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Detection devices in entanglement-based optical state preparation
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We study the use of detection devices in entanglement-based state preparation. In particular we consider
optical detection devices such as single-photon sensitivity detectors, single-photon resolution detectors, and
detector cascaddéwith an emphasis on the performance of realistic detectd/s develop an extensive theory
for the use of these devices. In entanglement-based state preparation we perform measurements on subsystems,
and we therefore need precise bounds on the distinguishability of these measurghigiigsfundamentally
different from, e.g., tomography, where an ensemble of identical states is used to determine probability
distributions, etg. To this end, we introduce the confidence of preparation, which may also be used to quantify
the performance of detection devices in entanglement-based preparation. We give a general expression for
detector cascades of arbitrary size for the detection up to two photons. We show that, contrary to the general
belief, cascading does not give a practical advantage over detectors with single-photon resolution in
entanglement-based state preparation.
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The accurate creation of quantum states is important td¢). In practice, the fidelity will not reach these extreme
many applications in, for example, quantum computation ananeasures, but will lie between 0 and 1.
information[1,2]. One method of state preparation is to en- For example, if we want to prepare a single-photon state
tangle two systems and subsequently perform a so-called) we can use the following process: a parametric down
conditional measurement on one subsystem: depending ooonverter creates a std) ., on two spatial modea andb:
the measurement outcome the undetected subsystem is “pre-
pared” (collapsed into a particular predetermined stdsee |4 b2 | 0Yal O)p+ £ 1)a| 1)+ O(£2), (2)
also Rubin[3]). Considerable progress has been made using
this method in the creation afptical quantum statep4—8|

and in the creation of three-photon polarization entangleme here_|0) denotes the.vacuum .state Zand we assyrd .
[9]. Optical entanglement sources include, for example, he higher-order termgncluded inO(¢7) ] consist of states

cross-Kerr medi@7] or the mixing of states at beam splitters With more than one photon. We now place a photodetector in

[8]. In general, the quality of this entanglement-based stat oo_lea, which “clicks” when it sees one or more photons .
preparation strongly depends on the details of the condition pr!ca_lly, §tandard detectars can see single ph.o.tons, but fail
measurement. to dlst|ngg|sh between one gnd two photpr@donditioned on

In this paper we study the effect ofalistic (photo) de- such a click, modé will be in a state
tectors on the state preparation process. To this end we in-
troduce the concept of tlenfidencef preparation in Sec. I. p| L)p(1[+0(]¢]?). 3)

This measure does not only quantify the “quality” of the

state preparation process, but it also allows us to comparene fidelity of this process is hight = (1|p|1)=1, and this
different types of detection devices. In Sec. Il we discuss th%, therefore, typ|ca||y a very good Sing|e_ph0ton state prepa-
distinction between single-photon sensitivity and single-ration process(although the situation changes drastically
photon resolution detectors. The statistics of detector cascagshen multiple down converters are considef&d, 17)). Due

ing with single-photon sensitivity detectors is studied in Seco the large vacuum contribution, however, the probability of
[l and Sec. IV where a numerical comparison between suckhe detector giving a click will be smallbf orderO(|£|?)].
detector cascades and single-photon resolution detectors \ighen the detector does not click, that particular trial is dis-
made. missed, hence theonditional character of the detection.

Let's consider entanglement-based state prepardB8pn In this example the outcome of the detection is used to
(not necessarily restricted to quantum optiof/e want to  eijther accept or reject a particular run of the state preparation
prepare asingle (pure state |¢) by means of some device. However, in general the outcome of the detector can
entanglement-based process, and we want the resulting sta§e¢ used to determine a more complicated operation on the
p to be as “close” to|¢) as possible. A measure of resem- remainder of the state preparation process. This is detection

blance between states is given by the fidekity10]: plusfeed forward since the outcome is used further on in the
process. An example of this is quantum teleportation, where
F=Trlp|o){(l]. (1) the outcome of the Bell measurement determines the unitary

transformation needed to retrieve the original input state.
The quality of a state preparation process can therefore be When the measurements in the state preparation process
measured by the fidelity. Whea=1, the process gives ex- are prone to errors, the state we want to create may not be the
actly | ¢) and whenF =0, the prepared state is orthogonal to state we actually create. This means that errors in the detec-
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As mentioned before, a measurement outcami& mode
1 gives rise to an outgoing statg, in mode 2. We cannot

describe a nonideal measurement with the projectign
|) =|a)(ay. Instead, we have a POV, (corresponding to
the outcome, ), which reduces t®, in the case of an ideal

