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Abstrac t. We derive an experimentally testable criterion for the teleporta-
tion of quantum states of continuous variables. T his criterion is especially
relevant to the recent experiment of Furusawa et al. where an input± output
® delity of 0:58 § 0:02 was achieved for optical coherent stages. Our derivation
demonstrates that ® delities greater than 1/2 could not have been achieved
through the use of a classical channel alone; quantum entanglement was a
crucial ingredient in the experiment.

1. In trod u c tion

What is quantum teleportation? T he original protocol of Bennett et al. [1]
speci® es the idea with succinct clarity. T he task set before Alice and Bob is to
transfer the quantum state of a system in one player’s hands onto a system in the
other’s. T he agreed upon resources for carrying out this task are some previously
shared quantum entanglement and a channel capable of broadcasting classical
information. It is not allowed physically to carry the system from one player to the
other, and indeed the two players need not even know each other’s locations. One
of the most important features of the protocol is that it must be able to work even
when the stateÐ though perfectly well known to its supplier, a third party VictorÐ
is completely unknown to both Alice and Bob. Because the classical information
broadcast over the classical channel can be minuscule in comparison to the in® nite
amount of information required to specify the unknown state, it is fair to say that
the state’ s transport is a disembodied transport [2]. T eleportation has occurred
when an unknown state j Ái goes in and the same state j Ái comes out.

But that is perfect teleportation. Recent experimental e� orts [3± 6] show there is
huge interest in demonstrating the phenomenon in the laboratoryÐ a venue where
perfection is unattainable as a matter of principle. T he laboratory brings with it a
new host of issues: if perfect teleportation is unattainable, when can one say that
laboratory teleportation has been achieved? What appropriate criteria de® ne
the right to proclaim success in an experimental setting? Searching through the
description above, there are several heuristic breaking points, each asking for
quantitative treatment. T he most important among these are:
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(1) T he states should be unknown to Alice and Bob and supplied by an actual
third party Victor.

(2) Entanglement should be a veri® ably used resource, with the possibility of
physical transportation of the unknown states blocked at the outset. T here
should be a sense in which the output is `close’ to the inputÐ close enough
that it could not have been made from information sent through a classical
channel alone.

(3) Each and every trial, as de® ned by Victor’s supplying a state, should
achieve an output su� ciently close to the input. When this situation
pertains, the teleportation is called unconditional. (If that is impractical,
conditional teleportationÐ where Alice and Bob are the arbiters of suc-
cess Ð may still be of interest; but then, at the end of all conditioning, there
must be a state at the output su� ciently close to the unknown input.)

T o date only the Furusawa et al. experiment [3] has achieved unconditional
experimental teleportation as de® ned by these three criteria. T he Boschi et al.
experiment [4] fails to meet Criteria 1 and 2 because their Victor must hand o� a
(macroscopic) state-preparing device to Alice instead of an unknown state and
because of a variety of low system e� ciencies [3]. T he Bouwmeester et al.
experiment [5] fails to meet Criteria 2 and 3 because their output states Ð just
before they are destroyed by an extra `veri® cation’ stepÐ can be produced via
communication through a classical channel alone [7]. In a similar vein, the Nielsen
et al. experiment [6] fails to meet these criteria because there is no quantum
entanglement shared between Alice and Bob at any stage of the process [8, 9].

But the story cannot stop here. Besides striving for simply better input± output
® delities or higher e� ciencies, there are still further relevant experimental hurdles
to be drawn from [1]:

(4) T he number of bits broadcast over the classical channel should be
`minuscule’ in comparison to the information required to specify the
`unknown’ states in the class from which the demonstration actually draws.

(5) T he teleportation quality should be good enough to transfer quantum
entanglement itself instead of a small subset of `unknown’ quantum states.

(6) T he sender and receiver should not have to know each other’s locations to
carry the process through to completion.

And there are likely still more criteria that would seem reasonable to one or
another reader of the original protocol (depending perhaps upon the particular
application called upon). T he point is, these two lists together make it clear that
the experimental demonstration of quantum teleportation cannot be a cut and
dried a� air. On the road toward ideal teleportation, there are signi® cant milestones
to be met and passed. Important steps have been taken, but the end of the road is
still far from sight.

