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Local realism implies constraints on the statistics of two physically separated systems. These
constraints, known collectively as Bell inequalities, can be violated by quantum mechanics.
The standard Bell inequalities apply to a pair of two-state systems and constrdin the value of
some linear combination of correlation functions between the two systems. We generalize
these standard Bell inequalities in two ways. First, we “chain” the Clauser—Horne-Shimony-
Holt Bell inequality to obtain chained correlation Bell inequalities for two-state systems; we
model a real experiment to show that these chained Bell inequalities lead to stronger quantum
violations. Second, we formulate information-theoretic Bell inequalities, which are written in
terms of the average information obtained in several measurements on a pair of physically
separated systems (not just two-state systems); these information Bell inequalities have an
appealing interpretation: if local realism holds, the two systems must carry an amount of
information consistent with the inequality.  © 1990 Academic Press, Inc.

1. INTRODUCTION

Local realism holds that physical systems posses local objective properties that
are independent of observation. Bell's [1] genius was to realize that local realism,
far from being just an appealing world view, has experimentally testable consequen-
ces. Specifically, local realism implies constraints on the statistics of two or more
physically separated systems. These constraints, known collectively as Bell
inequalities (for reviews and extensive reference lists see [2-7]), can be violated by
the statistical predictions of quantum mechanics. Thus emerges the possibility of an
experimental confrontation between the predictions of quantum mechanics and the
requirements of local realism.

The standard Bell inequalities apply to a pair of physically separated two-state
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systems (e.g., two spin-§ particles) and are written in terms of correlations between
measurable quantities (observables) associated with the two systems. A prime
example of such a correlation Beli inequality is the Clauser-Horne-Shimony-Holt
(CHSH) inequality [8], which deals with four measurable quantities, two for each
two-state system (e.g., spin components in different directions). Associated with
these four quantities are four correlation functions that involve one quantity from
each system. The CHSH inequality constrains the value of a certain linear combina-
tion of these four correlation functions. It is an immediate consequence of assuming
that the four quantities are local objective properties of the two systems.

Since observables associated with one system commute with those associated
with the other system, quantum mechanics does predict values for the four correla-
tion functions. When the two systems are prepared in an appropriate correlated
quantum-mechanical state (e.g., a state of zero total spin for two spin-4 particles),
the quantum-mechanical predictions violate the CHSH incquality for certain
choices of the four measurable quantities. Thus quantum mechanics is inconsistent
with the dictates of local realism. The violation has been confirmed experimentally
in two-photon atomic cascade experiments [9-117, where the photons have
correlated polarizations and the measurable quantities are polarizations along
various directions.

In this paper we explore two ways to generalize the usual correlation Bell
inequalities. The first kind of generalization relies on a technique that we call
“chaining” [12-14], because the resulting Bell inequalities follow from iterating a
simple Bell inequality, such as the CHSH inequality. Although chaining should
apparently lead to weaker conditions for local realism, chained Bell inequalities, in
fact, have stronger quantum violations, because chaining makes more onerous the
requirements of local realism by attributing to each of the two systems a larger
number of local objective properties. We apply chaining to the CHSH inequality,
and we then consider 2 simple model of an experimental setup, in order to quantify
the strength of quantum violations.

The second generalization we consider is to formulate information-theoretic Bell
inequalities [12, 133, which are written in terms of the average information
obtained in several measurements on two physically separated systems.The motiva-
tion for introducing information comes from the idea that if these systems have
local objective properties, they must carry information about those properties—
information that we obtain in measurements. Unlike correlation Bell inequalities,
our information Bell inequalities apply to any pair of physically separated
systems—not just two-state systems. As expressions of local realism, these informa-
tion Bell inequalities have a particularly appealing interpretation: if local realism
holds, the two systems must carry an amount of information consistent with the
inequality. The simplest information Bell inequality is analogous to the CHSH
inequality in that it involves four measurable quantities, two from each system, and
four types of measurements, in which one quantity from each system is measured.
The quantum statistics of two spin-s particles in a state of zero total spin violate
this simplest information Bell inequality for all values of s.
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In Section 2 we review the conflict between quantum mechanics and local realism
and present a simple derivation [15, 16] of the CHSH inequality. The derivation
highlights the roles of objectivity and locality in establishing the CHSH inequality;
generalizations of the same derivation are used to establish all the other Bell
inequalities in this paper. In Section 3 we sketch briefly the status of experimental
tests of the CHSH inequality. In Section 4 we chain the CHSH inequality. and
explore the implications of such chained correlation inequalities for experimental
tests of local realism. In Section 5 we review pertinent elements of information theory
as a prelude to formulating information Bell inequalities in Section 6. Finally, in
Section 7 we use information Bell inequalities as a tool to explore the meaning of
Bell inequalities. We suggest that there is a hicrarchy of information Bell
inequalities that apply to a single system, to two systems, and to more than two
systems. Within this hierarchy the two-system Bell inequalities play a special role
in that they lead to the simplest direct tests of local realism.

2. LocaL REALISM AND QUANTUM MECHANICS

What is the problem with quantum mechanics? Brash though it is to ask this
question, it is brasher still to attempt an answer. We take the plunge anyway, with
assurance to the reader that in the end we deal not with the whole problem, but
only with a small, rather well-defined piece. :

Anyone who has taken an introductory course in quantum mechanics knows that
the wave function plays an essential role in the theory. One might be tempted,
therefore, to regard the wave function as an objective quantity, which exists “out
there,” independent of our own existence. This view rolls merrily along so long as
the wave function evolves according to the deterministic Schrédinger equation, but
it hits a brick wall when it encounters the collapse of the wave function—the
sudden, unpredictable change that occurs when one observes a system and obtains
information about it. Wave-function collapse keeps those parts of the wave function
that are consistent with the newly obtained information and throws away the rest.
It raises some difficult questions. Why should an objective wave function change at
all when one obtains information? Where do the discarded parts of the wave
function “go” when one observes a system?

A logical way out of this conundrum is to adopt the “many-worlds” interpretation
[17} of quantum mechanics, in which the Schrodinger equation is never suspended
and there i1s no wave-function collapse. Unfortunately, this interpretation retrieves
the discarded parts of the wave function only to place them in other branches of
the universe where they remain inaccessible from “our” branch forever. This inter-
pretation, then, leaves us with an untestable proposition.

Try again. Suppose we regard the wave function not as an objective quantity, but
“merely” as a mathematical tool—a repository of information about a physical
system. Then there is no problem with wave-function collapse, which simply
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instructs us to throw away those parts of the wave function that are inconsistent
with new information obtained when we observe a system. The situation is similar
to the Bayesian view [18] of probabilities, in which a probability is a subjective
repository of information about objective properties of some system. If we learn
something about the system, we naturally change the probability to be consistent
with our new knowledge. In probability theory this “collapse of the probability”
goes under the name of Bayes’s theorem. Now that we are happy about wave-
function collapse, however, we face another tough question: Is the information
stored in the wave function information about objective properties? If so, why can
we not get our hands on those properties? More important, why can we not use
ordinary probability logic to describe these objective properties, instead of being
forced to use the probability amplitudes of quantum mechanics?

Bell’s great contribution [1] was to see that these questions can be put to
cxperimental test. He realized that if systems have local objective properties, this
fact alone places constraints on the statistics of two physically scparated systems,
and he further realized that under certain circumstances the statistical predictions
of quantum mechanics violate these constraints. Thus quantum mechanics is incon-
sistent with the notion that systems have local objective propertics. The real
problem, then, is this: how do objective properties—what we actually see in
experiments—arise from a quantum-mechanical description that is manifestly not
objective? We do not attempt to answer this deep question, our goal in this paper
being more modest: to wring out variations on the theme of Bell, with the hope of
gaining insight into the conflict of quantum mechanics with objectivity.

We start by reviewing the argument of Einstein, Podolsky, and Rosen (EPR)
[19] that systems do have objective properties and that quantum mechanics must
be extended to describe those properties. We use Bohm’s version [20] of the
original EPR paradox, in which a pair of spin-1 particles, o and #, with spin
vectors X, and X, (in units of %), are formed by decay in a spin-singlet state, so
that their spins are perfectly anticorrelated. If a measurement of the spin component
L -b of particle «/ yields the value +1 (here b is a unit vector that specifies the
orientation of a detector), then a subsequent measurement of the spin component
L, b of particle # must yield —1. If the detectors are separated by a large
distance, so that they cannot communicate during these measurements, then the
result of measuring Z,-b must have been predetermined, since we could have
predicted it from a measurement of X, -b without having in any way disturbed
particle #. Its being predetermined, however, should not depend on our first
measuring X, -b, so we conclude that £, -b is a “concrete,” objective property of
particle 4. '

This argument does not depend on the direction of b, so we conclude that any
spin component of particle £ is an objective property of particle 4. Reversing the
roles of particles &/ and %, we conclude similarly that any spin component of
particle </ is an objective property of particle . A quantum-mechanical
description via a wave function allows predictions for pairs of spin components, one
for each particie, but it has no notion of more than one spin component for each
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particle. Two different spin components for a single particle do not commute, so we
cannot talk about them quantum mechanically. Thus the argument of EPR is that. -
quantum mechanics is an incomplete description of reality that must be extended
in some way to describe all these objective properties.

The notion that systems have local objective properties is called local realism.
Bell [1] took seriously the argument of EPR and explored the consequences of
assuming local realism. He derived a constraint that must be satisfied by any local
realistic description of the two particles, thus turning local realism into an
experimentally testable proposition. Bell’s constraint took the form of an inequality
satisfied by a certain linear combination of correlation functions between the two
particles. Bell further showed that the quantum statistics of the two particles in a
spin-singlet state violate this inequality, thus placing quantum mechanics in direct
conflict with focal realism,

Since Bell’s original work many other constraints imposed by local realism
have been identified (see [2-6]). These constraints, known collectively as Bell
inequalities, generally apply to pairs of two-state systems, just as in Bohm’s version
of the EPR paradox. We turn now to a Bell inequality first formulated by Clauser,
Horne, Shimony, and Holt (CHSH) [8], and we review a simple derivation of this
inequality [15, 16]. The derivation is instructive in that it highlights the roles of
objectivity and locality and it serves as the basis for deriving generalized Bell
inequalities in subsequent sections.

