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Optimal Cloning of Coherent States with a Linear Amplifier and Beam Splitters
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A transformation achieving the optimal symmetric N ! M cloning of coherent states is presented. Its
implementation requires only a phase-insensitive linear amplifier and a network of beam splitters. An
experimental demonstration of this continuous-variable cloner should therefore be in the scope of current
technology. The link between optimal quantum cloning and optimal amplification of quantum states is
also pointed out.
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Quantum systems cannot be cloned exactly [1], but only
approximately. Finding the optimal approximate quantum
cloning transformation has been a fundamental issue in
quantum information theory for the last five years. In
quantum cryptography, for instance, this problem happens
to be strongly related to the assessment of security [2].
Cloning has been extensively studied to date for discrete
quantum variables, such as quantum bits [3–9] or d-level
systems [10–12], since quantum information theory was
initially developed for these kinds of systems. Recent
progress has shown, however, that continuous spectrum
systems might be experimentally simpler to manipulate
than their discrete counterparts in order to process quantum
information (see, e.g., [13,14]).

Stimulated by this progress, we investigate in this Let-
ter the possibility of achieving the cloning of continuous-
variable quantum information. Commonly, a distinction is
made between universal cloning, if the set of input states
contains all possible states for a given Hilbert space di-
mension, and state-dependent cloning, if the input states
are restricted to a certain set which does not contain all
possible states. For any Hilbert space dimension, the op-
timal universal cloner [10–12] that clones all possible in-
put states equally well can be constructed from a single
family of quantum circuits [15]. This universal cloner re-
duces to a classical probability distributor in the continu-
ous limit. Besides the universal cloner, quantum cloning of
continuous-variable systems has been considered first in a
state-dependent context. In Ref. [16], the duplication of
coherent states was investigated, and an explicit transfor-
mation that is covariant under displacement and rotation
in phase space was derived. This transformation therefore
clones all coherent states with the same fidelity (F � 2�3),
although it is not universal, strictly speaking, as its cloning
fidelity is lower for other classes of states such as squeezed
states. The optimality of this continuous-variable cloning
transformation was then proven in Ref. [17]. More gener-
ally, it was shown that, if one attempts to produce M clones
from N original replicas of a coherent state ja� (M $ N)
with an equal fidelity for all a’s, the so-called N-to-M
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cloning transformation must result in an additional noise
on both quadratures of each of the M outputs which has a
minimum variance

s2
N ,M �

µ
2
N

2
2
M

∂
Dx2

vac , (1)

where the vacuum noise on a quadrature is de-
noted as Dx2

vac � 1�2 (h̄ � 1). The correspond-
ing maximum N ! M cloning fidelity is FN ,M �
MN��MN 1 M 2 N�. However, finding the optimal
N ! M cloning transformation and proving that it actu-
ally achieves this maximum fidelity was an open problem.

The present Letter resolves this question. We use the
Heisenberg picture in order to derive explicitly an N ! M
symmetric cloning transformation that attains Eq. (1). Re-
markably, it appears that implementing this transformation
requires only a phase-insensitive linear amplifier and a set
of beam splitters. Let jC� � ja�≠N ≠ j0�≠M2N ≠ j0�z de-
note the initial joint state of the N input modes to be cloned
(prepared in the coherent state ja�), the additional M 2 N
blank modes, and an ancillary mode z. The blank modes
and the ancilla are assumed to be initially in the vacuum
state j0�. Let �xk , pk� denote the pair of quadrature opera-
tors associated with each mode k involved in the cloning
transformation: k � 0, . . . , N 2 1 refers to the N original
input modes, and k � N , . . . , M 2 1 refers to the addi-
tional blank modes. Cloning can be thought of as some
unitary transformation U acting on jC�, and resulting in a
state jC00� � UjC� such that the M modes are left in the
same (mixed) state which is maximally close to ja�. Al-
ternatively, in the Heisenberg picture, this transformation
can be described by a canonical transformation acting on
the operators �xk , pk�:

x00
k � UyxkU, p00

k � UypkU , (2)

while leaving the state jC� invariant. We will work in the
Heisenberg picture and use the above notation throughout
this paper, with x00

k denoting the clones (i.e., the output
© 2001 The American Physical Society
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modes of the cloning circuit except the ancilla z), because
cloning turns out to be much simpler to describe from that
point of view. We will now impose several requirements
on transformation (2) that translate the expected properties
for an optimal cloning transformation. First, we require
that the M output modes have the desired mean values:

