completing
our search.

As an example, consider the number N = 91. Choos-
ing x = 3 we find that the sequence 3a (mod 91) has the
form:

a : 0, 1, 2, 3, 4, 5, 6, 7, . . .
3a : 1, 3, 9, 27, 81, 243, 729, 2187, . . .

3a (mod 91) : 1, 3, 9, 27, 81, 61, 1, 3,

A quantum computer could calculate the period in par-
allel, however, it is sufficient here to see by eye that this
sequence has a period of r = 6 (since it is even we may
proceed with the algorithm). Rearranging the expres-
sion 36 ≡ 1 (mod 91) as discussed above we conclude that
28×26 ≡ 0 (mod 91). This implies that either gcd(28, 91)
or gcd(26, 91) will be a non-trivial factor of 91 (where gcd
is the greatest common divisor function). In fact, in this
case, both terms yield a different factor, 7 and 13, re-
spectively. This completes the prime factorization of 91
yielding: 91 = 7× 13.

12. QUANTUM ERROR CORRECTION

Building a quantum computer is a daunting task. Even
within apparently small atomic-scale systems, quantum
computation runs on the enormous size of Hilbert space.
Quantum computation involves building a trajectory
from a standard initial state to a complex final state.
The main difficulty is keeping to this trajectory. To fail
is to be lost in Hilbert space. The largest problem is
hypersensitivity to perturbations, shifting the computa-
tional trajectory randomly from its path. Such pertur-
bations come from an unintentional coupling to external
noise [48]. In this section we briefly touch on quantum
error correction and fault tolerant computing, both intro-
duced by Shor [5, 49], which promise to greatly alleviate
the problem associated with unwanted perturbations.

In straight quantum error correction the state of a frag-
ile quantum system is encoded into a quantum system
having more degrees of freedom. By choosing the map-
ping to a suitable subspace of the larger system a limited
class of errors which occur on this larger space may be
completely removed. In Fig. 12 we see a circuit for Shor’s
original scheme. [Since then much work has been done
in the last year [50–55] (to cite just a few)]. The un-
protected single qubit |ψ〉 is processed by the left half of
the circuit shown in Fig. 12 until just before the shaded
region. The resulting combined 9-qubit state represents
the now error protected encoded state. Any single qubit
error (represented by the shaded region) on this encoded

11

state may now be ‘undone’ by sending the state through
the decoding and correcting circuit shown to the right of
the shaded region.

R̂

R̂

R̂

R̂

R̂

R̂|ψ〉

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

|0〉
|ψ〉

FIG. 12: Schematic of Shor’s original error correction scheme
to protect one qubit in a 9-qubit code against arbitrary 1-
qubit decoherence [5]. The unprotected qubit enters as qubit
from the left. It’s error protection encoded state is just to the
left of the shaded region. This region represents an arbitrary
1-qubit error which may be introduced due to coupling to the
environment. To recover the original qubit one performs the
remainder of the circuit to the right of the decoherence. (The
text describes the new ciruit elements.)

We have introduced three new circuit elements in
Fig. 12 which we now explain: The first 3-qubit gate
involves a single control qubit (at the heavy dot) from
qubit 1 to qubits 4 and 7. This gate is a shorthand nota-
tion for a pair of XOR gates (or controlled-NOT gates)
between gates 1 and 4 and gates 1 and 7. The second
new 3-qubit gate involves two control qubits (see for ex-
ample the last gate in the decoding circuit). This is a
Toffoli gate with the condition to flip qubit 1 given by
the logical AND of qubits 4 and 7 (recall that these log-
ical operations occur separately for each branch of the
wavefunction). (In this circuit a Toffoli gate without ex-
traneous phases is required.) Finally, the single qubit

gate labelled R̂ is defined by

R̂ |0〉 = (|0〉+ |1〉)/
√
2

R̂ |1〉 = (|0〉 − |1〉)/
√
2 ,

which is a variation of the operation Û−π/2 discussed ear-
lier.

The above scheme and its variations allow for the long
term storage of quantum information. Unfortunately,
they require that the encoding and decoding circuitry
operate without error. Further, the above circuitry only
slows the rate of decoherence, but does not eliminate its
effect. By contrast, fault tolerant quantum computation
can get around these problems and, in principle, allows
for unlimited quantum computation provided a threshold
in accuracy for each elementary gate’s operation in the
presence of decoherence can be surpassed. Fault tolerant
computation involves a sophisticated redesign of the er-
ror correction and computation circuitry so as to allow

for the imperfect operation of individual gates or for a
decoherence event during computation. The future suc-
cess of quantum computation will almost certainly rely
quite heavily on these techniques and upon our ability
to detmine theoretically, and experimentally surpass, the
threshold (see Refs. 56).