FIG. 1. A schematic representation of state preparation condimeasurement. Lgt;,=|#)1 |, the entangled state prior to
tioned on a measurement. One branch of the entanglejeris ~ the measurement. The outgoing state in mbakill then be
detected, yielding an eigenvalag. The other branch is now in a
statepq,. - M ®)

Pa” T(E@)pial’
tion devices can lead to reduced fidelities. In this paper we
study the effect of detection errors on optical traveling-wavewhere the total trace over both systems in the denominator
state preparation. gives the proper normalization.

If we had an ideal detectorcorresponding toEy
=|a)(ay|), the outgoing state would b@a, = [b){(byl.
However, with the general POVM,, this will not be the

Consider a preparation device that prepares a state contiase. The resulting state will be different. In order to quantify
tioned on a single measurement. For simplicity, we employthe reliability of a state preparation process we introduce the
two subsystems. One subsystem will be measured, leaving@nfidenceof a process.
quantum state in the other. It is clear that prior to the mea- Definition: Theconfidencen the preparation of a particu_
surement the two systems have to be entangled, otherwisgr state is given by the fidelity of the preparation process.
conditioning on the measurement does not have any effect ophat means that using Eqet) and (8) the confidenceC is

|. CONFIDENCE

the state of the second system. given by
We can write the total statgy)q, prior to the measure-
ment in the Schmidt decomposition: ~ TH(E®|by(bil)p1a] |cil2(ay Exlay) ©
- Tl(E@Dp] S o2 ’
c||“(a|Exla
|$>12=§k: cila /b2, (4) ' el (@lEda

where thelc)|? are the diagonal elements of the density ma-

with {|a,)}, and{|b)}, orthonormal sets of states for sys- trix. In the context of measurement and state identification,
tem 1 and 2, respectively. These states correspond to eigethe fidelity is a widely used and well-studied concept
states of observables andB with sets of eigenvaluega,}y  [15,16. Since the confidence is defined as the fidelity of the
and{b}, respectively. We now measure the observable preparation process, these results also apply here.
in system 1, yielding an outcons (see Fig. 1 We prefer the term confidence in this context, because it

We can model this measurement using so-called projeds reminiscent of the confidence in statistjds]. Statistical
tion operator valued measures, or POVM'’s for short. Forconfidence denotes the probability that the value of a quan-
ideal measurements, we can describe the measurement gy lies within a fixed interval around the observed mean
mode 1 as a projectioR = |ay)(a,| operating on the state value. In this paper, we extend this meaning to the quantum-
|)12. When we trace out the first system ttrormalized  mechanical case. It is the probability that feeparedstate

state of the second system will be passes a projective test for thgpectedstate in a single-shot
experiment.
_ Tnl(P@D)| )19l _Ibo(bd ) The confidenceC in Eq. (9) can be interpreted as the
Pa, = Trd (Pe® D[y 1A 9] k/\ Pkl - probability of obtaining outcoma, from the “branch” con-

taining|ay) in Eq. (4) divided by the unconditional probabil-

For nonideal measurements we do not use a projectioEy of obtaining outcome. We will also call this the “con-

operator, but rather projection operator valued measuria 'r?enche of dstate preparznon.t’)’ This mte(rjpretatlon sug_gestﬁ
general, a POVME, can be written a§13,14) that there does not need to be a second system to give the

idea of confidence meaning. Suppose, for instance, that we
have an “electron factory” that produces electrons with ran-
Eu:E d,,P,=0, (6) dom spin. A Stern-Gerlach apparatus in the path of such an
© electron will make a spin measurement along a certain direc-
tion r. Suppose we find that the electron has spin “up”
where theP,’s form a set(possibly over complete, hence the alongr. Before this measurement the electron was in a state
difference in notation fromP,) of projection operators of random spin gi,=3|1){(T]+3|1){(l]), and after the mea-
{lu){ul}, . We also require a completeness relation surement the electron is in the “spin-up” state(=
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[TT]). The state of the electron hasollapsed into ] .