T he work of the theorist in this e� ort is, among other things, to help turn the
heuristic criteria above into pristine theoretical protocols within the context of
actual experiments. T o this end, we focus on Criterion 2 in the context of the
Furusawa et al. experiment [3] where the quantum states of a set of continuous
variables are teleported (as proposed in [10, 11]). T he question is, by what means
can one verify that Alice and BobÐ assumed to be at ® xed positionsÐ actually use
some quantum entanglement in their purported teleportation? How can it be
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known that they did not use the resource of a classical channel alone for the
quantum state’s transport? What milestone must be met in order to see this?
Answering these questions ful® ls a result already advertised in [3] and reported in
the abstract of the present paper.

Our line of attack is to elaborate on an idea ® rst suggested in [4]. A cheating
Alice and Bob who attempt to make do with a classical channel alone, must gather
information about the unknown quantum state if they are to have any hope of
hiding their cheat. But then the limitations of quantum mechanics strike in a useful
way. As long as the allowed set of inputs contains some nonorthogonal states, there
is no measurement procedure that can reveal the state’s identity with complete
reliability. Any attempt to reconstruct the unknown quantum state will be necess-
arily ¯ awed: information gathering about the identity of a state in a nonorthogonal
set disturbs the state in the process [12, 13]. T he issue is only to quantify how
much disturbance must take place and to implement the actual comparison
between input and output in an objective, operationally signi® cant way. If the
experimental match (or ®̀ delity’ ) between the input and output exceeds the bound
set by a classical channel, then some entanglement had to have been used in the
teleportation process.

T he remainder of the paper is structured as follows. In the following section,
we discuss the motivation behind choosing the given measure of ® delity that we
do. We stress in particular the need for a break with traditional quantum optical
measures of signal transmission, such as signal-to-noise ratio, etc., used in the area
of quantum nondemolition (QND) research [14, 15]. In section 3, we derive the
optimal ® delity that can be achieved by a cheating Alice and Bob whose teleporta-
tion measurements are based on optical heterodyning as in the experiment of
Furusawa et al. [3]. T his con® rms that a ® delity of 1/2 or greater is su� cient to
assure the satisfaction of Criterion 2 in that experiment. We close in section 4 with
a few remarks about some open problems and future directions.

2. Wh y ® d e l ity?

Ideal teleportation occurs when an unknown state j Ái goes into Alice’ s
possession and the same state j Ái emerges in Bob’s. What can this really mean?
A quantum state is not an objective state of a� airs existing completely indepen-
dently of what one knows. Instead it captures the best information available about
how a quantum system will react in this or that experimental situation [16, 17]{.
T his forces one to think carefully about what it is that is transported in the
quantum teleportation process. T he only option is that the teleported j Ái must
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{ On this bit of foundational theory, it seems most experimentalists can agree. See in
particular p. S291 of Zeilinger [16] were it is stated that: `T he quantum state is exactly that
representation of our knowledge of the complete situation which enables the maximal set of
(probabilistic ) predictions for any possible future observation. . . . If we accept that the
quantum state is no more than a representation of the information we have, then the
spontaneous change of the state upon observation, the so-called collapse or reduction of the
wave packet, is just a very natural consequence of the fact that, upon observation, our
information changes and therefore we have to change our representation of the information,
that is, the quantum state. From that position, the so-called measurement problem is not a
problem but a consequence of the more fundamental role information plays in quantum
physics as compared to classical physics.’



always ultimately refer to someone lurking in the backgroundÐ a third party we
label Victor, the keeper of knowledge about the system’s preparation. T he task of
teleportation is to transfer what he can say about the system he placed in Alice’ s
possession onto a system in Bob’s possession: it is `information’ in its purest form
that is teleported, nothing more.

T he resources speci® ed for carrying out this task are the previously shared
entanglement between Alice and Bob and a classical channel with which they
communicate. Alice performs a measurement of a speci® c character and commu-
nicates her result to Bob. Bob then performs a unitary operation on his system
based upon that information. When Alice and Bob declare that the process is
complete, Victor should know with assurance that whatever his description of the
original system wasÐ his j Ái Ð it now holds for the system in Bob’s possession.
Knowing with assurance means that there really is a system that Victor will
describe with j Ái, not that there was a system that he would have described with j Ái
just before Alice and Bob declared completion (i.e. as a retrodiction based upon
their pronouncement) [7].