Return to the two spin-i particles considered above, and pick out two spin
components for each particle. Let the spin components for particle .« be specified
by unit vectors a and a’ and the spin components for particle Z be specified by unit
vectors b and b'. We introduce a shorthand notation for the spin components:
Z,=X_,.a, X,=L _,-a', 2,=X,-b, and X, =X,-b. Each of these spin
components takes on values + I; we use the corresponding lower-case letters—ao,,
G, 04, and o,—to denote these possible values. In a guantum-mechanical descrip-
tion the two spin compenents for each particle do not commute and hence cannot
be determined simultaneously. Thus we have in mind a series of experimental runs,
in each of which one measures two spin components, one from each particle,

Suppose now that these four spin components are local objective properties of
the two particles; then, in each run of the experiment, ali four have definite values,
independent of observation. One does not know these values, and one determines
only two values—one from each particle—in each run. Nonetheless, in any local
realistic theory, what is known is described by a joint probability p(s,, 6., ¢4, 0,)
for the values of the four components. From this joint probability follows a pair
probability for each measurable pair of spin components—e.g.,

p(aar ab) = Z p(aw O-a" Jb: Gb')-

Ta's T

If the two particles are physically separated, a measurement of a local property
of one shouid not disturb a local property of the other. This no-disturbance
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assumption, justified on the basis of locality, means that the statistics of runs that
measure a particular pair of spin components are described by the appropriate pair
probability. More precisely, for runs that measure X, and X,, the probability of
obtaining the value o, for X, is ple,)=3,, plo,, 0,), and the probability of
obtaining the value g, for X, given valuve o, for 2, is p(c, | 6,) = p(0,, ,)/p(0,).
How would a disturbance manifest itself? The conditional statistics of 2, given
that X, has been determined to have value ¢,, would not be those predicted by the
conditional probability p(c, | ¢,). It should be noted that quantum mechanics
satisfies this locality assumption if 2, and X', are commuting observables, as indeed
they are since spin components for different particles commute.

In the preceding argument objectivity is called on to establish the existence of
the joint probability p(e,.e,,0,,0,), and locality is invoked to justify a
no-disturbance assumption, which establishes the relevance of the joint probability
to the statistics of the planned experimental runs. Note that both objectivity and
locality are needed to relate the joint probability to the statistics of an actual
experiment,

If the spin components are local objective properties, then we can write expres-
sions involving their values in each experimental run (i.e., for each pair of particles).
Consider, for instance, the expression [15, 16]

Ja(ab’ - O-b) + Ua'(ab' + Jb) = i2: (2'1)

which is trivially true for each run since each spin component takes on only the
values +1. This expression contains values that cannot be determined simulta-
neously in quantum mechanics, but we can average it over the joint probability
plo,, 6., 04, 0,) to obtain an inequality [(absolute value of average) < (average of
absolute value)],

|C(a, b') + C(b, a’)+C(a’, b)— C(b, a)| <2. (2.2)
Here the average
Cla,b)=<0,0,>= )} 0.,0,p(c,,0,) (2.3)
Tg. Tp

is the correlation between spin components X, and X,. Inequality (2.2) is the
CHSH Bell inequality. The correlation functions in {2.2) can be determined from
the statistics of the four types of experimental runs.

By writing the four unit vectors as a list a, b’, a’, b, one can casily remember the
form of the CHSH inequality (2.2); we shall say that Eq.(2.2) is the CHSH
inequality corresponding to the list a, b’, a’, b. For any four unit vectors there are
four independent CHSH inequalities (actually eight inequalities since each CHSH
mequahty 1s a double inequality), corresponding to the four lists a, b’, a’, b; a, b,
a’,b;a’,b,a byanda’, b, a b’

What does quantum mechamcs have to say about the CHSH inequality? The
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quantum-mechanical correlation function C(a, b) for two spin-3 particles in a spin-
singlet state depends only on the angle 0 between a and b and is given by [2]

C(a,b)=C(8)= —cos§. 24)

Suppose we let the unit vectors a, b’, a’, b be coplanar, with successive vectors in
the list separated by angle 0/3, so that a and b are separated by angle 6. Then quan-
tum mechanics violates the CHSH inequality (2.2) whenever the quantity

S=[3C(8/3)—C(0) —2, (2.5)

the “signal for violation,” is positive. So long as 0 is small enough that the term
within the absolute value is not positive (8] < 3r/2), .S can be written as

S=[§+C(9)]—3[1+C(9/;’:)]. (2.6)

The non-negative quantity 1+ C(8) goes to zero at § =0 because of the perfect
anticorrelation of two spin components in the same direction. To satisfy the CHSH
inequality (ie., S<0), however, 1+ C(0) cannot go to zero faster than linearly in
§. Thus the quantum-mechanical correlation function (2.4), with its quadratic
dependence on # for small angles, obviously violates the CHSH inequality:

S=6%3 for |8 <l (27

The maximum value of S, which occurs at 8 =3n/4=135° is 2(\/5— 1)=0.8284.

The quadratic dependence of the quantum-mechanical correlation function
expresses the fact that the spins of the two particles are more tightly correlated for
small angles than the CHSH inequality allows. This quadratic dependence arises
because the calculational tools of quantum mechanics are probability amplitudes
instead of probabilities. The probability amplitudes have a linear dependence on 6
for small angles; thus the probabilities, which appear in the correlation function,
have a quadratic dependence.

At this point it is instructive to comsider the meaning and significance of the
CHSH inequality and other Bell inequalities. The assumption that the statistics of
a set of measurable quantities follow from a “grand” joint probability captures, we
claim, two important notions: first, that the quantities under consideration are
objectively real physical properties and, second, that in measurements of certain
subsets of these quantities, a measurement of one quantity does not disturb the
remaining quantities in the subset. For physically separated systems, locality
provides a natural justification for this no-disturbance assumption: a measurement
on one system should not disturb quantities of the other physically separated
systems. Thus we claim that the assumption of a grand probability for a set of
measurabie quantities associated with physically separated systems provides a
general framework for elucidating the requirements set by objectivity and
focality—i.e., by local realism. This point of view has been championed by Garg
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and Mermin [21], who formulate it precisely and investigate its consequences for
a pair of spin-s particles.

In the above derivation the CHSH inequality does follow from assuming that a
Joint probability p(s,, 6, 0,, ;) gives the observable pair statistics of the four
spin components X, X, X,, and Z,.. The question of how the CHSH inequality
is related to the joint probability was answered definitively by Fine [22, 23], who
showed that the observable pair statistics of the four spin components can be
derived from a joint probability if and only if the observable pair probabilities
satisfy a set of eight inequalities called the Clauser-Horne [24] inequalities. The
Clauser-Horne inequalities are, in turn, precisely equivalent to the four CHSH
inequalities for the four spin components.

Fine’s theorem sheds light on a potential restriction in the above derivation of
the CHSH inequalities. That derivation is couched in the language of a “local deter-
ministic hidden-variable theory” [27, although we are careful not to mention
hidden variables. In such a theory the two particles have actual values for their
respective spin components, which are regarded as determined by some unknown
hidden variables. The CHSH inequalities also hold for “local stochastic hidden-
variable theories” [2], where the hidden variables determine not the actual values
of the spin components, but only their probabilities. Fine’s theorem shows that the
observable pair statistics in a stochastic theory can be derived from a joint
probability, and, indeed, the assumptions of a stochastic theory lead directly to a
joint probability [22,23]. From the Bayesian view [18] this result is not
surprising, because there is no difference between deterministic and stochastic
theories: the function of a (classical) probability is to describe insufficient
knowledge of the actual value of objective quantities; it matters not whether one
invokes hidden variables that are sufficient or not sufficient to determine those
actual values.

When quantum mechanics violates the CHSH inequality, it means, strictly speak-
ing, only that the quantum statistics of the four spin components cannot be derived
from a grand joint probability. Since the quantum formalism never contemplates
introducing such a joint probability, the violation might seem neither surprising nor
significant. Indeed, Fine [22, 23] uses precisely this line of reasoning to question
the physical significance of the CHSH inequality—and, more generally, of all Bell
inequalities. Significance is rescued, we believe, by arguing that local realism—the
assumption of local objective properties—ensures the existence and relevance of the
Joint probability. Violation of the CHSH inequality is thus interpreted to mean not
just that quantum mechanics fails to yield some joint probability, but more impor-
tantly, that it conflicts either with objectivity or locality. Qur view is that quantum
mechanics is local and that it conflicts with objectivity, there being no nonlocal
disturbance in the sense defined above.

The significance and meaning of the CHSH and other Bell inequalities is a
contentious question; the reader should be warned that cur views are by no means
universally shared. To illustrate further the range of views, consider that de Muynck
[25], following Fine [22, 23], argues that the joint probability—and, hence, the
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CHSH inequality—does not involve a locality assumption. We have argued above
that the relevance of the joint probability does rely on a no-disturbance assumption,
which can be justified by locality. In contrast to de Muynck, Stapp [26,27], in a
very subtle argument, endeavors to show that the CHSH inequality follows from
locality, with no considerations of objectivity. As we read his derivation, however,
it is the same as the derivation given above, except that Stapp refuses to refer to
the values in Eq. (2.1) as the actual values of the spin components, insisting instead
on cailing them values that “would appear” in different experiments. The distinction
is lost on us, but the reader should not be prejudiced that it would be lost on him.
For the remainder of this paper we adopt the view [21] that Bell inequalities
arise from assuming a grand joint probability. If so, why not take a direct
approach? Start with marginal probabilities predicted by quantum mechanics, and
ask if they can be derived from higher-order “grand” probabilities. This approach
has been pursued by Garg and Mermin [21], who formulate it mathematically and
investigate it for pairs of spin-s particles for several values of 5. The Garg-Mermin
approach is, we believe, the right way to ferret out all the consequences of local
realism for arbitrary systems, but it is not simple to deal with mathematically, nor
does it yield clear-cut constraints for experimental test. We say more about the
Garg-Mermin aproach and about the meaning of Bell inequalities in Section 7.