the spin-up state. We will now investigate how we can define —] D

the confidence of the detection of a single system. N § — N-port N
Formally, we can model state collapse by means of the ] Ly

superoperatoﬁ-‘ak, where a, is again the outcome of the
measurement of observabke (spin up in the above ex-
ample. In general, a superoperator yieldg@n-normalize _ ) )

ple 9 perop yieldéna . modes. TheN ports considered here consist of mirrors and beam

mappingp—>.7-"ﬂ(p) (see FU,ChS and Pergss,19 ahd refgr- splitters and do not mix creation operators with annihilation opera-
ences therein When the eigenstate correspondingaiois  tors.

given by|a,), we can define the confidence of this measure-

ment as

FIG. 2. AnN port with unit-efficiency, non-resolving detectors.
The N incoming modes are unitarily transformed inkb output

common detectors do not have single-photon resolution, al-

5 5 though they can distinguish between a few and many pho-
:<ak|fak(p)|ak> _ T Fa(p)la(ad] ) tons. When small photon numbers are detected, however,
T F. (p)] T F. (p)] ' these are single-photon sensitivity detectors to a good ap-

K K proximation. There are also single-photon resolution detec-

. A o . _tors [20,21]. Currently, these detectors require demanding
with Tr[}“ak(p)] the proper normalization. However, this ex operating conditions. At this point we note that here, we only

pression depends strongly on the details of the detectorgynsider the detection of single modes. In practice, however,
Ay This is a more complicated generalization than thegetectors are multimode detectors. Since we are dealing with
POVM's E,. The confidence of state preparation, on thegjrect detection, these other modes only contribute to the
other hand, is a function of the POVE . FurthermoreCr,  packground noise, with the quantum efficiency to the single
will in generalnot be equal to the confidence of state prepa-mode being the key parameter.
ration derived in Eq(9). o _ When we need single-photon resolution but do not have
_ In conclusion, _there are two distinct versions of the con-he resources to employ single-photon resolution detectors,
fidence: the confidence oheasuremenand the confidence e can use a so-calledetector cascad2?]. In a detector
of state preparationLater in this paper we will use the con- -ascade an incoming modpopulated by a number of pho-
cept of theT confidence to makg a quantitative comparisofpng s split into N output modes with equal amplitude,
between different detection devices. This suggests that Wghich are all detected with single-photon sensitivity detec-
need to calculate the confidence of measurement with all itgyrs. The idea is to choose the number of output modes large
difficulties. One way to circumvent this problem is to Ca|CU'enough, so that the probability that two photons enter the
Instead of concentrating on the state preparation process Wgat transforms\ incoming modes intdN outgoing modes is
now choosg a standard input state and calculate the confiyjied anN port (see Fig. 2 [23]. A detector cascade is a
den_ce for_ different types _of measurement devices. One Sucé'ymmetricN port with detectors at the outgoing modes and
choice might be the maximally entangled state vacuum states in all input modes except the first mode. In the
next section we will study the statistics of symmetiports,
but first we need to elaborate on the types of errors that occur
in detectors.

There are two sources of errors for a detector: it might fail

WhenN—, this is perhaps not the ideal choice and anothefo detect a photon, or it might give a signal although there
state may be preferred. For any choice, the confidence offetasn’t actually a photon present. The former may be char-
a quantitative measure of performance for different types oficterized as a “detector loss” and the latter as a “dark
measurement devices. count.” Here, the emphasis will be on detector losses. In
some experimentglike the Innsbruck teleportation experi-
ment[24]) the detectors operate within short gated time in-
tervals. This greatly reduces the effect of dark counts and we
Having set the stage for state preparation conditioned owill not consider them here.
measurement outcomes, we will now restrict the remainder Detector losses are not so easily dismissed. Every photon
of this paper to optical implementations. Let's consider theentering a detector has a certain probability of triggering it.
measurement of optical Fock states using photodetectors. [Fhis probability is called thefficiencyof the detector. For
order to classify different types of detectors we use the folthe purpose of brevity, when a detector is perfectly efficient,
lowing terminology: a detector is said to havesagle- we will call it a unit-efficiencydetector. When it has some
photon sensitivitywhen it is sensitive enough to detect a lower efficiency, we speak of &nite-efficiencydetector.
single-photon wave packet. This is the case with, for exHere, we study detector cascading with unit-efficiency detec-
ample, the avalanche photodetector. When a detector cdars, as well as cascading with finite-efficiency detectors
distinguish between- and (h+ 1)-photon wave packets, itis [25]. We are interested in the case where cascading distin-
said to have aingle-photon resolutian guishes between photon-number stdtésand |k’) with k
Real detectors have a variety of characteristics. Most=k'.