In any real-world implementation of teleportation, a state j Á ini enters Alice and
Bob’s dominion and a di� erent state (possibly a mixed-state density operator) «̂out

comes out. As before, one must always keep in mind that these states refer to what
Victor can say about the given system (see {). T he question that must be addressed
is when j Á ini and «̂out are similar enough to each other that Criterion 2 must have
been ful® lled.

We choose to gauge the similarity between j Á ini and «̂out by the ®̀ delity’
between the two states. T his is de® ned in the following way{ :

F … j Á ini ; «̂out† ² hÁ in j «̂out j Á ini: … 1†

T his measure has the nice property that it equals 1 if and only if «̂out ˆ j Á inihÁ in j .
Moreover it equals 0 if and only if the input and output states can be distinguished
with certainty by some quantum measurement. T he thing that is really important
about this particular measure of similarity is hinted at by these last two properties.
It captures in a simple and convenient package the extent to which all possible
measurement statistics producible by the output state match the corresponding
statistics producible by the input state.

T o see what this means, take any observable (generally a positive operator-
valued measure or POVM [17]) f Ê¬ g with measurement outcomes ¬. I f that
observable were performed on the input system, it would give a probability density
for the outcomes ¬ given by
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{ In order to form this quantity, we must of course assume a canonical mapping or
identi® cation between the input and output Hilbert spaces. Any unitary o� set between
input and output should be considered a systematic error, and ultimately taken into account
by readjusting the canonical mapping. See [14, 15] for a misunderstanding of this point. T he
authors there state, ` . . . ® delity does not necessarily recognize the similarity of states which
di� er only by reversible transformations. . . .[T his suggests] that additional measures are
required. . . based speci® cally on the similarity of measurement results obtained from the
input and output of the teleporter, rather than the inferred similarity of the input and output
states’. As shown presently, the ® delity measure we propose does precisely that for all
possible measurements, not just the few that have become the focus of present-day QND
research.



Pin … ¬† ˆ hÁ in j Ê¬ j Áini: … 2†

On the other hand, if the same observable were performed on the output system, it
would give instead a probability density

Pout… ¬† ˆ tr … «̂outÊ¬ † : … 3†

A natural way to gauge the similarity of these two probability densities is by their
overlap:

overlap ˆ

…
Pin… ¬† Pout… ¬†‰ Š1=2 d¬: … 4†

It turns out that regardless of which observable is being considered [18, 19],

overlap2 ¶ hÁ in j «̂out j Á ini: … 5†

Moreover there exists an observable that gives precise equality in this expression
[18, 19]. In this sense, the ® delity captures an operationally de® ned fact about all
possible measurements on the states in question.

Let us take a moment to stress the importance of a criterion such as this. It is
not su� cient to attempt to quantify the similarity of the states with respect to a few
observables. Quantum teleportation is a much more serious task than classical
communication. Indeed it is a much more serious task than the simplest forms of
quantum communication, as in quantum key distribution. In the former case, one
is usually concerned with replicating the statistics of only one observable across a
transmission line. In the latter case, one is concerned with reproducing the
statistics of a small number of ® xed noncommuting observables (the speci® c
ones required of the protocol) for a small number of ® xed quantum states (the
speci® c ones required of the protocol). A full quantum state is so much more than
the quantum measurements in these cases would reveal: it is a catalogue for the
outcome statistics of an in® nite number of observables. Good quality teleportation
must take that into account.

A concrete example can be drawn from the traditional concerns of quantum
nondemolition measurement (QND) research. T here a typical problem is how well
a communication channel replicates the statistics of one of two quadratures of a
given electromagnetic ® eld mode [14, 15], and most of ten then only for assumed
Gaussian statistics. T hinking that quantum teleportation is a simple generalization
of the preservation of signal-to-noise ratio, burdened only in checking that both
quadratures are transmitted faithfully, is to miss much of the point of teleporta-
tion. Specifying the statistics of two noncommuting observables only goes an
in® nitesimal way toward specifying the full quantum state when the Hilbert space
is an in® nite dimensional one [20, 21].