3. EXPERIMENTAL STATUS OF LOCAL REALISM

In this section we review briefly the experimental status of the confrontation
between quantum theory and local realism. The review sets the stage for chaining
the CHSH inequality in Section 4.

A series of experiments performed in the mid-seventies tested quantum mechanics
against the requirements of local realism. All these experiments were of the same
basic type, along the lines of Bohm’s version of the EPR experiment. Pairs of
correlated particles were generated from some source, and the spin projections or
polarizations of the two particles were measured along various directions in
separate experimental runs. Various kinds of sources were used to generate the
pairs of correlated particles: an atomic cascade producing pairs of photons,
annihilation of positronium, and proton—proton scattering. None of these
experiments was able to test directly the CHSH inequality; they tested instead other
consequences of local realism which require additional assumptions. Although these
experiments tended to support quantum mechanics, they could not be regarded as
conclusive. Clauser and Shimony [2] have reviewed this series of experiments, and
the reader is referred to their review for a detailed description and for references.

The experimental situation was improved decisively by a new set of two-photon
atomic cascade experiments performed by Aspect and various coworkers [9-11, 28]
in the early eighties. In these experiments a pair of photons is created by cascade
decay in a zero-angular-momentum, even-parity state. Polarization analyzers are
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used to measure the polarizations of two such photons moving in nearly opposite
directions.

Suppose the polarization analyzer for the left-moving photon, which we dub
photon &7, is oriented along unit vector a, and the polarization analyzer for the
right-moving photon, which we dub photon 4, is oriented along unit vector b. We
let o, and o, denote the possible results of the polarization measurements in the
following way: ¢,= +1(—1) if photon &/ passes through (reflects from) the
analyzer—ie, if it has polarization along (perpendicular to) a; similarly,
o= +1(—1) if photon 2% is found to be polarized along (perpendicular to) b.

The ideal quantum-mechanical prediction for the correlation

Cla,by={0,0,>= } 0,0,p(c,,0,) (3.1

Ta, Op

between the polarizations depend only on the angle # between the analyzers and is
given by [2] ’

C(a, b)y=C(8) =cos 26. (3.2}

In practice this ideal correlation cannot be achieved because of imperfections in the
experimental setup. Imperfections in the experiments of Aspect and coworkers can
be taken into account by changing the quantum-mechanical prediction for the
correlation function to be

C(8)=# cos 20, (3.3)

where 7 <1 is a coefficient that characterizes the experimental imperfections.. The
coefficient 77 can be modeled by a “data flipping error,” represented by a probability
g that either photon flips its polarization from +1 to —1 or from ~1 to + 1. This
model yields a coefficient # = (1 ~2¢)°. The model describes well the experiments of
Aspect and coworkers, with the main causes of data flipping being imperfections in
the polarization analyzers and the use of detectors that accept photons from a
nonzero solid angle. Tn [10] Aspect, Dalibard, and Roger achieved 5 ~ 0.955.
The major innovations in the experiments of Aspect and coworkers are worth
mentioning. Aspect, Grangier, and Roger [28] started with a high-intensity source
of pairs of low-energy photons emitted in a cascade decay of calcium. This gave
them good statistics in short running times and allowed them to have large source-
polarizer separations (up to 6.5 m). The stability of their source reduced problems
from drifts in the source intensity between runs with the polarization analyzers set
at different orientations. These first experiments—Ilike all previous experiments—did
not test directly the CHSH inequality. Aspect, Grangier, and Roger [9] next incor-
porated two-channel polarization analyzers in the experiment. This allowed them to
measure directly polarization correlations—and thus to test directly the CHSH
inequality—without resorting to assumptions about photons not detected behind
the analyzer. The results of these experiments confirmed quantum mechanics and
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violated the CHSH inequality by more than 40 standard deviations. Aspect,
Dalibard, and Roger [10] subsequently included acoustic switches in front of the
polarization analyzers. Each switch could choose the orientation of its polarization
analyzer while the photons were in flight from the source, thus apparently ruling
out any information transfer between the photons. The use of the acoustic switches
degraded the statistics, but the results of these final experiments nonetheless agreed
with quantum mechanics and violated the CHSH inequality by five standard devia-
tions, showing empirically that a local realistic description of two-photon decays is
not possible.

It is worth mentioning two objections to the experiments of Aspect and
coworkers. The most serious is that the photomultipliers used as detectors had low
quantum efficiency and thus detected only a small fraction of the pairs of photons.
Thus one must make an additional assumption that the pairs observed constituted
an unbiased sample of all pairs. There are several papers [24,29-317 that give
models for systematic effects that could “cnhance” the correlations in such a way as
to mock the predictions of quantum mechanics. The second objection [32] questions
whether locality was strictly enforced with the source-polarizer separations used in
the final experiments of Aspect, Dalibard, and Roger [10]. In these experiments
one of the photons comes from an atomic transition with a lifetime exceeding
40 nsec—longer than it takes light to travel the maximum separations used—so
subluminal information exchanges are not entirely ruled out.

In atomic cascade tests of the CHSH inequality there is a tradeoff between a
desire to keep the correlation function nearly ideal, which pushes the experimenter
to reduce the solid angle accepted by his detectors, and the desire for good
statistics, which drives the experimenter to open up the solid angle. An experiment
by Alley and Shih [33,34] holds the promise of avoiding this tradeoff. In the
Alley-Shih experiment a pair of photons is created by parametric down conversion.
The two photons have the same polarization, and they are correlated spatially and
temporally. They travel in diverging but well defined directions. The polarization of
one of the photons is first rotated by 90°, and then the two photons are combined
at a 50/50 beam splitter. For each pair of photons there are four possible outcomes:
two outcomes in which both photons end up on the same side of the beam
splitter—one transmitted, the other reflected—and two outcomes in which the
photons end up on opposite sides—both transmitted or both reflected. If one
records only events in which there are photons on both sides of the beam splitter,
the effective quantum state becomes a simple superposition of the latter two
possibilities. This state mimics the state produced by a two-photon cascade decay,
except that the photons travel in weli-defined directions, so each detector can -
intercept the entire beam without suffering any reduction in the ideal quantum-
mechanical correlation function.

The current versions of the Alley-Shih experiment [33-36] cannot test directly
the CHSH inequality, because they do not use two-channel polarization analyzers.
Instead they test a different inequality, which relies on additional assumptions
about the stability of the parametric down converter and the unbiased nature of the
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detectors. Given these assumptions, the most recent experiment [36] finds that the
Bell inequality tested is violated by six standard deviations.

By using two-channel analyzers an Alley-Shih experiment could test directly the
CHSH inequality. In this sort of experiment, in which the photons travel in
well-defined directions, one can achieve good statistics without introducing data
error (no solid-angle problem); thus a very small data flipping error should be
achievable. We now proceed to Section 4, where we show that small data flipping
error is precisely the requirement for using chained Bell inequalities to give stronger
quantum violations.

4. CHAINING THE CHSH INEQUALITY

In this section we chain the CHSH Bell inequality (2.2) and explore the
experimental consequences of the resulting chained correlation Bell inequalities.
The CHSH incquality applies to a pair of two-state systems and follows from
attributing to the two systems a set of local objective properties. Examples include
(i) a pair of spin-; particles, where the objective properties are spin components in
various directions, and (ii) a pair of correlated photons, where the objective proper-
ties are polarizations in various directions. This section is couched in the language
of polarization measurements on a pair of correlated photons, as in the experiments
discussed in Section 3.

Chaining, or iterating, an inequality typicaily leads to a condition which is
weaker mathematically than the original inequality. Thus chaining the CHSH
inequality should apparently lead to weaker conditions for local realism. We show
in this section, however, that chaining the CHSH inequality actually leads to
inequalities that have stronger quantum violations (in a sense we make precise
below) over a larger range of angles. The reason for these stronger violations is that
chaining attributes to the two-state systems a greater number of objective proper-
ties, thus making more onerous the requirements of local realism.

Return now to the two correlated photons, .« and #, discussed in Section 3. The
CHSH inequality deals with four polarization directions—a and a’ for photon <7,
b and b’ for photon #. We imagine these four unit vectors as making up the list
a, b, a’, b. As is shown in Section 2, the CHSH inequality follows from assuming
that the polarizations defined by these four directions are local objective properties
of the photons (local realism), and it constraints the value of a linear combination
of the four correlation functions between the two photons:

—2<C(a, b))+ C(b,a') + C(a’, b) — C(b, a) < 2 (4.1)

[Eg. (2.2)]. Consider now two additional polarization directions—a” for photon .o/
and b" for photon #. We can write a CHSH inequality for the list a, b”, a”, b’

~2<C(a, b")+ C(b", 2"} + C(a", b') — C(b", a) < 2. (4.2)
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Adding Egs. (4.1) and (4.2) yields the first chained correlation Beli inequality,
—4<Cla, b")+ C(b",a") + C(a”, b') + C(b, 2') + C(a’, b) — C(b, a) <4, (43)

which applies to the six directions in the list a, b”, a”, b, a’, b. Clearly, we can
iterate this procedure to obtain more and more complicated chained correlation
Bell inequalitics. We prefer, however, to derive the general form directly by using
a generalization of the derivation given in Section 2, because this derivation draws
attention again to the roles of objectivity and locality.

Consider, then, N polarization directions (N even), N/2 for each photon. We
adopt a notation in which the polarization directions specified by odd numbers,
a;,43,..,ay_;, apply to photon &/, and the polarization directions specified by
even numbers, b,, b, .., by, apply to photon 2. Furthermore, we let g;= +1(~1)
for j odd correspond to polarization of photon & along (perpendicular to) a;, and
we let g,= +1(—1) for j even correspond to polarization of photon & along -
(perpendicular to) b,. Just as for the CHSH inequality, we have in mind a series of
experimental runs, in each of which one uses a pair of polarization analyzers, one
for each photon. The experimental runs are of N types: N—1 types in which the
two analyzer orientations are adjacent vectors from the list'a,, b,, a5, by, ., a,y_ |,
by, and one type in which the analyzer orientations are b, and a,.