1 N2
|‘I’>12:\/—N k§=:O lay,ay). (11

Il. OPTICAL DETECTION DEVICES
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I1l. N PORTS
|7k|2<k|Ek| k) |7k|2pN(k|k)

In this section we treat the properties of detector cascades, C= ) N 5 - (19
or symmetricN ports with single-photon sensitivity detectors EI | Yml “(M[E\m) % |Vl “Pr(K|M)
in the outgoing modes. Symmetri¢ ports yield a(unitary)
transformationU of the spatial field modeg,, with j,k

In order to find the confidence, we therefore first have to

=1...N calculate the probability distributiopy . This will allow us
to compare single-photon resolution detectors with various
N N arrangementsN portg of single-photon sensitivity detec-
b— 21 Ujkaj and bl_)'zl U]*kajT, (12 tors.
I= 1=

Suppose photons enter the first input mode and all other
. . input modes are in the vacuum state. The density matrix of
where the incoming modes of thé portA?re denoted bR the pure input statpy= |k)(k| will be transformed according
and the outgoing modes bly;. Here,aj and a; are the g p=U,p,U/ with Uy the unitary transformation associ-

respective creation and annihilation operators of mage ated with the symmetricN port. Let o be the N-tuple

and similarly for modeb, . The unitary matrixU can be . . -
chosen to be of the photon number in every outgoing mode:

=(Nnq,Nn,, ... ,ny). The probability of findingh; photons in
mode 1 andn, photons in mode 2, etc., is given hy;

1 o s s ) . . o
Uy =—=ex 27i (j — 1) (k—1)/N] (13) —_(n|p|n). Using theN port transformation this probability
JN yields
without loss of generality up to an overall phase factor. Paul Pa=(n[UnpoUNIn) =(n|Uy[k)[?, (16)
et al. have studied such devices in the context of tomography
and homodyne detectidi26]. wherek=(k,0, . . . ,0),since only the first input mode inhab-

Here, we studyN ports in the context of optical state its photons and the rest are vacuum. From REZ3] and

preparation, where only one copy of a state is given, insteafg] we find that this can be rewritten as
of an ensemble. We will use the concept of tmnfidence

introduced in Sec. I. [HE-(O)]Z
n

"ngleeongtk! (7
A. Statistics of N ports

Suppose we have a detector cascade, consisting of a syfere, H+(x) is a so-called multidimensional Hermite poly-
metric N port with single-photon sensitivity detectors in the nomial (MDHP) [29] and the matrixR is defined as
outgoing modes. According to Eq&l2) and (13) incoming
photons will be redistributed over the outgoing modes. In o -—ut
this section we study the photon statistics of this device. In RE( t )
particular, we study the case wheeghotons enter a single -U 0

input mode of theN port, with vacuum in all other input o ) .
modes. This devicéi.e., the detector cascadeill act as a For our present purposes it is convenient to characterize the

subideal single-photon resolution detector since there is Y POt by its transformation of the field modes given by Egs.

probability that some of the photons end up in the samél? and (13). We therefore concentrate du rather than

outgoing mode, thus triggering the same detector. UN', )