T his situation is made acute by noticing that two state vectors can be almost
completely orthogonalÐ and therefore almost as di� erent as they can possibly beÐ
while still giving rise to the same x statistics and the same p statistics. T o see an
easy example of this, consider the two state vectors j Á‡ i and j Á¡ i whose
representations in x-space are

Á§ … x† ˆ
2a
p

¡ ¢ 1=4

exp … … ¡ a § ib† x2 † ; … 6†

for a, b ¶ 0. In k-space representation, these state vectors look like
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~Á§ … k† ˆ
a

2p

1=4 a § ib
a2 ‡ b2

¡ ¢1=2

exp
¡ a ¨ ib

4… a2 ‡ b2†
k2

¡ ¢
: … 7†

Clearly neither x measurements nor p measurements can distinguish these two
states. For, with respect to both representations, both wave functions di� er only
by a local phase function. However, if we look at the overlap between the two states
we ® nd:

hÁ¡ j Á‡ i ˆ
a… a ‡ ib†

a2 ‡ b2

¡ ¢1=2

: … 8†

T aking b ! 1 , we can make these two states just as orthogonal as we please.
Suppose now that j Á‡ i were Victor’s input into the teleportation process,

andÐ by whatever meansÐ j Á¡ i turned out to be the output. By a criterion that
only gauged the faithfulness of the transmissions of x and p [14], this would be
perfect teleportation. But it certainly is not so!

T hus the justi® cation of the ® delity measure in Equation (1) as a measure of
teleportation quality should be abundantly clear. But this is only the ® rst step in
® nding a way to test criterion 2. For this, we must invent a quantity that
incorporates information about the teleportation quality of many possible quan-
tum states. T he reason for this is evident: in general it is possible to achieve a
nonzero ® delity between input and output even when a cheating Alice and Bob use
no entanglement whatsoever in their purported teleportation. T his can come about
whenever Alice and Bob can make use of some prior knowledge about Victor’s
actions.

As an example, consider the case where Alice and Bob are privy to the fact that
Victor wishes only to teleport states drawn from a given orthogonal set. At any
shot, they know they will be given one of these states, just not which one. T hen,
clearly, they need use no entanglement to `transmit’ the quantum states from one
position to the other. A cheating Alice need only perform a measurement O whose
eigenstates coincide with the orthogonal set and send the outcome she obtains to
Bob. Bob can use that information to resynthesize the appropriate state at his end.
No entanglement has been used, and yet with respect to these states perfect
teleportation has occurred.

T his example helps de® ne the issue much more sharply. T he issue turns on
having a general statement of what it means to say that Alice and Bob are given an
unknown quantum state? In the most general setting it means that Alice and Bob
know that Victor draws his states j Áini f rom a ® xed set S ; they just know not which
one he will draw at any shot. T his lack of knowledge is taken into account by a
probability ascription P … j Á ini† . T hat is:

All useful criteria for the achievement of teleportation must be anchored in
whatever S and P … j Á ini† are given. A criterion is senseless if the states to which
it is to be applied are not mentioned explicitly.

T his makes it sensible to consider the average ® delity between input and output

Fav ˆ

…

S
P … j Á ini† F … j Á ini ; «̂out† d j Á ini ; … 9†

as a benchmark capable of eliciting the degree to which Criterion 2 is satis ® ed. If S
consists of orthogonal states, then no criterion whatsoever (short of watching Alice
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and Bob’s every move) will ever be able to draw a distinction between true
teleportation and the sole use of the classical side channel. T hings only become
interesting when the set S consists of two or more nonorthogonal quantum states
[4]: for only then will Fav ˆ 1 never be achievable by a cheating Alice and Bob.

By making the set S more and more complicated, we can de® ne ever more
stringent tests connected to Criterion 2. For instance, consider the simplest non-
trivial case: take S ˆ S 0 ˆ f j Á0i ; j Á1ig , a set of just two nonorthogonal states (with
a real inner product x ˆ cos ³). Suppose the two states occur with equal prob-
ability. T hen it can be shown [12] that the best thing for a cheating Alice and Bob
to do is this. Alice measures an operator whose orthogonal eigenvectors symme-
trically bestride j Á0i and j Á1i . Using that information, Bob synthesizes one of two
states j ~Á0i and j ~Á1i each lying in the same plane as the original two states, but each
tweaked slightly toward the other by an angle [22]

¿ ˆ 1
2 arctan

1 ‡ sin ³

1 ¡ sin ³
‡ cos 2³

¡ ¢¡ 1

sin 2³

" #
: … 10†

T his (optimal) strategy gives a ® delity

Fav ˆ 1
2 1 ‡ … 1 ¡ x2 ‡ x4† 1=2

: … 11†

Even in the worst case (when x ˆ 1=21=2), this ® delity is always relatively highÐ it
is always above 0.933 [23].