�x00
k � � �ajx0ja�, �p00

k � � �ajp0ja� , (3)

for k � 0, . . . , M 2 1. Roughly speaking, this means that
the state of the clones is centered on the original coherent
state. Our second requirement is covariance with respect to
rotation in phase space. Coherent states have the property
that the quadrature variances are left invariant by complex
rotations in phase space. So, for any input mode k of the
cloning transformation and for any operator yk � cxk 1

dpk (where c and d are complex numbers satisfying jcj2 1

jdj2 � 1), the error variance s2
yk

is the same:

s2
yk

� ��yk�2� 2 �yk�2 � Dx2
vac �

1
2

. (4)

We impose this property to be conserved through the
cloning process. Taking optimality into account, Eq. (1),
rotational covariance yields

s
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∂
Dx2

vac , (5)

where y
00
k � cx00

k 1 dp00
k . Our third requirement is, of

course, the unitarity of the cloning transformation (2). In
the Heisenberg picture, this is equivalent to demanding
that the commutation relations are preserved through the
evolution,

�x00
j , x00

k 	 � �p00
j , p00

k 	 � 0, �x00
j , p00

k 	 � idjk , (6)

for j, k � 0, . . . , M 2 1 and for the ancilla.
Let us first focus on the continuous-variable duplication

(N � 1, M � 2). A simple transformation obeying the
three conditions mentioned above is given by

x00
0 � x0 1

x1p
2

1
xzp

2
, p00
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p1p

2
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pzp
2

,
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x1p
2

1
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2
, p00
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p1p

2
2

pzp
2

,

x0
z � x0 1

p
2 xz , p0

z � 2p0 1
p

2 pz .

(7)

This transformation clearly conserves the commutation
rules, and yields the expected mean values ��x0�, �p0�� for
the two clones (modes 000 and 100). Also, one can check
that the quadrature variances of both clones are equal to
2Dx2

vac, in accordance with Eq. (5). This transformation
actually coincides with the Gaussian cloning machine in-
troduced in Ref. [16]. Interestingly, we note here that the
state in which the ancilla z is left after cloning is cen-
tered on ��x0�, 2�p0��, that is, the phase-conjugated state
ja��. This means that, in analogy with the universal qubit
cloning machine [4], the continuous-variable cloner gen-
erates an “anticlone” (or time-reversed state) together with
the two clones.

Now, let us show how this duplicator can be imple-
mented in practice. Equation (7) can be interpreted as a
sequence of two canonical transformations:

a0
0 �

p
2 a0 1 ay

z , a0
z � a

y
0 1

p
2 az ,

a00
0 �

1
p

2
�a0

0 1 a1�, a00
1 �

1
p

2
�a0

0 2 a1� ,

(8)

where ak � �xk 1 ipk��
p

2 and a
y
k � �xk 2 ipk��

p
2

denote the annihilation and creation operators for mode k.
As shown in Fig. 1, the interpretation of this transforma-
tion becomes then straightforward: the first step (which
transforms a0 and az into a0

0 and a0
z) is a phase-insensitive

amplifier whose (power) gain G is equal to 2, while the
second step (which transforms a0

0 and a1 into a00
0 and a00

1 ) is
a phase-free 50:50 beam splitter [18]. Clearly, rotational
covariance is guaranteed here by the use of a phase-
insensitive amplifier. As discussed in Ref. [19], the ancilla
z involved in linear amplification can always be chosen
such that �az� � 0, so that we have �a00

0 � � �a00
1 � � �a0�

as required. Finally, the optimality of our cloner can be
confirmed from known results on linear amplifiers. For
an amplifier of (power) gain G, each quadrature’s excess
noise variance is bounded by [19]

s2
LA $ �G 2 1��2 . (9)