To quantify the single-photon resolution of the cascade SiNce there is a one-to-one correspondence betwee the
we use the confidence given by E®). Suppose we have port (U) and the matrlxR, knowl_edge ofU is s_uff|C|ent to
two spatially separated entangled modes of the electromag@lculate the confidence of a given event using fthport.
netic fielda and b with number state$m) in a and some | he MDHP forN input modes withk photons in the first
other orthogonal statg,,,) in b: mode and zero in the othefgiving an N-tuple k) and N

output modes is given by

(18

|q,>:2 ')’m| m>a| ¢m>bv (14
m R,2y— 2k 1. ok 1. -
He(xX)=(=1)""exp ExRx A\ exp{ - ExRx )
where the second mode is used only to give the confidence (19
an operational meaning. The POVM governing the detection . R
can be written ag, ==, py(k|m)|m)(m|, since we assume wherexRx"=3;;x;Ri;X;, X=(Xy, . . . Xay) and
that the photons are not lost in theport. In this expression
pn(k|m) is the probability thatm incoming photons cause a 52k

k-fold detector coincidence in thi¥-port cascade. The con- V=% . (20)
fidence can then be written as
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N the unitary transformatiol) of the field modes in thi&l port
— now becomes algx2N unitary matrixU—U®1, (where
o | ‘ il . 1, is the two-dimensional unit matrixApplying a transfor-
e D mationV,, to implement the beam splitters with transmission
2N | 2 N-port N coefficientn? will give a new unitary transformation govern-
i L ing the behavior of the 4 port. Although nothing holds us

from considering detectors with different efficiencies, for

FIG. 3. A 2N port with N modes, which are detected with ideal SIMPlicity we will assume that all detectors have the same
detectors andll undetected modes. These modes are associated wifficiency . In terms of the original unitary matri from

the detector losses. Eq. (13) the new unitary matrixJ becomes
The number of photons in the input mode is equal to the total U ( nU N nZU) 24
. . . RN = .
number of photons in the output modes. The dimensiox of —J1- 72U U
obeys dimx=dim k+dim n=2N. For example, for a two-
photon input state we have This changes the matriR of the MDHP accordingly
1. A ) p( 1. . 0 ot
exp| SXRX'——— | exp — =xRX" i—o) =2RyRyx. = -u
p<2 IX3 X IX 2 R—R= Gt o (25

(21)

There are many different ways in whighincoming pho-  andR is now a 4N X 4N matrix dependent om. The prob-
tons can trigger &-fold detector coincidence. These differ- ability of finding ak-fold detector coincidence in aN-port
ent ways correspond to different photon distributions in thecascade with finite-efficient detectors then becomes

outgoing(detectegl modes, and are labeled Ey. The prob- -
ability that allk photons enter a different detector is found by [HR (0)]2

R mn
determining thep,;r’s, where evenyn; in n, is at most one. pr(klm) = 2
The sum over all thesep,;r’s is equal to the probability neS

pn(k|K) of ak-fold coincidence in alN port conditioned on
k incoming photons:

ny!..ongy!mt’ (26)

whereS, is the set of alh with exactlyk nonzero entries in
the detected mode@ote that we still call it arN port al-
Kl (N though technically it is a® port). The confidence of having
pN(klk)=2 P = _( ) (22) a total ofk photons in &-fold detector coincidence is again
mo 0 NKLK given by Eq. (15. The variables of the MDHP

will be a 2N-tuple k=(k,0, ...0). Theoutput photon
number AN-tuple can now be written as n
=(n¢,n9, ...n%,nY, ...ny), where the superscripts and
u again denote the detected and undetected modes, respec-
tively. Furthermore we havesM nf=Ny and =M ,n!

Finally, in order to find the probability of k-fold detector
coincidence conditioned om photons in the input state
(with m=k) we need to sum all probabilities in EG.7) with

k nonzero entries in thBl-tuple n:

[HBQ(O)]Z ENU._ _
klm) = 2 LU L 23 Using Eq.(22) and observing that every detected photon
pukim= 3 (23 , jand observing t |
nes, N - -« NnoMe carries a factorp” it is quite straightforward to obtain the

probability thatk photons give &-fold coincidence in an
whereS, is the set of allh with exactlyk nonzero entries.  efficient N-port cascade:

B. Realistic N ports 7°*N!

pr(k|k) N N—R)L (27)
We now consider a symmetri-port cascade with finite-
efficiency single-photon sensitivity detectors. Every one of
the N detectors has a certain loss, which means that some

photons do not trigger the detector they enter. We can model Having determined the probability distributiooy, we
this situation by putting a beam splitter with intensity trans-can now calculate the confidence of detector cascading. First
mission coefficients? in front of the ideal detectorf25]. of all, in order to obtain a high confidence in the outcome of
The reflected photons are sent into the environment and camdetector cascade, the possible number of photons should be
be associated with the loss. The transmitted photons are detuch smaller than the number of modes in the caschde:
tected(see Fig. 3 >K. In practice there is a limit to the number of detectors we
The implementation of the beam splitters responsible foican build a cascade with, so we only look at the lowest order,
the detector losses transform durport into a 2N port and  distinguishing between one and two photons.