13. PROSPECTS

We now describe the likely prospects for quantum com-
putation. In this paper we discussed a single algorithm
yielding an exponential speed-up over conventional meth-
ods: Effectively the calculation of the period of a long
sequence. To date this is the only algorithm display-
ing such a speed-up. This algorithm was applied to a
traditional computer-science problem, factoring, only by
recognizing a deeper structure within that problem. This
requirement appears to be a general one: Quantum par-
allelism will only yield an exponential speedup in prob-
lems whose structure avoids the need to try exponen-
tially many solutions [57–60]. Thus, a brute force ap-
proach to some of the hardest computational questions,
known as NP-complete problems, will not succeed with
the aid of quantum parallelism. Any progress for such
problems will require finding a deeper structure within
them. Thus, it appears likely that quantum comput-
ers will be useful for simulating (or manipulating) small
quantum systems [7, 11, 61]. Finally, a class of algo-
rithms for quantum computers for data base searching,
estimating the median of a data base etc [62], have been
discovered which yield a modest improvement: They take
roughly the square-root of the number of computational
steps as required on a conventional computer.

How difficult will it be to build a quantum com-
puter? Currently, several implementations are being con-
sidered by theoreticians and experimentalists worldwide
[2–4, 25, 26, 29, 31, 32, 63, 64]. The most promis-
ing scheme to date appears to invovle linear ion traps
[3, 29, 31]. There are already several theoretical stud-
ies investigating the limitations to these systems and for
numerous reasons it seems that ion trap quantum com-
puters will be limited to computations involving no more
than around 10 to 20 ions [65–68]. It seems likely then
that the first generation of quantum computers will not
be performing traditional computations but will be used
for the manipulation of small amounts of quantum infor-
mation: a quantum information processor employed pos-
sibly for quantum cryptography, quantum teleportation,
quantum storage and quantum communication of quan-
tum information. Indeed, these non-traditional tasks will
probably lead to new kinds of technology even with the
relatively modest quantum computers we will be capable
of building within a few years.

Over the next couple of decades we will approach com-
puting at the atomic scale. Heat dissipation will be-
come an ever increasing problem. The lessons from re-
versible classical computation and quantum computation

12

may help us overcome this engineering hurdle.

14. GLOSSARY

Qubit: Quantum bit of information. The amount of
information that may be held by a two-level quantum
system.

APPENDIX

Here we describe Euclid’s algorithm for finding the
greatest common divisor (gcd) between a pair of numbers
n0 ≥ n1 [69]. The algorithm proceeds by calculating the
sequence of divisions with remainder for these numbers:

n0 = d1 × n1 + n2

n1 = d2 × n2 + n3

...

nm−2 = dm−1 × nm−1 + nm

nm−1 = dm × nm + 0 ,

where the dm are the quotients and nm−1 ≥ nm at each
stage. The last non-zero remainder nm yields the answer,
i.e., gcd(n0, n1) = nm. For example, the sequence

91 = 3× 28 + 7

28 = 4× 7 + 0 ,

shows that gcd(28, 91) = 7 in just two steps. The worst
case number of steps required to complete Euclid’s algo-
rithm is O(log log n1).

Acknowledgements:

The author appreciate discussions with Charles Ben-
nett, Netta Cohen, David DiVincenzo, Richard Jozsa,
Peter Shor, Robert Solovay and Umesh Vazirani. This
work funded in part by a Feinberg Fellowship while the
author was visiting the Chemical Physics Department at
the Weizmann Institute of Science, Rehovot, Israel and
in part by a Humboldt Fellowship while visiting the Uni-
versität Ulm, Germany.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computa-
tion: Discrete logarithms and factoring,” in Proc.
35th Annual Symposium on the Foundations of Com-
puter Science, edited by S. Goldwasser (IEEE Com-
puter Society Press, Los Alamitos, California, 1994),
pp. 124-134.

[2] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi
and H. J. Kimble, “Measurement of conditional
phase shifts for quantum logic,” Phys. Rev. Lett.
75, 4710-4713 (1995).

[3] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano
and D. J. Wineland, “Demonstration of a fundamen-
tal quantum logic gate,” Phys. Rev. Lett. 75, 4714-
4717 (1995).