T his shows that choosing S 0 to check for the ful® lment of Criterion 2 is a very
weak test. For an example of the opposite extreme, consider the case where S
consists of every normalized vector in a Hilbert space of dimension d and assume
that S is equipped with the uniform probability distribution (i.e. the unique
distribution that is invariant with respect to all unitary operations). T hen it turns
out that the maximum value Fav can take is [24]

Fav ˆ
2

d ‡ 1
: … 12†

For the case of a single qubit, i.e. d ˆ 2, Alice and Bob would only have to achieve
a ® delity of 2/3 before they could claim that they veri® ably used some entangle-
ment for their claimed teleportation. But, again, this is only if Victor can be sure
that Alice and Bob know absolutely nothing about which state he inputs other than
the dimension of the Hilbert space it lives in.

T his last example ® nally prepares us to build a useful criterion for the
veri® cation of continuous quantum-variable teleportation in the experiment of
Furusawa et al. [3]. For a completely unknown quantum state in that experiment
would correspond to taking the limit d ! 1 above. If Victor can be sure that Alice
and Bob know nothing whatsoever about the quantum states he intends to teleport,
then on average the best ® delity they can achieve in cheating is strictly zero! In this
case, seeing any nonzero ® delity whatsoever in the laboratory would signify that
unconditional quantum teleportation had been achieved.

But making such a drastic assumption for the con® rmation set S would be
going too far. T his would be the case if for no other reason because any present-
day Victor lacks the experimental ability to make good his threat. Any Alice and
Bob that had wanted to cheat in the Furusawa et al. experiment would know that
the Victor using their services is technically restricted by the fact that only a
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handful of manifestly quantum or nonclassical states have ever been generated in
quantum optics laboratories [25]. By far the most realistic and readily available
laboratory source available to Victor is one that creates optical coherent states of a
single ® eld mode for his test of teleportation. T herefore in all that follows we will
explicitly make the assumption that S contains the coherent states j ¬i with a
Gaussian distribution centred over the vacuum state describing the probability
density on that set. As we shall see presently, it turns out that in the limit that the
variance of the Gaussian distribution approaches in® nityÐ i.e. the distribution of
states becomes ever more uniformÐ the upper bound for the average ® delity
achievable by a cheating Alice and Bob using optical heterodyne measurements is

Fav ˆ 1
2 : … 13†

Any average ® delity that exceeds this bound must have come about through the
use of some entanglement.

3. Optim al h e te rod yn e c h e atin g

We now verify equation (13) within the context of the Furusawa et al. experi-
ment. T here, the object is to teleport an arbitrary coherent state of a ® nite
bandwidth electromagnetic ® eld. (T he extension of the single mode theory of
[11] to the multimode case is given in [26].) We focus for simplicity on the single
mode case. T he quantum resource used for the process is one that entangles the
number states j ni of two modes of the ® eld. Explicitly the entangled state is given
by [27]

j EiAB ˆ
1

cosh r
X
1

nˆ 0

… tanh r† n
j niA j niB ; … 14†

where r measures the amount of squeezing required to produce the entangled state.
In order to verify that entanglement was actually used in the experiment, as

discussed in the previous section, we shall assume that the test set S is the full set
of coherent states j - i,

j - i ˆ exp … ¡ j - j
2
=2†

X
1

0

- n

n!1=2
j ni ; … 15†

where the complex parameter - is distributed according to a Gaussian distribution,

p… - † ˆ
¶

p
exp … ¡ ¶ j - j

2† : … 16†

Ultimately, of course, we would like to consider the case where Alice and Bob are
completely ignorant of which coherent state is drawn. T his is described by taking
the limit ¶ ! 0 in what follows.

It is well known that the measurement optimal for estimating the unknown
parameter - when it is distributed according to a Gaussian distribution [28] is the
POVM f Ê¬ g constructed from the coherent state projectors according to

Ê¬ ˆ
1
p

j ¬ih¬ j ; … 17†

® rst suggested by Arthurs and Kelly [29]. T his measurement is equivalent to
optical heterodyning [30]. T hese points make this measurement immediately
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attractive for the present considerations. On the one hand, maximizing the average
® delity (as is being considered here) is almost identical in spirit to the state-
estimation problem of [28]. On the other, in the Furusawa et al. experiment a
cheating Alice who uses no entanglement actually performs precisely this meas-
urement.