Suppose now that the polarizations defined by all these directions are local objec-
tive properties of the two photons. Then, just as in Section 2, we can use objectivity
and locality—local realism—to argue that the statistics of the N polarizations
follow from a joint probability p(o,, o,, .., 65_1,0y). Furthermore, just as in
Section 2, we can write expressions involving the values of all these properties in
cach experimental run (i.e, for each pair of photons). Consider, for instance, the
inequality

loi(oa—0on)+o3(a:40)+05(04+06)+ - +ox_((ox_2tox)| SN=2. (44)

That this inequality does indeed hold for each and every pair of photons we se¢ in
the following way. The expression within the absolute value is the sum of N/2
terms, each of which can take on values 0, +2. At least one of these terms must
vanish (if o, and o, have the same sign, the first term vanishes; if 6, and ¢, have
opposite signs, at least one of the other terms must vanish). Hence the maximum
value of the absolute value is 2 x (N/2—1)=N—-2.

Inequality {4.4) contains values that cannot be determined simultaneously in
quantum mechanics, but by averaging it over the joint probability p{s,, o, ..,
Ox_1,0x) We obtain an inequality

|C(ay, ba) + Clb,, a3) + Clag, by) + -+ + Clay 1, by)—Clby,a,)| SN-2, (45)

which involves only correlation functions that can be determined from the statistics
of the N types of experimental runs. Inequality (4.5) is the chained correlation Bell
inequality. It could be obtained by taking linear combinations of the CHSH
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inequality (4.1) (which corresponds to N=4), as was done to obtain inequality
(4.3} (which corresponds to N = 6).

The general chained correlation Beli inequality has been derived previously
[3,29,37], but there has been very little discussion of it. There does exist a
theorem [3, 377, which states that any Bell inequality that restricts the value of a
linear combination of correlation functions can be derived from linear combinations
of the CHSH inequality. We present the chained correlation Bell inequalities again
here in order to explore their experimental Consequences.

Before considering experimental implications, however, we can gain insight into
the meaning of inequality (4.5) by considering the quantum-mechanical predictions.
The ideal quantum-mechanical correlation function for a pair of photons emitted
by a two-photon atomic cascade is given by Eq. (3.2). The best geometry to choose
is illustrated in Fig. 1: successive vectors in the list a;, by, a5, b,,..,a, ,,byare
separated by angle /(N — 1), so that a, and b, are separated by angle 6. With this
geometry quantum mechanics violates inequality (4.5) whenever the quantity

Sy=|(N—1) C(6/(N - 1)) - C(8)] — (N —2), (4.6)

the “signal for violation,” becomes positive [cf. Eq.(2.5)]. So long as @ is small
enough that the term within the absolute value is non-negative {(16] < (N — 1) n/4),
Sx can be written as

Sy=[1-CO)]— (N-1)[1 - CO/(N - 1))]. (4.7)
6
N-T

Fig. 1. Geometry leading to maximal violation of the chained Bell ingquality (4.5). Successive
vectors in the list a,, by, a;, by, .., ay_,, by are separated by angle 6/(N—1), so that the outermost
vectors a; and by, are separated by angle 6.




36 BRAUNSTEIN AND CAVES

The non-negative quantity I — C(¢#) goes to zero at ¢ =0 because of the perfect
correlation between polarizations when the two polarization analyzers are aligned.
To satisfy the chained Bell inequality (4.5) (ie., Sy <0), 1 — C(8) must lie below a
straight line drawn from the origin through the value of 1 — C(8/(N — 1)). Because
of the quadratic dependence of the quantum-mechanical correlation function for
small angles, this straight line asymptotes to the x axis as N — o0. Indeed, in the
limit of large N, for fixed @, the signal for violation becomes

Sy= [I—C(H)]-ZBZ/(N—I)W 1—C(8), 4.8)

which shows a violation at every angle except multiples of =, since perfect correla-
tion occurs only when the analyzers are aligned.

The violation occurs, just as for the CHSH inequality, because the quantum-
mechanical polarizations are more tightly correlated for small angles than local
realism allows. Chaining aflows us to take full advantage of this tight correlation:
the greater the number of analyzer orientations between fixed outer vectors a; and
by, the smaller the combined effect of the quantum correlations summed over the
intermediate pairs of orientations. This is precisely analogous to the quantum Zeno
effect [38, 39], where it is found that repeated measurements on a system at closer
and closer times “stop” the quantum evolution of the system’s state.

It is worth noting here that S, attains a maximum value 2 + N[cos(n/N)—1] at
8= [(N-1)/N]=n/2; in the limit N — co, this gives a maximum value of 2 at
60=90°, compared with a maximum value ~0.8284 at #=67.5° for the CHSH
inequality.

The above considerations suggest that chaining leads to stronger quantum viola-
tions. To investigate this suggestion, however, we must model at least two aspects
of a real experiment. First, any increase in the strength of the quantum violation
with increasing N relies on the tight quantum-mechanical correlation at small
angles; thus we need to model the reduction in correlation that comes from imper-
fections in a real experiment. Second, to compare meaningfully the strength of the
violation for different values of N, we need to measure the signal for violation in
terms of an appropriate “unit”; that unit is provided by the size of the noise, which
we assume to be statistical uncertainty that comes from estimating the correlation
functions from a finite number of experimental runs.

We model imperfections in a real experiment by a “data flipping error,”
represented by a probability ¢ that either photon flips its polarization from +1 to
—1 or from —1 to +1. With this data flipping error the quantum-mechanical
prediction for the correlation function becomes

C(a, b)= C(#) =1 cos 26, n=(1-2g)% (4.9)

The quantity | —# characterizes the size of the data flipping error. As is discussed
in Section 3, this model for experimental imperfections describes well the atomic
cascade experiment of Aspect and collaborators, with # coming from two sources—
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imperfections in the polarization analyzers and the use of detectors that accept
photons from a nonzero solid angle. In [10] Aspect, Dalibard, and Roger achieved
a value y >~ 0.955.

We turn now to the statistical noise. We assume that it is good experimental
practice to do the entire experiment in as short a time as possible, because, for
example, the two-photon source or other aspects of the experiment might be stable
only over a finite amount of time. Thus we restrict ourselves to a total running time
that yields on average 4" experimental runs. To test the chained Bell inequality
(4.5), we must split up this total time suitably to estimate N correlation functions.
As N increases we can afford to spend a progressively smaller amount of time on
each correlation function. This raises the possibility that there might be no benefit
to chaining; the noise might increase so rapidly with increasing N that it would
swamp the increasing size of the signal for violation. That this possibility does not
materialize—at least for sufficiently small data flipping error-we now show.

Focus attention on a particular pair of analyzer orientations a and b. One spends
some fraction of the total running time on this pair of orientations—a fraction that
yields on average .# experimental runs. The correlation function for this pair of
orientations can be written as

C(a7 b)= z Gao-bp(o-rn ab)
Ta, Op
4

a=1

Here we introduce a shorthand notation in which the subscript « denotes the four
possible outcomes of an experimental run: =1 cotresponds to (+, +), ie, to
both photons having polarization +1; ¢=2 corresponds to (~, —); =3 to
(+,—); and a=4 to (—, +). We also define 4, =4,= +1 and Ay=dy= —1.
Suppose now that in the allotted running time one accumulates precisely M runs
for this pair of analyzer orientations and that the number of these runs that yield
outcome ¢ is R,(M =3, R,). The experimental cstimate of the probability p, is the
frequency g,=R,/M of occurrence of outcome « Given these estimated
probabilities, one estimates the correlation function to be

Cexp(a’ b):g(+a+)+g(_7 _}_g(+3 _)_g(_9 +): Z }':xgz (411)

xz=1

It is the mean and variance of the experimental estimate Cexpl(a,b) which are now
of interest.

For a fixed number of runs M, the numbers of counts R, for the four outcomes
are distributed according to the multinomial distribution,

M!
» P(R,, Ry, Ry, R, | M)zmpflpfzpfapf- (4.12)
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Hence the means and second moments for the numbers of counts (with M fixed)
are

(-R:)M fixed = MPy» (4.13)
(RaRﬁ)MﬁxedzM(M_1)papﬁ+Mpﬂ6¢ﬁ’ (414)

where an overbar denotes a statistical average. In calculating means involving the
frequencies, we must take a further average over the number of runs M; when doing
so we assume that the average number of runs, .#, is large enough that we can
approximate the mean of M ™! by .#~'. From the above results we find the
standard results that the mean of the frequency is

&=V« (4.15)
and that the covariance matrix of the frequencies is given by
Aga‘dgﬁ:'ﬁ_l(paazﬁ_papﬁ): (416)

where Ag, =g, —2,=g.— P.. The average of the experimentally estimated correla-
tion function is simply the quantum-mechanical prediction,

C.o(@ B) = C(a, b) = C(8) = 1 cos 26, (4.17)

and the variance of C,,,(a, b) is given by

[Acexp(aa b)]zzz ﬂ'aAﬂAgm Agﬁz‘dz(e)/'/”b (418)
@, i
where
A%0)=1—C(0). (4.19)

Note that this variance is strongly dependent on angle. When the data flipping
error is small, there is almost perfect correlation near § =0, of which we can be very
confident after comparatively few experimental runs. Chaining succeeds because of
this ability to estimate the correlation function for small angles with comparatively
few runs. There is a similar reduction in the noise near 8=90° because of the
almost perfect anticorrelation there.