[4] N. Gershenfeld and I. Chuang, “Bulk spin-resonance
quantum computation,” Science 275, 350-356
(1997).

[5] P. W. Shor, “Scheme for reducing decoherence in
quantum computer memory,” Phys. Rev. A 52,
R2493-R2496 (1995).

[6] P. Benioff, “ The computer as a physical sys-
tem: a microscopic quantum mechanical Hamilto-
nian model of computers as represented by Turing
machines,” J. Stat. Phys. 22 563-591 (1980); “Quan-
tum mechanical Hamiltonian models of discrete pro-
cesses,” J. Math. Phys. 22, 495-507 (1981); “Quan-
tum mechanical models of Turing machines that dis-
sipate no energy,” Phys. Rev. Lett. 48, 1581-1585
(1982); “Quantum mechanical Hamiltonian models
of discrete processes that erase their own histories:
application to Turing machines,” Int. J. Theor. Phys.
21, 177-201 (1982); “Quantum mechanical Hamilto-
nian models of Turing machines,” J. Stat. Phys. 29,
515-546 (1982).

[7] R. P. Feynman, “Simulating physics with comput-
ers,” Int. J. Theor. Phys. 21, 467-488 (1982); “Quan-
tum mechanical computers,” Found. Phys. 16, 507-
531 (1986) [reprinted from Opt. News 11, 11 (1985)].

[8] D. Deutsch, “Quantum theory as a universal phys-
ical theory,” Int. J. Theor. Phys. 24, 1-41 (1985);
“Quantum theory, the Church-Turing principle and
the universal quantum computer,” Proc. Roy. Soc.
Lond. A 400, 97-117 (1985).

[9] D. P. DiVincenzo, presented at Quantum Computa-
tion 1994, Villa Gualino, Turin, Italy, October 1994,
unpublished.

[10] A more technically detailed description of the Shor
algorithm may be found in: A. Ekert and R. Jozsa,
“Quantum Computation and Shor’s Factoring Algo-
rithm,” Rev. Mod. Phys. 68(3), July (1996).

[11] D. P. DiVincenzo, “Quantum computation,” Sci-
ence, 270, 255-261 (1995).

[12] R. W. Keyes, “Miniaturization of electronics and its
limits,” IBM J. Res. Develop. 32, 24-28 (1988).

[13] The seminal paper in reversible computation:
R. Landauer, “Irreversibility and heat generation in
the computing process,” IBM J. Res. Develop. 3,
183-191 (1961).

[14] D. E. Muller, “Complexity in electronic switch-
ing circuits,” IRE Trans. Electr. Comput. 5, 15-19
(1956).

[15] This paper describes the history of reversible com-
putation: C. H. Bennett, “Notes on the history of
reversible computation,” IBM J. Res. Develop. 32,
16-23 (1988).

[16] T. Toffoli, “Reversible computing,” in Automata,
Languages and Programming, Eds. J. W. de Bakker
and J. van Leeuwen (Springer-Verlag, New York,

13

1980) pp. 632-644.
[17] E. Fredkin and T. Toffoli, “Conservative logic,” Int.

J. Theor. Phys. 21, 219-253 (1982).
[18] C. H. Bennett, “Logical reversibility of computa-

tion,” IBM J. Res. Develop. 17, 525-532 (1973).
[19] C. H. Bennett, “Time/space trade-offs for re-

versible computation,” SIAM J. Comput. 18, 766-
776 (1989).

[20] M. Li, J. Tromp and P. Vitanyi, “Analysis of Re-
versible Simulation of Irreversible Computation by
Pebble Games,” Physica D 120, 168-176 (1998).

[21] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVin-
cenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin
and H. Weinfurter, “Elementary gates for quantum
computation,” Phys. Rev. A 52, 3457-3467 (1995).

[22] D. P. DiVincenzo, “Two-bit gates are universal for
quantum computation,” Phys. Rev. A 51, 1015-1022
(1995).

[23] D. P. DiVincenzo, private communication and work
presented at Quantum Computation 1995, Villa
Gualino, Turin, Italy, June 1995, unpublished.

[24] D. Deutsch, “Quantum computational networks,”
Proc. Roy. Soc. Lond. A 425, 73-90 (1989).

[25] A. Barenco, D. Deutsch and A. Ekert, “Conditional
quantum dynamics and logic gates,” Phys. Rev.
Lett. 74, 4083-4086 (1995).