Hence, the optimal amplifier of gain G � 2 yields s
2
LA �

1�2, so that our cloning transformation is optimal.
Let us now consider the N ! M cloning transforma-

tion. In order to achieve cloning, energy has to be brought
to the M 2 N blank modes in order to drive them from
the vacuum state into a state which has the desired mean
value. We will again achieve this operation with the help
of a linear amplifier. From Eq. (9), we see that the cloning
induced noise essentially originates from the amplifica-
tion process, and grows with the amplifier gain. So, we
should preferably amplify as little as possible. Loosely
speaking, the cloning procedure should then be as fol-
lows: (i) symmetrically amplifying the N input modes by
concentrating them into one single mode, which is then

     LA 
BS

 

Input

Ancilla Vacuum

Clone 1

Clone 2

FIG. 1. Implementation of a 1 ! 2 continuous-variable
cloning machine. LA stands for linear amplifier, and BS
represents a phase-free 50:50 beam splitter.
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amplified; (ii) symmetrically distributing the output of this
amplifier among the M output modes. As we will see, a
convenient way to achieve these concentration and distri-
bution processes is provided by the discrete Fourier trans-
form (DFT). Cloning is then achieved by the following
three-step procedure (see Fig. 2). First step: a DFT (act-
ing on N modes),

a0
k �

1
p

N

N21X
l�0

exp�ikl2p�N�al , (10)

with k � 0, . . . , N 2 1. This operation concentrates
the energy of the N input modes into one single mode
(renamed a0) and leaves the remaining N 2 1 modes
(a0

1, . . . , a0
N21) in the vacuum state. Second step: the mode

a0 is amplified with a linear amplifier of gain G � M�N .
This results in

a0
0 �

s
M
N

a0 1

s
M
N

2 1 ay
z ,

a0
z �

s
M
N

2 1 a
y
0 1

s
M
N

az .

(11)

Third step: amplitude distribution by performing a DFT
(acting on M modes) between the mode a0

0 and M 2 1
modes in the vacuum state:

a00
k �

1
p

M

M21X
l�0

exp�ikl2p�M�a0
l , (12)

with k � 0, . . . , M 2 1, and a0
i � ai for i � N , . . . , M 2

1. The DFT now distributes the energy contained in the
output of the amplifier among the M output clones.

It is readily checked that this procedure meets our three
requirements, and is optimal provided that the amplifier is
optimal, that is s

2
LA � ��M�N� 2 1	�2. The quadrature

variances of the M output modes coincide with Eq. (5).
As in the case of duplication, the quality of cloning de-
creases as s

2
LA increases, that is cloning and amplifying

coherent states are two equivalent problems. For 1 ! 2
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FIG. 2. Implementation of an N ! M continuous-variable
cloning machine. C stands for the amplitude concentration
operation, while D refers to the amplitude distribution. Both
can be achieved by using a DFT, or, alternatively, an inverse
“N-splitter” and an “M-splitter” (in which case we shift the
indices by one in the text, i.e., k � 1, . . . , M).
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cloning, we have seen that the final amplitude distribution
among the output clones is achieved with a single beam
splitter. In fact, any unitary matrix such as the DFT used
here can be realized with a sequence of beam splitters (and
phase shifters) [20]. This means that the N ! M cloning
transformation can be implemented using only passive
elements except for a single linear amplifier.

We will now explicitly give the simplest beam splitter
combination that enables the above transformation. For
convenience, let us now use the indices k � 1, . . . , N for
the N original input modes ak , and k � N 1 1, . . . , M for
the additional blank modes ak . With an ideal (phase-free)
beam splitter operation acting on two modes ck and cl ,µ

c0
k

c0
l

∂
�

µ
sinu cosu
cosu 2 sinu

∂ µ
ck

cl

∂
, (13)

we define a matrix Bkl�u� which is an M-dimensional iden-
tity matrix with the entries Ikk , Ikl , Ilk , and Ill replaced by
the corresponding entries of the above beam splitter matrix.
Now we can define a sequence of beam splitters acting on
M modes (“M-splitter” [14]) as

U�M� 
 BM21M

µ
sin21 1

p
2

∂
BM22M21

µ
sin21 1

p
3

∂

3 · · · 3 B12

µ
sin21 1

p
M

∂
. (14)