Recall that we are using the geometry depicted in Fig. 1. The chained correlation
Bell inequality (4.5) is violated whenever the quantity

|C(a;, by) + Clby,a35) + --- + Clay_y, by)—Clby, a,)| — (N—2) (4.20)
is greater than zero. The experimental estimate of this signal for violation,

SN,exp = iCexp(al ’ bZ) + Cexp(bz’ aS) + -
+ Cexp(aN—ls b-‘V) - Cexp(bN: al)' - (N_ 2)7 (421)
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has mean value
Shep=Sy=|(N=1) C(§/(N~1))~ C(8)| — (N—-2) (4.22)

[cf Eq.(4.6)1. (The absolute value causes a problem in taking the mean as the
absolute value approaches zero; there being no violation in this region, however, it
is of no interest, so we ignore this problem.)

We now want to calculate the variance of the estimated signal for violation. One
has available a total running time which yields on average .4~ experimental runs.
The variance of S, exp depends on how the total time is apportioned among the
measurements of the various correlation functions. Suppose a fraction f of the total
time is devoted to measuring the one correlation function at the large angle 0
(polarizer orientations a, and b,); for this correlation function we let & = fA4" in
Eqg. (4.18). The remaining time is divided equally among measurements of the N — 1
correlation functions at the small angle 8/(N — 1); for these correlation functions we
take . =(1-—f) #/(N—1). The variance of the estimated signal (4.21), which
comes from adding the variances of all the estimated correlation functions, tells us
the size of the “noise™:

N?’VE (ASN, exp)2=

1 [(N—1)2A2(9/(N—1))+42(9)] (4.23)

Ve 1-f f

[Eq. (4.18)]. We want to minimize this noise with respect to the division of the
total running time. The minimum occurs with f given by

_ A(6)
f_(N-1)A(9/(N—1))+A(9)’ (424)
in which case the noise becomes
1
Ny=—=[(N~1D) AO/(N—-1 A(0)7]. 4.25
\/7[( ) 4(0/( ))+4(6)] (4.25)

We can now define a signal-to-noise ratio (Sx/Ny)_ for an experiment that
yields on average 4 experimental runs. This signal-to-noise ratio has a trivial \/]
dependence on the total number of runs, so it is useful to introduce a “single-run
signal-to-noise ratio”

w).. =77 (),

_IIN=1) COHN—1))— C(0)| — (N=2)
a (N—1) 4(6/(N—1)) + 4(8)

(4.26)

The single-run signal-to-noise ratio (Sy/Ny) =1 gives the size of the violation of
the chained Bell inequality (4.5) in units of the statistical noise; we claim that it is
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the appropriate way to characterize the strength of the violation. (We define this
single-run signal-to-noise ratio only when S is positive—i.e., when there is, in fact,
a violation.)

When there is no data flipping error [ =1, C(6)=cos 26, 4(8) = |sin 28|], the
single-run signal-to-noise ratio simplifies to

(i’i) _ [{N—1)cos[26/(N—1}]—cos 20] — (N —2})
Nyl vctnor (N—1) |sin[26/(N — 1)]| + |sin 26|
2sin% 0

N . 427
N-> 218| + |sin 28} (4.27)

In Fig. 2 we plot (Sy/Ny) , 1.y—1 vS. angle 8 in degrees for N=4, 6, 8, 12, 20, and
c0. The noticeable cusp at 6 =90° comes from the Isin 28| term in the noise N,. As
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expected, when there is no data flipping error, the strength of the violation increases
with increasing N.

The single-run signal-to-noise ratio (Sy/Ny), _, ,_, attains a maximum at
= [(N—1)}N]nf2—the angle that simultancously maximizes S, and minimizes

Ny. The maximum value of (Sy/Ny) oy =15

2+ N[cos{r/N})—1]
N sin(n/N) ’

varies from (,/2—1)/,/2>02929 at §#=67.5° for N=4 (CHSH inequality) to
2/m ~0.6366 at 8=90° as N — co. In principle, then, chaining can lead to a viola-
tion ~2.174 times stronger than for the CHSH inequality. Interestingly, the maxi-
mum value is achieved when the total running time is apportioned equally among
all the correlation functions—ie., f=1/N. The N—1 correlation functions at the
small angle 8/(N — 1) take advantage of the noise reduction due to the near perfect
correlation at small angles, while the one correlation function at angle 8 takes
advantage of the noise reduction due to the near perfect anticorrelation for angles
near 90°. For angles below the maximum, more time is devoted to the one large
angle, whereas for angles above the maximum, more time is devoted to each of the
small angles.

The effects of data error are illustrated in Fig. 3, where we plot the single-run
signal-to-noise ratio (4.26) vs. angle 6 in degrees for N =4, 6, 8, 12, and 20 and for
two values of #: (a) #=099 and (b) n=0.955. The beneficial effects of chaining
decrease, as expected, with increasing data error, but for the achievable [10] data
error of Fig. 3(b), the N=6 and N=28 chained Bell inequalities both yicld a
stronger violation than does the CHSH inequality (N=4). For N=6 the increase
in signal-to-noise ratio is about 20 %.

We gain insight into the effects of data error by expanding Sy [Eq. (4.22)] and
Ny [Eaq. (4.25)] for large N,

Sy=(1—7ncos20)—240%(N—1)— (1 —g)(N—1), (4.28)

1
Ny=—r ([47207 + (1 — ) (N — 1)2]"2+ (1 —n? cos? 20)2},  (4.29)

Jr

where we must assume that || < (N —1). There are two new terms due to data
error here, one in S, and one in N,, both of which reduce the strength of the
violation. These terms limit the improvement in signai-to-noise ratio that can be
achieved by chaining. Indeed, when # is near 1, one can show that for fixed # the
signal-to-noise ratio is maximized when N is near a critical value given by

2 16] + |sin 29|)1f3

Tg (4.30)

No—1=(1—1)="" 18] (

This estimate for the best value of N gives an excellent account for the examples
plotted in Fig. 3.
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5. INFORMATION THEORY AND REALISM

Why introduce information concepts into a discussion of local realism? Suppose
that, following the argument of Einstein, Podolsky, and Rosen [19] (Section 2), we
believe that physical systems have local objective properties and that quantum
mechanics must be extended to describe those properties. If we “know” the values
assumed by all these properties, then conventional information theory tells us that
the system carries no information. If, however, we belicve in the statistical predic-
tions of quantum mechanics—ie., that however quantum mechanics is extended,
the resulting theory should agree with the statistical predictions of quantum
mechanics—then we certainly do not know the values assumed by all these proper-
ties. Then the system must carry information about the actual values—information
that we obtain when we make measurements. In essence, the system must carry
with it information about the results of all possible measurements whose results are
not definite. Thus local realism, together with the statistical predictions of quantum
mechanics, requires physical systems to carry an enormous baggage of information.
Where and how is this information to be stored? Where in quantum theory is there
any notion of this vast quantity of information?

In Section 6 we formulate information-theoretic Bell inequalities, which quantify
these ideas for any pair of physically separated systems. If local realism holds, the
two systems must carry an amount of information consistent with the information
Bell inequality. We show that the quantum statistics of a pair of spin-s particles in
a state of zero total spin violate our information Bell inequalities for all values of
s. Quantum statistics simply do not atlow systems to carry enough information to
be consistent with the requirements of local realism.

As preparation for Section 6, we devote the rest of this section to a brief review
of information theory [40, 41]. Consider two measurable quantities, denoted by
capital letters 4 and B. In quantum theory these two quantities would be com-
muting observables; in a local realistic theory they could be any two objective
propertics. We label the (discrete) possible values of 4 and B by the corresponding
lower-case letters, a and 4. Based on one’s knowledge about the quantities A4 and
B, one assigns a joint probability p(a, b) that 4 has value 2 and B has value b.
Bayes’s theorem,

pla, b)=pla| b) p(b)=p(b| a) p(a), (5.1)

relates the joint probability to the conditional probabilities p(a | b) (the probability
that 4 has value a, given that B has value b) and p(b | ) and to the single-quantity
probabilities p{b) (the probability that B has value ) and p{a).

The information obtained when one discovers values a for 4 and b for B is

Ka, b)= —log p(a, b). (5.2)

The base of the logarithm determines the units of the information (base 2 for bits,
base e for nats). In the same way

1(b)= —log p(b) (5.3)
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is the information obtained when one discovers value b for B, and
Ia|b)= —log p(a| b) (54)

is the further information obtained when one discovers value a for 4, provided one
already knows the value b of B. Bayes’s theorem, rewritten in terms of information,
becomes |

Ia, b)=Ia| b)+I(b)=I(b | a) + I{a). (5.5)

A crucial role is played by the mean information obtained when one finds values
for A and B:

H(A, BY=) pla, b) Ha,b). (5.6)
a, b

This mean information is the entropy of the probability p(a, b) (up to a multi-
plicative constant, which is equivalent to a choice of units for information). It can
also be thought of as the total information carried by the quantitics 4 and B,
defined relative to the knowledge about 4 and B that is used to make the proba-
bility assignment p(a, ). In the same way

H(B)=Y} p(b) I(b) (57)
b
is the information carried by B, and
H(A|b)=3} pla|b)I(a]|b) (5.8}

is the information carried by 4, given the value b of B. Tt is useful to average
H(A | b) over B to obtain a conditional .information carried by A,

H(4|B)=} p(b) H(A|b)=73 pla,b)Ha|b). (5.9)
b a, b

An immediate consequence of Bayes’s theorem is the relation
H(A, B)=H(A| B)+ H(B)=H(B| A)+ H(A). (5.10)
We require one further ingredient, the mutual information
la;b)=1lay—Ka | b)=I(b)— Kb | a)=I(b; a). (5.11)
This mutual information can be either positive or negative, but its mean,

H(A;B)=Y pla, b) I(a; b)
a, b

pla] b}
=§ plb) [Z pla|b)log (W)] >0, (5.12)
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is non-negative [40] (Gibbs's theorem [41]). Equality holds in Eq. (5.12) if and
only if 4 and B are statistically independent, ie., p(a, b)= p(a) p(b). The mean
mutual information,

H(A; BY= H{A)— H(A | B)=H(B)— H(B | A)= H(B; A), (5.13)

is the information carried in common {(mutually) by 4 and B; i.e., it is the average
information one obtains about 4(B) when one finds a value for B(4).