We therefore consider an Alice who performs the measurement f Ê¬ g and
forwards on the outcomeÐ i.e. the complex number ¬ Ð to Bob.* T he only thing
Bob can do with this information is to generate a new quantum state according to
some rule, ¬ ! j f¬i. Let us make no a priori restrictions on the states j f¬i. T he
task is ® rst to ® nd the maximum average ® delity Fmax … ¶† Bob can achieve for a
given ¶:

For a given strategy ¬ ! j f¬i, the achievable average ® delity is

F … ¶† ˆ

…
p… - †

…
p… ¬ j - † j h f¬ j - i j

2d2¬
¡ ¢

d2- … 18†

ˆ

…
p… - †

…
1
p

j h¬ j - i j
2

j h f¬ j - i j
2 d2¬

¡ ¢
d2- … 19†

ˆ
¶

p2

… …
exp … ¡ ¶ j - j

2† exp … ¡ j ¬ ¡ - j
2† j h f¬ j - i j

2 d2- d2¬ … 20†

ˆ
¶

p2

…
exp … ¡ j ¬ j

2† h f¬ j

…
exp … ¡ … 1 ‡ ¶† j - j

2
‡ 2 Re ¬¤ - † j - ih - j d2-

¡ ¢
j f¬i d2¬:

… 21†

Notice that the operator enclosed within the brackets in equation (21), i.e.

Ô¬ ˆ

…
exp ¡ … 1 ‡ ¶† j - j

2
‡ 2 Re ¬¤ - j - ih- j d2 - ; … 22†

is a positive semi-de® nite Hermitian operator that depends only on the real
parameter ¶ and the complex parameter ¬. It follows that

h f¬ j Ô¬ j f¬i µ ·1 … Ô¬† ; … 23†

where ·1… X̂ † denotes the largest eigenvalue of the operator X̂ .
With this, Bob’s best strategy is apparent. For each ¬, he simply adjusts the

state j f¬i to be the eigenvector of Ô¬ with the largest eigenvalue. T hen equality is
achieved in equation (23), and it is just a question of being able to perform the
integral in equation (21).

T he ® rst step in carrying this out is to ® nd the eigenvector and eigenvalue
achieving equality in equation (23). T his is most easily evaluated by unitarily
transforming Ô¬ into something that is diagonal in the number basis, picking o�
the largest eigenvalue, and transforming back to get the optical j f¬i. (Recall that
eigenvalues are invariant under unitary transformations.)
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* We caution, however, that the present considerations do not prove the optimality of
heterodyne measurement for an arbitrarily adversarial Alice and BobÐ they simply make it
fairly plausible. Complete optimization requires the consideration of all POVMs that Alice
can conceivably perform along with explicit consideration of the structure of the ® delity
function considered here, not simply the variance of an estimator as in the state-estimation
problem. More on this issue can be found in [32].



T he upshot of this procedure is best illustrated by working backward toward
the answer. Consider the positive operator

P̂ ˆ

…
exp ¡ … 1 ‡ ¶† j - j

2h i
j - ih- j d2- : … 24†

Expanding this operator in the number basis, we ® nd

P̂ ˆ p
X
1

nˆ 0

… 2 ‡ ¶†
¡ … n‡ 1†

j nihn j : … 25†

So clearly,

·1… P̂ † ˆ
p

2 ‡ ¶
: … 26†

Now consider the displaced operator

Q̂¬ ˆ D̂
¬

1 ‡ ¶

¡ ¢
P̂D̂ y ¬

1 ‡ ¶

¡ ¢
; … 27†

where D̂ … ¸ † is the standard displacement operator [32]. Working this out in the
coherent-state basis, one ® nds