C. The single-photon resolution ofN ports
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We will calculate the confidence of having outgoing state IV. COMPARING DETECTION DEVICES
|1) conditioned a single detector giving a “click” in the

detector cascade when the input state is given by Let’s return again to the schematic state preparation pro-

cess depicted in Fig. 1. There we had two modes, one of
TY..=al0 +8l1 +9|2)4|ds),. (28)  Which was detected, giving the prepared outgoing state in the
¥)12=alOnl oot lLhilbu)ot 2l 42)2 other. We argued that different detection devices yield dif-

This state corresponds, for example, to the output of a dowferent output states, and the comparison of these states with

converter when we ignore higher-order terms. The confithe ideal caséwhere we used an ideal deteotded to the

dence is then introduction of the confidence of a state preparation process.
Here, we will use the confidence to make a comparison of

|82pn(1]1) differentdetection devicesather than output states. This can
C(1|W¥)p)= be done by choosing a fixed entangled input state. The con-

||?pn(110)+B1%pn(2] 1) +] vI?Pn(1]2) fidence then quantifies the performance of these detection
(29 devices.

Consider the state preparation process in the setting of
quantum optics. We have two spatial modes of the electro-
magnetic field, one of which is detected. In this paper we are
mostly interested in states containing a few photons, and the

Egs.(26) and(21) allow us to calculate the probabilities of a
zerofold, onefold, and twofold detector coincidence condi-
tioned on one or two incoming photons:

pn(0]0)=1 (303 detection devices we consider therefore include single-
N ’ photon sensitivity detectors, single-photon resolution detec-
Pn(1/0)=0 (30b) tors, and detector cascades. As an example, we set the task of

distinguishing between one and two photons. Since single-
photon sensitivity detectors are not capable of doing this, we
will compare the performance of detector cascading with that
of a single-photon resolution detector. Let the state prior to
the detection be given by

pn(0]2)=(1—7%)?, (30e 1
|\I,>=ﬁ(|0>|¢0>+|1>|¢1>+|2>|¢2>)' (32

pn(0[1) =177, (300

pn(1[1)= 77, (300)

4

n
pn(1]2)= 7 +27°(1= 7P, (30f) _ _ _ _
This state is maximally entangled and will serve as our
“benchmark” state. It leads to the choige=1 in Eqg.(31) in
(22)= N-1 , (309 the previous section. Suppose the outgoing state conditioned
Pn N 7 on a “one-photon” indication in the detection device gds

The confidence is then again given 8y=(¢4|p|®1).
For example, using these probabilities, together with Eq. First, consider the single-photon resolution detector de-
(28), gives us an expression for the confidence that a singlecribed in Refs[20,21]. This detector can distinguish be-

detector hit was triggered by one photad=(| y|%/|8|?): tween one and two photons very well, but it does suffer from
detector losse&he efficiency was determined at 88% hat
N means that a two-photon state can be identified as a single-

, (31) photon state when one photon is lost. The confidence of this
detector is therefore not perfect.
where, for simplicity, we omitted the functional dependence In order to model the finite efficiency of the single-photon
' mplicity, . P resolution detector we employ the beam-splitter model from
of C on the incoming state, the size of the cascade and th . .
e S ec. Il B. We write the input state as
order of the detector coincidence. This gives a general mea-
sure of performance of a cascadeanbitrary size Nfor the 1 (ah?
detection of up to two photons. Since the size of the cascade |W)y=— |0)|¢0>+éT|0>|¢1)+ —10)|#,) |.
needs to be comfortably larger than the number of detected V3 V2
photons, Eq(31) will be sufficient for most practical pur- (33

poses. e oy -
A close look at Eq(30f shows us thapy(1|2) includes ~When we make the substitutioa’' —7b’+ J1-7°c’ we

a term that is independent of the number of modes in th@btain a statg. The outgoing density matrix conditioned on
N-port cascade. This term takes on a maximum value of 1/& Single photon in modb is then

for 7°=13. However, the confidence is a monotonously in-

creasing function ofy?. As expected, for smab’s the con- Pout= Trod (|n(1[@1o)p]
fidence Cy(1)¥)) approaches 1. Detector cascading thus T (|11)p(1[®1c)p]