To establish our information-theoretic Bell inequalities, the only results we need
from information theory are the inequalities

H(A | B)< H(A)< H(4, B). (5.14)

The left-hand inequality, a consequence of the non-negativity of the mean mutual
information H(A; B), means that removing a condition never decreases the
information carried by a quantity. The right-hand inequality, a consequence of
Eq. (5.10), means that two quantities mever carry less information than each
quantity carries separately.

6. INFORMATION BELL INEQUALITIES .

In this section we derive information-theoretic Bell inequalities [12, 13] for a
pair of physically separated systems. These information Bell inequalities apply to
any pair of physically separated systems—not just two-state systems—so we frame
the derivations in a general language applicable to any pair of systems.

Consider, then, two physically separated systems, =« and %, and four measurable
quantities—A and A’ associated with 27, B and B’ associated with 4. The (discrete)
possible values of these quantities are denoted by a, @', b, and &', In a quantum-
mechanical description the two observables associated with each system would not
commute and hence could not be determined simultaneously. Thus we have in mind
a series of experimental runs, in each of which one measures two quantitics, one
from each system (as in a test of the CHSH inequality).

An example of this general formulation is the spin-s generalization [42] of
Bohm’s version [20] of the Einstein-Podoisky—Rosen [19] paradox. Two counter-
propagating spin-s particles, &/ and %, having spins 8 , and S 5 (in units of #), are
emitted by the decay of a zero angular-momentum particle and thus have zero total
spin. Each particie is sent through a Stern-Gerlach apparatus, which measures a
component of the particle’s spin along one of two possible directions. For particle
/ the two observables are spin components 4 =S, -a and 4'=S_, -a’, where unit
vectors a and a’ specify orientations of the Stern-Gerlach apparatus. Similarly, for
particle 4, the two observables, B=S,-b and B'=8,-b’, are specified by unit
vectors b and b".

Suppose now that the four quantities 4, 4°, B, B' are local objective properties
of the two systems; i.e., in each run of the experiment, all four have definite values,
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independent of observation. Suppose further that the two systems are physically
separated, so that a measurement on one does not disturb the other. Then we can
repeat in this general language the argument given in Section 2 and conclude that
objectivity and locality—i.e., local realism—ensure that the statistics of the four
quantities follow from a joint probability pla, a’, b, b').

In terms of this joint probability we can define the total information

H(A, A, B, B)y=— 3 pla,a,bb)logpla d,b,b) (6.1)
a,a, b b
carriecd by the four quantities. An obvious generalization of the right-hand
inequality in (5.14) yields
H(A4,B)<H(A4, A4, B, B
=H(4| B, A, B)+ H(B'| 4', B)+ H(4' | B)+ H(B), (6.2)
where we use a generalization of Eq. (5.10) to expand the right-hand side. The
right-hand side involves probabilities of noncommuting observables and hence

could not be defined in quantum mechanics. We can, however, use a slight
generalization of the left-hand inequality in (5.14) to eliminate conditions, Le.,

H(A|B, A, B)=— ¥ pla,d,bt)logp(a|d,bb)<HA|B), (63)
a, a, b b

H(B'| A", By=— ), pla',bb')logp(b'|a',b)< H(B' | A'). (6.4)
a, b, b

Subtracting H(B) from both sides of Eq. (6.2), we obtain the desired information
Bell inequality [12, 13]

H(A|B)<H(A| B)+ H(B' | 4')+ H(4' | B). (6.5)

The four pieces of conditional information in this Bell inequality involve pair
probabilities that are defined in quantum mechanics; they can be determined from
the statistics of the four types of expetimental runs. Note that the information Bell
inequality (6.5) has a form closely analogous to the form of the CHSH correlation
Bell inequality {2.2).

The information Bell inequality (6.5) follows directly from the assumption of a
Joint probability p(a, o', b, b'); it applies to any four quantities whose statistics can
be derived from such a joint probability. Objectivity and locality are meant to
compel belief in the existence and relevance of this joint probability. The content
of the information Bell inequality lies in the first step (6.2) of the derivation: four
objective quantities cannot carry less information than any two of them.

Zurek [43] has recently introduced an information distance

8(4, BY=H(A | B)+ H(B| 4), (6.6)
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which satisfies the conditions—in particular, the triangle inequality-—to be called a
distance between (equivalence classes for) 4 and B. Schumacher [44] has used the
information distance to derive information Bell inequalities. Indeed, as Schumacher
notes, the “quadrilateral inequality” for this distance,

(A, BY< 5(4, B'Y+8(B', A')+ 8(4’, B), (X))

which follows directly from the triangle inequality, is a consequence of sym-
metrizing the information Bell inequality (6.5).

We return now to the two spin-s particles introduced above to explore whether
quantum systems carry the requisite amount of information. We use conventional
notation in which the 2s+ 1 possible values of 4=S§_,.a and A’=8, -a’, labeled
above by @ and ', are denoted by quantum numbers mz, and m,, which take on
values —s, —s+1,..,5—1,5. The eigenstate of spin component S_ -e with
eigenvalue m, where e is an arbitrary unit vector,’is denoted by |s, m} , .. Similar
notation applies to particle 4.

The quantum statistics are derived from the state of zero total spin [42]

=25+ 17 Y (1) "lsm), ®ls,—m)s.,, (6.8)
where the quantization axis e ts arbitrary. This state describes a situation in which
spin components of the two particles in the same direction are perfectly
anticorrelated. Quantum mechanics predicts the probability

plmg, my) =1 (5, M| ® 5 (5, myl 1451

=-2—S‘__—|__'{ |.d,a<sa m, ' 5, _mb>ﬂ,b|2 (69)

that A=S_ -a has value m, and B=S,-b has value m,. Rotational invariance
guarantees that p(m,, m,) depends only on the angle # between a and b. We can
put p(m,, m,) in the form [42]

1 2
p(maamb)—23+1 |Dmu,—mb(Rn(6))| » (610)
where
Doy -m Ra(O)) = o 5, €705 |5,y > (6.11)

is a matrix element for a rotation R, () by angle 8 about any unit vector n
orthogoaal to an arbitrary quantization axis e. The quantum-mechanical prediction
for the conditional information,

H{A| By=H(B| A)= H(8), (6.12)




48 BRAUNSTEIN AND CAVES

depends only on the angle § between a and b and takes the form

1

HO)= —
©) 25+1

Y Dy (Ra(ONPlog D, _, (R(O))%  (6.13)
Pig, My
Symmetries of p(m,, m,) imbly that H(0)=H(@+n)=H(—0)=H(n—06).

It is useful to note the small-angle form of the quantum-mechanical conditional
information,

H(0)~ ﬁ%l) 07 [log,{4/6%) + log, e — F{s)] bits, s16] <1. (6.14)

Here H(0) is given explicitly in bits, and F(s) is the series

2s
3 Y k(2s+1—k)log, k=0 (6.15)

o= a1 E

[note that F(3)=0]. For large s an integral approximation to the series [ F(s)~
log, 45> — 3 log, e] yields an asymptotic form

H(0) ~ §(s0)” [log,(1/(s8)*) + & log, e] bits, (6.16)

valid for large s and small 8.

Consider now the canonical case that was applied to the CHSH inequality in
Section 2: the unit vectors a, b, a’, b are coplanar, and successive vectors in the list
are separated by angle 6/3, so that a and b are separated by angle 8. The informa-
tion Bell inequality (6.5) is violated if the information difference

H(0)=H(0)— 3H(8/3) (6.17)

becomes positive. A positive value for () gives directly the deficit of information
carried by the two particles, relative to the requirements of local realism for this
geometry.

The conditional information H(6), which is intrinsically non-negative, goes to
zero at § =0 because of the perfect anticorrelation of spin components in the same
direction. Satisfying the information Bell inequality (6.5) (ie., # < 0) would require
that H(0) not go to zero faster than linearly in 6. Thus the —§2 log 6% behavior of
H(0) at small angles violates the Bell inequality (6.5) for all values of s, as is evident
from the small-angle forms of #(0):

H#(0) = s(s +1)67 [log,(4/36%) + log, e — F(s)]
~ 3(s8) [log,(1/3(s6)2) + ¢ log, e] bits. (6.18)

The first form assumes only s |8| < 1; the second is the asymptotic form for large
s and small 8. The —#log 6 behavior of H(6) at small angles reflects the tight
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quantum-mechanical correlation between the spins: knowing the value of B=S, -b
tells one so much about A =8, -a for a near b that very little information is gained
by determining the value of 4 =S, -a—so little as to violate the requirements of
local realism.

The biggest surprise in Eq. (6.18) is not the presence of a violation for all s, but
rather the increasing size of the violation as s increases for fixed §. We investigate
this surprising feature by calculating the information difference #°(6) (in bits) for
s=3,1,2,5 and 25. The matrix D,, _,.(R,(#)) is obtained by using a formula due
to Wigner [45, Eq. (C.72)]. The results, displayed in Fig. 4, indicate that the maxi-
mum information deficit increases with increasing s, but the range of angles over
which there is a violation decreases.

Several investigators [21, 42, 46-51] have formulated Bell inequalities for a pair
of spin-s particles. Notable among these inequalities is one derived by Garg and

.5

INFORMATION DIFFERENCE (BITS)

ANGLE (DEGREES)

FiG. 4. Information difference #(6) [Eq. (6.17}] in bits vs. angle € in degrees for spins s=3,
1,2, 5, and 25. The information Bell inequality (6.5) is violated whenever the information difference is
positive, the positive value giving the deficit of information carried by the two particles, relative to the
requirements of local realism. The maximum information deficit increases with increasing spin, but the
range of angles over which there is a violation decreases, The s =3 plot can be applied to a photon
polarization experiment of the sort discussed in Sections 3 and 4 by letting the abscissa be twice the
angle between the outermost polarization analyzers.
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Mermin [48, 49, 517, which in the geometry considered here is violated by the
quantum-mechanical predictions for a state of zero total spin for all angles 0 < 180°
and for alt values of the spin.