Q̂ ¬ ˆ

…
exp ¡ … 1 ‡ ¶† j - j

2h i
- ‡

¬

1 ‡ ¶
- ‡

¬

1 ‡ ¶
d2- … 28†

ˆ

…
exp ¡ … 1 ‡ ¶† ® ¡

¬

1 ‡ ¶

2

… † j ®ih® j d2® … 29†

ˆ exp
¡ j ¬ j

2

1 ‡ ¶… †
…

exp ¡ … 1 ‡ ¶† j ® j
2

‡ 2 Re ¬¤ ® j ®ih® j d2® … 30†

ˆ exp
¡ j ¬ j

2

1 ‡ ¶… † Ô¬: … 31†

Using this in the expression for F … ¶† we ® nd,

F … ¶† ˆ
¶

p2

…
exp ¡ 1 ¡

1
1 ‡ ¶

¡ ¢
j ¬ j

2
¡ ¢

h f¬ j D̂
¬

1 ‡ ¶

¡ ¢
P̂D̂ y ¬

1 ‡ ¶

¡ ¢¡ ¢
j f¬i d2¬ … 32†

µ
1
p

¶

2 ‡ ¶

…
exp ¡

¶

1 ‡ ¶
j ¬ j

2
¡ ¢

d2¬ … 33†

ˆ
1 ‡ ¶

2 ‡ ¶
: … 34†

Equality is achieved in this chain by taking

j f¬i ˆ D
¬

1 ‡ ¶

¡ ¢
j 0i ˆ

¬

1 ‡ ¶
: … 35†

T herefore the maximum average ® delity is given by

Fmax … ¶† ˆ
1 ‡ ¶

2 ‡ ¶
: … 36†
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In the limit that ¶ ! 0, i.e. when Victor draws his states from a uniform distri-
bution, we have

Fmax … ¶† ! 1
2 ; … 37†

as advertised in [3].
It should be noted that nothing in this argument depended upon the mean of

the Gaussian distribution being - ˆ 0. Both would need to minimally modify his
strategy to take into account Gaussians with a non-vacuum state mean, but the
optimal ® delity would remain the same.

4. Con c lu sion

Where do we stand? What remains? Clearly one would like to develop a toolbox
of ever more stringent and signi® cant tests of quantum teleportationÐ ones
devoted not only to Criterion 2, but to all the others mentioned in the section 1
as well. S igni® cant among these are delineations of the ® delities that must be
achieved to insure the honest teleportation of nonclassical states of light, such as
squeezed states. Some work in this direction appears in [11], but one would like to
® nd something more in line with the framework presented here. Luckily, a more
general setting for this problem can be formulated [32] as it will ultimately be
necessary to explore any number of natural veri® cation sets S and their resilience
with respect to arbitrarily adversarial Alice and Bob teams.

Ac kn ow le d gm e n ts

We thank Jason McKeever for suggesting the nice example in equation (6) and
thank J. R. Buck and C. M. Caves for useful discussions. T his work was supported
by the QUIC Institute funded by DARPA via the ARO, by the ONR, and by the
NSF. SLB was funded in part by EPSRC grant GR/L91344. CAF acknowledges
support of the Lee A. DuBridge Fellowship.

Re fe re n c e s
[1] BENNETT, C. H., BRASSARD, G., CREÂ PEAU, C., JOZSA, R., PERES, A., and WOOTTERS,

W. K., 1993, Phys. Rev. L ett., 70, 1895.
[2] BRAUNSTEIN, S . L. A fun talk on teleportation. Available on the World Wide Web at

http://www.sees.bangor.ac.uk/schmuel/tport.html.
[3] FURUSAWA, A., S é RENSEN, J. L., BRAUNSTEIN, S . L., FUCHS, C. A., KIMBLE, H. J., and

POLZIK, E. S., 1998, Science, 282, 706.
[4] BOSCHI, D., BRANCA, S . , DE MARTINI, F. , HARDY, L., and POPESCU, S ., 1998, Phys. Rev.

L ett., 80, 1121.
[5] BOUWMEESTER, D., PAN, J.-W., MATTLE, K., EIBL, M., WEINFURTER, H., and

ZEILINGER, A., 1997, Nature, 390, 575.
[6] NIELSEN, M. A., KNILL, E., and LAFLAMME, R. 1998, Nature, 396, 52.
[7] BRAUNSTEIN, S . L., and KIMBLE, H. J. 1998, Nature, 394, 840.
[8] BRAUNSTEIN, S. L., CAVES, C. M., JOZSA, R., LINDEN, N., POPESCU, S ., and SCHACK, R.,

1998, Phys. Rev . L ett. , 83, 1054.
[9] SCHACK, R., and CAVES, C. M., 1999, quant-ph/9903101.

[10] VAIDMAN, L., 1994, Phys. Rev . A, 49, 1473.
[11] BRAUNSTEIN, S . L., and KIMBLE, H. J., 1998, Phys. Rev. L ett. , 80, 869.
[12] FUCHS, C. A., and PERES, A., 1996, Phys. Rev. A, 53, 2038.
[13] FUCHS, C. A., 1998, Fort. Phys. , 46, 535.