C:
N+ 8] 72+ 2N(1— 7?)]

turns a collection of single-photon sensitivity detectors into a 2 41— 7?)
device withsomesingle-photon resolution. In the next sec- __ 7 |p){ 1| + 27 b ) (dba]. (39
tion we will give a quantitative estimation of this resolution. 4—379? 4377
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yield a modest boost in resolution, unless the detectors with
single-photon sensitivity have a very high efficiency. In the
context of entanglement-based state preparation, real single-
photon resolution detectors are therefore superior to detector
cascading with currently available detectors, notwithstanding
the demanding operating conditions.

V. CONCLUSIONS

0.2 _
1Z) = (100} + [1)Ié1) + [2)1¢2))/ V'3 In this paper we have studied the use of detection devices

) 03 04 5 06 08 T in entanglement-based traveling-wave state preparation. In

n particular we considered optical devices such as single-

photon sensitivity detectors, single-photon resolution detec-

FIG. 4. The single-photon confidenGEq. (31)] as a function tors, and detector cascades.

of the detector efficiency;®. The solid line corresponds to a single- D dina h v b ded d
detector cascad@o cascadingN= 1), the dashed lines correspond etector cascading has generally been regarded as a goo

to N=4, N=16, andN== in ascending order. We consider a W&y to t_anhance single-photo_n resolution and consequently
maximally entangled input state |¥)=(|0Y] o)+ |1)] by) the fldehty of a state preparation procd22]. However, an
+12)| ¢2))/ V3 to serve as a benchmark. extensive theory for the use of these detection devices has
not been available so far. The statisticd\bports have been
considered in the context of tomograpfg6], which relies

on the availability of a large number of copies of a quantum

tion detector is easily calculated to 0.65. tate. In state preparation, however, we perform measure-
Now we consider a detector cascade with single—photoﬁ : e prep ' ' P )
ments on single systems, and we therefore need precise

sensitivity detectors. In Fig. 4 the confidence of a singIe—boundS on the distinquishability of these measurements
photon detection wittN-port cascades is depicted. When the To this end. we in?roduced t)r/1e confidence of pre arafion
cascade consists of four detectoid=4) it can be easily ' brep '

calculated from Eq(31) that the detectors need an efficiency mﬁ?ecgp ;rlzg”t:;duzee?egigﬁ %n;i%éhﬁvsgargsgma%eg; r-res-
of 0.84 to achieve a 0.65 confidence. In the case of infinite . j 9 P

cascading Kl=2) the single-photon confidence of 0.65 is Sion for the confidence of a cascade of arbitrary dizeon-
9 - gie-p : ) ditioned on an input state of up to two photons. We believe
met only if the efficiency is roughly 0.73. This puts a severe

. . 7 : ... “that this will be sufficient for most practical purposes. Thus,
practical limit on the efficiency of the single-photon sensitiv- . ; ;
ity detectors in the cascade we compared a single-photon resolution detector with a cas-

. . . cade of single-photon sensitivity detectors and found that
Detector cascading would be practically useful if a rea- . . .
. - . cascadingloes not give a practical advantageer detectors

sonably small number of finite-efficiency detectors yields a_ . : :

) . . o with single-photon resolution for entanglement-based state
high confidence. In particular when cascading is viewed as ?

; . o reparation.

an economical alternative to a detector with smgle-photorP
resolution, Fhe number of dgtectors in thg cascade should be ACKNOWLEDGMENT
small. Additionally, cascading should yield a confidence
similar to single-photon resolution detectors. Unfortunately, This research was funded in part by EPSRC Grant No.

as a practical application, detector cascading only appears t8R/L91344.

With %?=0.88 the confidence of the single-photon resolu-
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