[26] T. Sleator and H. Weinfurter, “Realizable univer-
sal quantum gates,” Phys. Rev. Lett. 74, 4087-4090
(1995).

[27] D. Deutsch, A. Barenco and A. Ekert, “Universality
of quantum computation,” Proc. Roy. Soc. Lond. A
449, 669-677 (1995).

[28] S. Lloyd, “Almost any quantum logic gate is univer-
sal,” Phys. Rev. Lett. 75, 346-349 (1995).

[29] J. I. Cirac and P. Zoller, “Quantum computations
with cold trapped ions,” Phys. Rev. Lett. 74, 4091-
4094 (1995).

[30] T. Thompson, “When silicon hits its limits, what’s
next?” Byte 21(4), 45-54 (1996).

[31] T. Pellizzari, S. A. Gardiner, J. I. Cirac and P. Zoller,
“Decoherence, continuous observation and quantum
computing: a cavity QED model,” Phys. Rev. Lett.
75, 3788-3791 (1995).

[32] S. Lloyd, “A potentially realizable quantum com-
puter,” Science 261, 1569-1571 (1993).

[33] P. W. Shor, presented at Quantum Computation
1994, Villa Gualino, Turin, Italy, October 1994, un-
published.

[34] D. Coppersmith, “An approximate Fourier trans-
form useful in quantum factoring,” IBM Research
Report RC19642 (1994).

[35] R. Cleve, “A note on computing Fourier trans-
forms by quantum programs,” University of British
Columbia preprint (1994).

[36] I. L. Chuang, R. Laflamme, P. W. Shor and
W. H. Zurek, “Quantum computers, factoring and
decoherence,” Science 270, 1633-1635 (1996).

[37] In fact, we must be careful that the discrete Fourier

transform yields sufficient resolution to extract the
multiple of the inverse period from c/q. This is al-
ways possible provided the number of bits k in the
first quantum register satisfies r2 ≤ q = 2k.

[38] W. H. Press, B. P. Flannery, S. A. Teukolsky and
W. T. Vetterling, Numerical Recipies: The Art of
Scientific Computing (Cambridge University Press,
Cambridge, 1988), pp. 390.

[39] A. M. Odlyzko, “The future of integer factorization,”
AT&T Bell Laboratories preprint 1995.

[40] R. Rivest, A. Shamir and L. Adleman, “A method
of obtaining digital signatures and public-key cryp-
tosystems,” Communications ACM 21, 120-126
(1978).

[41] D. Atkins, M. Graff, A. K. Lenstra and P. C. Ley-
land, “The magic words are squeamish ossifrage,”
in Advances in Cryptology - ASIACRYPT ’94, Eds.
J. Pieprzyk and R. Safavi-Naini, Lecture Notes in
Comp. Sci. 917 (Springer Verlag, Berlin, 1995),
pp. 263-277.

[42] O. Goldreich, Foundations of Cryptogr-
pahy (Fragments of a book), available at
http://theory.lcs.mit.edu/∼oded.

[43] See Ref. 38 pp. 228, where the DES algorithm is
recommended as a pseudonumber generator for the
simulation of physical processes.

[44] A. M. Odlyzko, “Public key cryptography,” AT&T
Tech. J. 73, 17-23 (1994).

[45] B. Schneier, Applied Cryptography, (Wiley, New
York, 1994).

[46] D. Beckman, A. N. Chari, S. Devabhaktuni and
J. Preskill, “Efficient networks for quantum factor-
ing,” Phys. Rev. A 54, 1034-1063 (1996).

[47] Since the period r is not known beforehand, we re-
quire N2 ≤ q = 2k for the Fourier transform step to
yield sufficient resolution [1, 10].

[48] W. G. Unruh, “Maintaining coherence in quantum
computers,” Phys. Rev. A 51, 992-997 (1995).

[49] P. W. Shor, “Fault-tolerant quantum computation,”
in Proceedings of the 37th Annual Symposium Foun-
dations of Computer Science (IEEE Comput. Soc.
Press, Los Alamitos, CA, 1996), pp. 56-65.

[50] A. M. Steane, “Error correcting codes in quan-
tum theory,” Phys. Rev. Lett. 77, 793-797 (1996);
“Multiple-particle interference and quantum error
correction,” Proc. Roy. Soc. London 452, 2551-2576
(1997); “Simple quantum error-correcting codes,”
Phys. Rev. A 54, 4741-4751 (1997).