We have applied chaining to the information Bell inequality (6.5) in the same
way that we chained the CHSH Bell inequality in Section 4 [12]. For the case of
spin-1 particles we have gone further to investigate whether the chained information
Bell inequalities lead to stronger quantum violations than does the simple informa-
tion Bell incquality (6.5). To characterize the strength of violation, we use a signal-
to-noise ratio calculated using the model developed in Section 4. Although we find
that chaining does lead to stronger violations when the data error is sufficiently
smail, we do not present the results here, because they show that information Bell
inequalities lose out to correlation Bell inequalities on all experimental counts:
information Bell inequalities have smaller violations over a smaller range of angles,
and they garner less benefit from chaining. Hence, we believe that the most impor-
tant function of information Bell inequalities is as theoretical tools for investigating
the meaning of Bell inequalities—a task to which we set them in Section 7.

7. For WHoM DoES THE BELL INEQUALITY TOLL

It seems worthwhile trying to tie down the role of Bell inequalities. They provide
a criterion for the existence of local objective properties, but are they special in this
regard? Are there other, perhaps simpler tests for objectivity? Feynman [52], for
instance, has argued that the two-slit experiment, in which electrons form an inter-
ference pattern on a screen, contains the essence of quantum mechanics. He argues
that the interference pattern cannot be derived in general from any conditional
probabilities p(x |+1) and p(x|—1) that the electron arrives at point x on the
screen, given that it passed through slit 41 or slit — 1. He concludes that there are
no objective paths for the electron.

So what is special about Bell inequalities if the two-slit experiment already rules
out objective properties? The immediate problem is that the Feynman argument
does not provide a clear-cut criterion for objectivity. If one tries to formulate such
a criterion, as we do below, one confronts the difficulty that the probabilities
p{x|+1) and p(x|—1) posited by Feynman are probabilities involving noncom-
muting observables (electron position at the screen and electron position at the
slits); such probabilities are not defined in quantum mechanics, so it is not sur-
prising that a quantum description is inconsistent with an objective description that
posits such probabilities. If one tries to measure the probabilities p{x | +1) and
plx {—1), one must modify the experimental apparatus so radicaliy—perhaps by
blocking one slit or the other—that the interference pattern is destroyed. We can
never be sure that the inconsistency pointed out by Feynman is not due to our
having “disturbed” the electron’s final position on the screen by our measurement
of which slit it went through.

The surprising feature of the standard Bell inequalities is that they avoid this
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difficulty. They provide a criterion for objectivity that involves only probabilities for
pairs of commuting observables—thus probabilities that are defined in quantum
mechanics—even though the criterion is derived from a “grand” joint probability
that is not defined in quantum mechanics. It is perhaps worth considering more
fully this contrast between Feynman’s argument, which attempts a criterion for
objectivity for a single system, and Bell inequalities, which involve two physically
separated systems. Information Bell inequalities provide a natural vehicle for such
consideration. '

Bell inequalities, we claim, come from assuming the existence of a grand point
probability for a set of quantities that do not commute in quantum mechanics. One
derives from the grand probability—using classical probability logic—an inequality
(involving correlation functions, information, etc.) and shows that for some
quantum state, the inequality is violated. Thus, strictly speaking, what all Bell
inequalities test is whether some aspect of quantum statistics can be derived from
a grand probability. This is the point of view promoted by Garg and Mermin [21],
who start with marginal probabilities predicted by quantum mechanics and show
that they cannot be derived from higher-order grand probabilities.

The advantage of information Bell inequalities is that they provide a
straightforward, vet general framework for exploring the meaning of Bell
inequalities. An information Bell inequality can be derived easily for any set of
physical systems. In contrast, a correlation Bell inequality (such as the CHSH
inequality) requires a separate derivation for each new set of systems. Of course,
information Bell inequalities do no ferret out all the weird quantum behavior that
is inconsistent with objectivity. To do that, the right approach is, we believe, the
Garg-Mermin approach [21]. Information Bell inequalities are useful nonctheless,
because they are mathematically straightforward compared to the Garg-Mermin
approach.

One would like to think that Bell inequalities test something more cosmic than
the existence of some grand probability. Thus, one tries to attach an interpretation
to Beli inequalities. The first part of the interpretation is objectivity {or realism). If
the quantities dealt with are objective, then they have definite values, independent
of observation. Although we do not know these values, in any realistic description
the knowledge we do have is incorporated in a probability assignment—the grand
probability. The existence of the grand probability is thus interpreted as a
consequence of objectivity.

If this were the whole story, then all Bell inequalities would be on the same
footing. One must make further no-disturbance assumptions, however, to relate the
grand probability to statistics of actual measurements. One can imagine that in a
realistic theory measurements of one or more of the quantities so disturb the system
that the statistics of remaining quantities are no longer those that would be inferred
from the grand probability. Indeed, this is how one maintains objectivity in a naive
realistic interpretation of quantum mechanics. How compelling the no-disturbance
assumptions are determines how convincing the Bell inequality is as a criterion for
objectivity.
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To illustrate these ideas, consider a single system and two measurable quantities
A4 and A’, which do not commute in quantum mechanics. Label the possible values
of these quantities by @ and a’. The trivial one-system information Bell inequality,

H(AY=H(A4 | A')+ H(4; A )= H(A | 4'), (7.1)

comes from assuming a joint probability p(a, a’) for A and A’ [H(A; A)=0is the
mean mutual information (5.12)]. Examples include (i) the two-slit experiment with
A’ = (position at screen with slits)= +1 and 4 = (discretized position at detecting
screen), and (ii) a spin-3 particle with 4’=(y-spin) and A= (z-spin). Feynman
[52] claims that the two-slit experiment contains the essence of quantum
mechanics, so one might think that this Bell inequality is enough. Nonetheless, as
we have argued, there is a serious—indeed fatat—objection to it.

The conditional probability p(a | ') that goes into H{4 | 4') has no meaning in
quantum mechanics until one specifies a procedure for measuring it. Suppose that
> is the initial state of the system; from it one caiculates a probability
pla)=|<{a|y>{? which determines H{A), and a probability p(a’)=|<a’ | )|
which appears in H(A4 | 4’). Suppose we make the natural assumption that p(a | a'),
which also appears in H{A | A’), is the probability for a, given that a measurement
of 4’ yielded result ’. This probability is obtained by collapsing the wave function
to be |a') and setting p(a | a’)=|<{a|a’>|%. The procedure having been specified,
it is obvious that there are quantum states in the above-mentioned examples for
which inequality (7.1) is violated [for instance, if ¥ > is an eigenstate of z-spin,
H(A}=0 and H(4| A')=log2]. Just as obvious, however, is that this violation
occurs because p(a) is not derivable from the constructed joint probability
pla,a'y=pla|a’) p(a’) (this is essentially Feynman’s argument):

2
Z {ala'dla | y) =P(a)¢z pa, a')=Z [<ata'>|*I<a" | )%
(7.2)

We pursue a slightly different line of reasoning if we insist on a realistic
description of A and 4’. We can always introduce a joint probability p(a, a') that
yields the observed p(a) and p(a’). Clearly no such j(a, a') can give the conditional
probability p(a|a’) obtained by the above measurement procedure—i.e.,
pla]a’) # pla, a’)/p(a’). We conclude that the system is disturbed by the measure-
ment of A’, so that the conditional statistics of A, given result 4’, are not those
predicted by j(a, @')/p(a’). Indeed, this is precisely what is meant by a disturbance
of 4—that the conditional statistics of 4 are changed in some way beyond any
possible correlation built into f(a, a’). We would further conclude that the violation
of inequality (7.1) is a consequence of this disturbance, which means that the two
sides of the inequality are calculated from different joint probabilities. In quantum
mechanics the “disturbance” (quotes because one should think twice before
speaking of a disturbance if there are no objective properties to disturb) comes from
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using amplitude logic instead of probability logic (wave-function cotlapse instead of
Bayes’s theorem). .

One-system Bell inequalities fail as tests of objectivity because they rely on two
assumptions: objectivity to ensure the existence of the joint probability and a
no-disturbance assumption to ensure that the statistics of actual measurements
follow from the joint probability. Experimental violation of a one-system Bell
inequality rules out realistic theories with no measurement disturbance. One can
always maintain objectivity in the face of a violation simply by blaming the viola-
tion on a disturbance. Leggett and Garg [53] have proposed a one-system Bell
inequality as a test of realism; they justify a no-disturbance assumption (“non-
invasive measurability”) on the grounds that the system they consider—a
SQUID—is “macroscopic.” Ballentine [54] has argued from a simple model and
Peres [55] on general grounds that there must be a disturbance—regardless of how
macroscopic the SQUID is—if the SQUID is to display the quantum effects that
give rise to a violation of the Leggett—Garg inequality.

To overcome this flaw in one-system Bell inequalities, one needs a criterion for
objectivity in which all the probabilities that appear are defined in quantum
mechanics—i.¢,, they are probabilities for commuting observables; then one need
not specify a measuring procedure that might “disturb” the system. If one tries to
modify inequality (7.1) by including an apparatus that measures A4', one finds that
the inequality is always satisfied by A4 and the apparatus observable, because 4 and
the apparatus observable do commute and the joint probability does exist in
quantum mechanics. The significance of two-system Bell inequalities is that they do
provide the desired criterion.

Consider two systems and four measurable quantities—A4 and 4" on the first
system, B and B’ on the second. The two-system information Bell inequality {6.5),

H(A|BYSH(A|B)+ H(B | A')+ H(A" | B), (7.3)

is a consequence of assuming a joint probability p(a, &, b, b') for objective
quantities A4, A', B, B". This two-system Bell inequality relies on objectivity and a
no-disturbance assumption, but since it involves only measurements of pairs of
commuting observables, in a quantum-mechanical description it requires no
measurements in which a measurement of one observable “disturbs” the other. Thus
violation by a quantum-mechanical prediction means that quantum mechanics is
not objective, but an experimental violation does not rule out realistic theories
because a realistic theory might have the required disturbances—a measurement of
B might disturb A. This is where locality comes in—not because of quantum
mechanics, but because of realistic theories. If the two systems are physically
separated, so that no influence can pass between them, one is tempted to say that
no measurement on one system could possibly disturb the other. Thus one ends up
saying that the Beil inequality (7.3) for physically separated systems is a conse-
quence of objectivity and locality; any theory that violates (7.3) for physically
separated systems violates objectivity or locality (or both).