Criteria for continuous variable quantum teleportation 277

http://www.sees.bangor.ac.uk/schmuel/tport.html
http://cherubino.catchword.com/nw=1/rpsv/0031-9007^28^2970L.1895
http://cherubino.catchword.com/nw=1/rpsv/0036-8075^28^29282L.706
http://cherubino.catchword.com/nw=1/rpsv/0031-9007^28^2980L.1121
http://cherubino.catchword.com/nw=1/rpsv/0028-0836^28^29390L.575
http://cherubino.catchword.com/nw=1/rpsv/0028-0836^28^29396L.52
http://cherubino.catchword.com/nw=1/rpsv/0028-0836^28^29394L.840
http://cherubino.catchword.com/nw=1/rpsv/0031-9007^28^2983L.1054
http://cherubino.catchword.com/nw=1/rpsv/1050-2947^28^2949L.1473
http://cherubino.catchword.com/nw=1/rpsv/0031-9007^28^2980L.869
http://cherubino.catchword.com/nw=1/rpsv/1050-2947^28^2953L.2038
http://cherubino.catchword.com/nw=1/rpsv/0015-8208^28^2946L.535
http://cherubino.catchword.com/nw=1/rpsv/0031-9007^28^2980L.1121


[14] RALPH, T . C., LAM, P. K., and POLKINGHORNE, R. E. S., 1999, quant-ph/9903003.
[15] RALPH, T . C., and LAM, P. K., 1998, Phys. Rev . L ett. , 81 , 5668.
[16] ZEILINGER, A., 1999, Rev. Mod. Phys. , 71, S288.
[17] PERES, A., 1993, Quantum T heory: Concepts and Methods (Dordrecht: Kluwer).
[18] FUCHS, C. A., and CAVES, 1995, Open Sys. Info. Dyn. , 3, 345.
[19] BARNUM, H., CAVES, C. M., FUCHS, C. A., JOZSA, R., and SCHUMACHER, B., 1996, Phys.

Rev . L ett., 76, 2818.
[20] REICHENBACH, H., 1944, Philosophic Foundations of Quantum Mechanics (Berkeley:

University of California Press), pp. 91± 92.
[21] VOGT, A., 1978, Mathematical Foundations of Quantum T heory, edited by A. R.

Marlow (New York: Academic Press), pp. 365± 372.
[22] FUCHS, C. A., 1996, PhD thesis, University of New Mexico, Albuquerque, NM, USA;

see also quant-ph/9601020.
[23] FUCHS, C. A., 1998, to appear in Quantum Communication, Computing, and Measure-

ment 2, edited by P. Kumar, G. M. D’Ariano and O. Hirota (New York: Plenum
Press) ; see also quant-ph/9810032.

[24] BARNUM, H., 1998, PhD thesis, University of New Mexico, Albuquerque, NM, USA.
[25] MANDEL, L., and WOLF, E. , 1995, Optical Coherence and Quantum Optics (Cambridge:

Cambridge University Press).
[26] VAN LOOCK, P. , BRAUNSTEIN, S . L., and KIMBLE, H. J., 1999, Phys. Rev . A; see also

quant-ph/9902030.
[27] VAN ENK, S . J., 1999, A discrete formulation of teleportation of continuous variables,

quant-ph/9905081.
[28] YUEN, H. P. , and LAX, M., 1973, IEEE T rans. Inf. T heor. , IT-19, 740.
[29] ARTHURS, E. , and KELLY JR, J. L. 1965, Bell S yst. T echnol. J. , 44, 725.
[30] PERSONICK, S. D., 1971, Bell S yst. T echnol. J. , 50, 213.
[31] FUCHS, C. A., 1999, Squeezing quantum information through a classical channel, in

preparation.
[32] NUSSENZVEIG, H. M., 1973, Introduction to Quantum Optics (London: Gordon and

Breach).

278 Criteria for continuous variable quantum teleportation

http://cherubino.catchword.com/nw=1/rpsv/0031-9007^28^2981L.5668
http://cherubino.catchword.com/nw=1/rpsv/0031-9007^28^2976L.2818
http://cherubino.catchword.com/nw=1/rpsv/0031-9007^28^2976L.2818