[51] A. R. Calderbank and P. W. Shor, “Good quantum
error-correcting codes exist,” Phys. Rev. A 54, 1098-
1105 (1996).

[52] A. R. Calderbank, E. M. Rains, P. W. Shor and
N. J. A. Sloane, “Quantum error correction and or-
thogonal geometry,” Phys. Rev. Lett. 78, 405-408
(1997).

[53] R. Laflamme, C. Miquel, J. Pablo Paz and
W. H. Zurek, “Perfect quantum error correcting
code,” Phys. Rev. Lett. 77, 198-201 (1996).

14

[54] E. Knill and R. Laflamme, “Theory of quantum
error-correcting codes,” Phys. Rev. A 55, 900-911
(1997).

[55] D. Gottesman, “Class of quantum error-correcting
codes saturating the quantum Hamming bound,”
Phys. Rev. A 54, 1862-1868 (1996).

[56] There are several papers on fault tolerant computa-
tion: [49]; D. P. DiVincenzo and P. W. Shor, “Fault-
Tolerant Error Correction with Efficient Quantum
Codes,” Phys. Rev. Lett. 77, 3260-3263 (1996);
M. B. Plenio, V. Vedral and P. L. Knight, “Con-
ditional generation of error syndromes in fault-
tolerant error correction,” Phys. Rev. A 55, 4593-
4596 (1997); D. Aharonov and M. Ben-Or, “Fault
Tolerant Quantum Computation with Constant Er-
ror,” LANL preprint quant-ph/9611025; A. Steane,
“Active stabilisation, quantum computation and
quantum state synthesis,” LANL preprint quant-
ph/9611027; C. Zalka, “Threshold Estimate for
Fault Tolerant Quantum Computation,” LANL
preprint quant-ph/9612028 and; D. Gottesman,
“Theory of Fault-Tolerant Quantum Computation,”
Phys. Rev. A 57, 127-137 (1998).

[57] R. Jozsa, “Characterizing classes of functions com-
putable by quantum parallelism,” Proc. R. Soc.
Lond. A 435, 563-574 (1991).

[58] D. Deutsch and R. Jozsa, “Rapid solution of prob-
lems by quantum computation,” Proc. R. Soc. Lond.
A 439, 553-558 (1992).

[59] A. Chi-Chih Yao, “Quantum circuit complexity,” in
Proceedings 34th Annual Symposium on Foundations
of Computer Science (IEEE New York, NY, 1993),
pp. 352-361.

[60] C. H. Bennett, E. Bernstein, G. Brassard and
U. V. Vazirani, “Strengths and weaknesses of quan-
tum computing,” Siam J. Comp. 26, 1510-1523

(1997).
[61] S. Lloyd, “Universal quantum simulators,” Science

273 1073-1078 (1996).
[62] L. K. Grover, “A fast quantum mechanical algo-

rithm for database search,” in Proceedings, 28th
Annual ACM Symposium on the Theory of Com-
puting, (ACM, New York, NY, 1996) pp. 212-219;
L. K. Grover, “A fast quantum mechanical algorithm
for estimating the median,” LANL preprint quant-
ph/9607024; M. Boyer, G. Brassard, P. Hoeyer and
A. Tapp, “Tight bounds on quantum searching,”
Fort. Phys. 46, 493-505 (1998).

[63] R. J. Hughes, presented at Quantum Computation
1995, Villa Gualino, Turin, Italy, June 1995, unpub-
lished.

[64] D. Loss and D. P. DiVincenzo, “Quantum computa-
tion with quantum dots,” Phys. Rev. A 57, 120-126
(1998).

[65] M. B. Plenio and P. L. Knight, “Realistic lower
bounds for the factorization time of large numbers
on q quantum computer,” Phys. Rev. A 53, 2986-
2990 (1996).

[66] R. J. Hughes, D. F. V. James, E. H. Knill,
R. Laflamme and A. G. Petschek, “Decoherence
bounds on quantum computation with trapped
ions,” Phys. Rev. Lett. 77, 3240-3243 (1996).

[67] A. Steane, “The ion trap quantum information pro-
cessor,” Appl. Phys. B 64, 623-642 (1997).

[68] M. B. Plenio and P. L. Knight, “Decoherence limits
to quantum computation using trapped ions,” Proc.
Roy. Soc. Lond. A 453, 2017-2041 (1997).

[69] G. H. Hardy and E. M. Wright, An introduction
to the theory of numbers (Oxford, Clarendon Press,
1979).