The individual beam splitters in Eq. (14) depend only on
their reflectivity/transmittance parameter u. In order to
concentrate the N identical inputs, we send them now
through an inverse N-splitter,

�a0
1 a0

2 · · · a0
N �T � Uy�N� �a1 a2 · · · aN �T . (15)

Again, we end up with one mode (renamed a1) having
nonzero mean value and N 2 1 modes (a0

2, . . . , a0
N )

in the vacuum state. After amplifying mode a1,
a0

1 �
p

M�N a1 1
p

M�N 2 1 ay
z , etc., a final M-splitter

operation yields the output clones

�a00
1 a00

2 · · · a00
M�T � U�M� �a0

1 a0
2 · · · a0

M�T , (16)

with a0
i � ai for i � N 1 1, . . . , M.

Since the amplification produces extra noise, our cloning
circuits used as little amplification as possible. However,
rather surprisingly, by first amplifying each input copy
k � 1, . . . , N individually,

a0
k �

s
M
N

ak 1

s
M
N

2 1 a
y
z,k ,

a0
z,k �

s
M
N

2 1 a
y
k 1

s
M
N

az,k ,

(17)

a circuit can also be constructed that yields optimum fideli-
ties. In the next step, the amplified modes are each sent
together with M 2 1 vacuum modes bk,1, bk,2, . . . , bk,M21
through an M-splitter
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�a0
k,1 a0

k,2 · · · a0
k,M�T � U�M� �a0

k bk,1 · · · bk,M21�T .

(18)

The NM output modes after this operation can be written
as

a0
k,l �

1
p

N
ak 1

s
M 2 N

MN
a
y
z,k 1 dk,l , (19)

where l � 1, . . . , M. The noise in each M-splitter output
coming from the M 2 1 vacuum inputs is represented by
mode dk,l having zero mean value and quadrature variances
of �M 2 1��2M. The final step now consists of M inverse
N-splitters acting on all modes with the same index l, i.e.,
the N modes a0

k,1, and the N modes a0
k,2, etc. The output

modes at each N-splitter,

�a00
l e1,l · · · eN21,l�T � Uy�N� �a0

1,l a0
2,l · · · a0

N ,l�
T ,

(20)

contain only noise except for one mode,

a00
l �

NX
k�1

√
1
N

ak 1

s
M 2 N

MN2 a
y
z,k 1

1
p

N
dk,l

!
. (21)

Again, all M clones are optimal, although additional noise
has been introduced at the intermediate steps which results
in M�N 2 1� “waste” output modes. However, this par-
ticular circuit points out that N ! M cloning of coherent
states is effectively a “classical plumbing” procedure dis-
tributing classical amplitudes.

Finally, we note that for squeezed-state inputs rather
than coherent states, the transformations and circuits
presented require all auxiliary vacuum modes (the blank
modes and the ancillary mode z) be correspondingly
squeezed in order to maintain optimum cloning fidelities.
This means, in particular, that the amplifier mode z needs
to be controlled which requires a device different from a
simple phase-insensitive amplifier, namely a two-mode
parametric amplifier. One can say that the cloning
machine capable of optimal cloning of all squeezed
states with fixed and known squeezing then operates in a
nonuniversal fashion with respect to all possible squeezed
states at the input [16,17].

In summary, an optimal N-to-M continuous-variable
cloning transformation for coherent states has been
derived, which attains the maximum cloning fidelity
FN ,M � MN��MN 1 M 2 N�. A possible experimen-
tal implementation of this cloner has been proposed. We
trust that this implementation should be achievable with
current technology since it requires only a single linear
amplifier and N 1 M 2 2 beam splitters. In Ref. [21],
an alternative one-to-two cloning scheme has been pro-
posed based on three nondegenerate optical parametric
amplifiers, and its experimental realization is currently
underway at Roma University. Finally, we pointed out
the link between the quality of the best cloner and
the minimum noise induced by the amplification of a
quantum state, emphasizing that spontaneous emission
is here again the mechanism that prevents the perfect
cloning of quantum states of light [3,9].
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