It is apparent from the above discussion that we belicve that quantum mechanics
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violates objectivity. There is no nonlocal disturbance in quantum mechanics; the
only “disturbance” is local—measure A, “disturb” A, Quantum mechanics is able
to violate the Bell inequality (7.3) for physically separated systems because it is not
objective; realistic hidden-variable theories are able to violate it by being nonlocal.
The point is that if the statistics are those of quantum mechanics, either objectivity
or locality must be sacrificed. ' .

One-system Bell inequalities are not compelling because it is necessary to disturb
the system before one can obtain all the information to check them. Two-system
Bell inequalities can avoid this problem, because they can be phrased solely in
terms of commuting quantities. Why stop here? There must be Bell inequalities for
three or more systems. We could, for example, consider a three-body decay in
which each particle would be asssumed to have local objective properties. We could
use our general information techniques to formulate an information Bell inequality,
There is considerably more freedom in formulating information Bell inequalities for
three or more systems than for two; an example of a three-system Bell inequality,
which involves only probabilities that are defined in quantum mechanics, is

H(Ay, B | C.)< H(4,, B | C))+ H(C,, 4, | B,)
+ H(By, C3 | 43)+ H(As, B; | C,), (74)

where 4, B, and C denote properties of the three separate systems. Whether this
Bell inequality or any other higher-order Bell inequality is violated by an
appropriate quantum-mechanical system is an open question. At the moment this
generalization apparently leads to a complicated mess (especially experimentally),
with no obvious gains over two-system Bell inequalities—though it is conceivable
that some special correlated many-body state could in the future yield a simplified
test of local realism. Although we recognize the existence of a hierarchy of Beil
inequalities for three or more systems, it seems at present that two-system Bell
inequalities are special in that they yield the simplest and most compelling tests of
local realism.

Undoubtedly, many will continue to regard the two-slit experiment as important
evidence that quantum mechanics is inconsistent with realism, but a purist will
argue that a two-system Bell inequality provides a more compelling test. Equally,
a purist will demand that all aspects of local realism be subjected to experimental
test, for to a purist local realism is not a monolith which crambles at the discovery
of the first flaw. No purist would argue that an experimental test of a Bell inequality
for spin components of a two-state system proves anything about the local realistic
character of other properties. Indeed, if local realism is a monolith, then surely
work on Bell inequalities qualifies to be a “dehydrated elephant” (to borrow a
phrase from M. Kac [56]) by which we mean a ficld of study whose significance
has been greatly exaggerated. In this context, information Bell inequalities gain a
new vitality, because they can be formulated for an arbitrary set of properties of
arbitrary systems, thus expanding the range of properties for which requirements of
local realism can be formulated.




BELL INEQUALITIES - 55

ACKNOWLEDGMENTS

One of the authors (S.1..B.} appreciated discussions with Golda Bernstein on prﬁman’s argument.

REFERENCES
1. J. 8. BeLL, Physics (N.Y.) 1 (1964), 195.
2. J.F. CLAUSER AND A. SHIMONY, Rep., Prog. Phys. 41 (1978) 1881.
3. F. SELLErI AND G. TAROZZI, Riv. Nuovo Cimento 4 {1981), |
4. B. D’ESPAGNAT, Phys. Rep. 110 (1984), 201. .
5. W. DE BAERE, Adv. Electron. Electron Phys. 68 (1986), 245.
6. L. E. BALLENTINE, Amer. J. Phys. 55 (1987), 785.
7. N. D. MERMIN, Phys. Today 38, No. 4 (April 1985), 38.
8. J.F. CLaAUSER, M. A. HIORNE, A. SHIMONY, AND R. A. HoLTt, Phys. Rev. Letr. 23 (1969), 830.
9. A. ASPECT, P. GRANGIER, AND G. ROGER, Phys. Rev. Lett. 49 (1982), 91.
10. A. ASPECT, J. DALIBARD, AND G. ROGER, Phys. Rev. Let:. 49 (1982), 1804,
11. A. ASPECT AND P. GRANGIER, in “Foundations of Quantum Mechanics” (8. Kamefuchi et al,, Eds.},

p. 214, Physical Society of Japan, Tokyo, 1983.

12. S. L. BRAUNSTEIN aND C. M. Caves, Phys. Rev. Leit. 61 (1988), 662,

13. S. L. BRAUNSTEIN AND C. M. CaVEs, in “Proceedings of the International Symposium on Spacetime
Symmetries” (Y.S. Kim and W.W. Zachary, Eds.), Nucl. Phys. B (Proceedings Supplements
Section} 6 (1989), 211.

14. S. L. BRAUNSTEIN aND C. M. CaVEs, in “Bell‘s Theorem, Quantum Theory and Conceptions of the
Universe” (M, Kafatos, Ed.), p. 27, Kluwer, Dordrecht, Holland, 1989.

15. P. H EBERHARD, Nuove Cimento B 38 (1977), 75.

16. A. PeEres AND W, H. ZUREK, Awmer. J. Phys. 50 (1982), 807,

17. “The Many-Worlds Interpretation of Quantum Mechanics” (B. DeWitt and N. Graham, Eds.),
Princeton Univ. Press, Princeton, NJ, 1973.

18. E. T. JAYNES, “Papers on Probability, Statistics and Statistical Physics” (R. D. Rosenkrantz, Ed.),
Reidel, Dordrecht/Boston, 1983.

19. A. EinsTEIN, B. PoboLsky, anD N. RoseN, Phys. Rev. 47 (1933), 777.

20. D. Boam, “Quantum Theory,” pp. 611-623, Prentice-Hall, Englewood Cliffs, NJ, 1951.

21. A. GARG aND N. D. MEerMIN, Found. Phys. 14 (1984), 1

22. A. FINE, Phys. Rev. Lett. 48 (1982), 291.

23. A. FINE, J. Math. Phys. 23 (1982), 1306.

24, I.F. CLAUSER AND M. A. HORNE, Phys. Rev. D 10 (1974), 526.

25. W. M. pE MUYNCK, Phys. Lett. A 114 (1986), 65.

26. H. P. Starp, Phys. Rev. Lett. 49 (1982), 1470.

27. H. P. Staprp, Amer. J. Phys. 53 (1985), 306.

28. A. AspecT, P. GRANGIER, AND G. ROGER, Phys. Rev. Lett. 47 (1981), 460.

29, P. M. PEARLE, Phys. Rev. D 2 (1970), 1418,

30. T. W. MarsHarL, E. SaANTOs, AND F. SELLERIL, Phys. Leit. A 98 (1983), 5.

31. D. HoMe aNp T. W. MARSHALL, Phys. Lert. 4 113 {1985), 183.

32, 8. Pascazio AND J. REIGNIER, Phys. Lerr. A 126 (1987), 163.

33, C.0O. ALLEY AND Y. H. SHm, i “Foundations of Quantum Mechanics II” (M Namiki et al, Eds.),
p- 47, Physical Society of Japan, Tokyo, 1987.

34, Y. H. Sum anp C. O. ALLEY, Phys. Rev. Lett. 61 (1988), 2921

35. C. K. Hong, Z. Y. Ou, anDp L. MaNDEL, Phys. Rev. Lett. 59 {1987), 2044.

36. Z.Y. Qu anD L. MANDEL, Phys. Rev. Lett. 61 (1988), 50.

37. A. Garuccio anNDp F. SELLERY, Fourd. Phys. 10 (1980), 209.

38. B. Misra anD E. C. G. SUDARSHAN, J. Marh. Phys. 18 (1977}, .756.




56

35.
40.

41.

42,
43.
44,
45.
46,
47.
48.
49.
50.
51

52.

53.
54,
55.
56.

BRAUNSTEIN AND CAVES

A. PErEs, Amer. J. Phys. 48 (1980), 931. .

R. G. GALLAGER, “Information Theory and Reliable Communication,” Chap. 2, Wiley, New York,
1968.

8. WaranaBe, “Knowing and Guessing: A Quantitative Study of Inference and Information,”
Chap. 1, Wiley, New York, 1969.

N.D. MERMIN, Phys. Rev. D 22 (1980}, 356.

W.H. Zurek, Nature { London) 341 (1989), 119,

B. W. SCHUMACHER, Phys. Rev, A, in press.

A. MEssiag, “Quantum Mechanics,” Vol. 1L, p. 1072, North-Holland, Amsterdam, 1968.

N. D. MerMIN aAND G. M. ScHwaRrz, Found. Phys. 12 (1982), 101,

S. BERGIA AND F. CANNATA, Found. Phys. 12 {1982), 843.

A. GaRG aND N. D. MERMIN, Phys. Rev. Lett. 49 (1982), 901.

A. GARG AND N, D. MERMIN, Phys. Rev. D 27 (1983), 339,

M. OGREN, Phys. Rev. D 27 (1983), 1766.

N. D. MerMIN, in “Fundamental Questions in Quantum Mechanics” (L. M. Roth and A. Inomata,
Eds.), p. 7, Gordon and Breach, New York, 1986.

R.P. FEYNMAN, R. B. LEIGHTON, AND M. Sanps, “The Feynman Lectures on Physics,” Vol. III,
Chap. 1, Addison-Wesley, Reading, MA, 1965.

A.J. LEGGETT AND A. GaRG, Phys. Rev. Lett, 54 (1985), 857.

L.E. BALLENTINE, Phys. Rev, Lert. 59 {1987), 1493,

A. PERES, Phys. Rev. Leti. 61 (1988), 2019.

M. Kac, Q. Appl. Mazh. 30 (1972), 17.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium




