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Detection devices in entanglement-based optical state preparation

Pieter Kok and Samuel L. Braunstein
Informatics, University of Wales, Bangor, LL57 1UT, United Kingdom

~Received 29 August 2000; published 14 February 2001!

We study the use of detection devices in entanglement-based state preparation. In particular we consider
optical detection devices such as single-photon sensitivity detectors, single-photon resolution detectors, and
detector cascades~with an emphasis on the performance of realistic detectors!. We develop an extensive theory
for the use of these devices. In entanglement-based state preparation we perform measurements on subsystems,
and we therefore need precise bounds on the distinguishability of these measurements~this is fundamentally
different from, e.g., tomography, where an ensemble of identical states is used to determine probability
distributions, etc.!. To this end, we introduce the confidence of preparation, which may also be used to quantify
the performance of detection devices in entanglement-based preparation. We give a general expression for
detector cascades of arbitrary size for the detection up to two photons. We show that, contrary to the general
belief, cascading does not give a practical advantage over detectors with single-photon resolution in
entanglement-based state preparation.

DOI: 10.1103/PhysRevA.63.033812 PACS number~s!: 42.50.Ar
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The accurate creation of quantum states is importan
many applications in, for example, quantum computation
information @1,2#. One method of state preparation is to e
tangle two systems and subsequently perform a so-ca
conditional measurement on one subsystem: depending
the measurement outcome the undetected subsystem is
pared’’ ~collapsed! into a particular predetermined state~see
also Rubin@3#!. Considerable progress has been made us
this method in the creation ofoptical quantum states@4–8#
and in the creation of three-photon polarization entanglem
@9#. Optical entanglement sources include, for examp
cross-Kerr media@7# or the mixing of states at beam splitte
@8#. In general, the quality of this entanglement-based s
preparation strongly depends on the details of the conditio
measurement.

In this paper we study the effect ofrealistic ~photo-! de-
tectors on the state preparation process. To this end we
troduce the concept of theconfidenceof preparation in Sec. I
This measure does not only quantify the ‘‘quality’’ of th
state preparation process, but it also allows us to comp
different types of detection devices. In Sec. II we discuss
distinction between single-photon sensitivity and sing
photon resolution detectors. The statistics of detector cas
ing with single-photon sensitivity detectors is studied in S
III and Sec. IV where a numerical comparison between s
detector cascades and single-photon resolution detecto
made.

Let’s consider entanglement-based state preparation@3#
~not necessarily restricted to quantum optics!. We want to
prepare a single ~pure! state uf& by means of some
entanglement-based process, and we want the resulting
r to be as ‘‘close’’ touf& as possible. A measure of resem
blance between states is given by the fidelityF @10#:

F5Tr@ruf&^fu#. ~1!

The quality of a state preparation process can therefore
measured by the fidelity. WhenF51, the process gives ex
actly uf& and whenF50, the prepared state is orthogonal
1050-2947/2001/63~3!/033812~8!/$15.00 63 0338
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uf&. In practice, the fidelity will not reach these extrem
measures, but will lie between 0 and 1.

For example, if we want to prepare a single-photon st
u1& we can use the following process: a parametric do
converter creates a stateuc&ab on two spatial modesa andb:

uc&ab}u0&au0&b1ju1&au1&b1O~j2!, ~2!

where u0& denotes the vacuum state and we assumej!1.
The higher-order terms@included inO(j2)# consist of states
with more than one photon. We now place a photodetecto
modea, which ‘‘clicks’’ when it sees one or more photon
~typically, standard detectors can see single photons, but
to distinguish between one and two photons!. Conditioned on
such a click, modeb will be in a state

r}u1&b^1u1O~ uju2!. ~3!

The fidelity of this process is high,F5^1uru1&.1, and this
is, therefore, typically a very good single-photon state pre
ration process~although the situation changes drastica
when multiple down converters are considered@11,12#!. Due
to the large vacuum contribution, however, the probability
the detector giving a click will be small@of orderO(uju2)#.
When the detector does not click, that particular trial is d
missed, hence theconditionalcharacter of the detection.

In this example the outcome of the detection is used
either accept or reject a particular run of the state prepara
device. However, in general the outcome of the detector
be used to determine a more complicated operation on
remainder of the state preparation process. This is detec
plus feed forward, since the outcome is used further on in t
process. An example of this is quantum teleportation, wh
the outcome of the Bell measurement determines the uni
transformation needed to retrieve the original input state

When the measurements in the state preparation pro
are prone to errors, the state we want to create may not be
state we actually create. This means that errors in the de
©2001 The American Physical Society12-1
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tion devices can lead to reduced fidelities. In this paper
study the effect of detection errors on optical traveling-wa
state preparation.

I. CONFIDENCE

Consider a preparation device that prepares a state co
tioned on a single measurement. For simplicity, we emp
two subsystems. One subsystem will be measured, leavi
quantum state in the other. It is clear that prior to the m
surement the two systems have to be entangled, other
conditioning on the measurement does not have any effec
the state of the second system.

We can write the total stateuc&12 prior to the measure
ment in the Schmidt decomposition:

uc&125(
k

ckuak&1ubk&2 , ~4!

with $uak&%k and $ubk&%k orthonormal sets of states for sy
tem 1 and 2, respectively. These states correspond to e
states of observablesA andB with sets of eigenvalues$ak%k
and $bk%k , respectively. We now measure the observableA
in system 1, yielding an outcomeak ~see Fig. 1!.

We can model this measurement using so-called pro
tion operator valued measures, or POVM’s for short. F
ideal measurements, we can describe the measureme
mode 1 as a projectionPk5uak&^aku operating on the state
uc&12. When we trace out the first system the~normalized!
state of the second system will be

rak
5

Tr1@~Pk^ 1!uc&12̂ cu#
Tr12@~Pk^ 1!uc&12̂ cu#

5ubk&^bku. ~5!

For nonideal measurements we do not use a projec
operator, but rather aprojection operator valued measure. In
general, a POVMEn can be written as@13,14#

En5(
m

dmnPm>0, ~6!

where thePm’s form a set~possibly over complete, hence th
difference in notation fromPk) of projection operators
$um&^mu%m . We also require a completeness relation

FIG. 1. A schematic representation of state preparation co
tioned on a measurement. One branch of the entanglementuc& is
detected, yielding an eigenvalueak . The other branch is now in a
staterak

.
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En51. ~7!

As mentioned before, a measurement outcomeak in mode
1 gives rise to an outgoing staterak

in mode 2. We cannot

describe a nonideal measurement with the projectionPk
5uak&^aku. Instead, we have a POVMEk ~corresponding to
the outcomeak), which reduces toPk in the case of an idea
measurement. Letr125uc&12̂ cu, the entangled state prior t
the measurement. The outgoing state in modeb will then be

rak
5

Tr1@~Ek^ 1!r12#

Tr@~Ek^ 1!r12#
, ~8!

where the total trace over both systems in the denomin
gives the proper normalization.

If we had an ideal detector~corresponding toEk
5uak&^aku), the outgoing state would berak

5ubk&^bku.
However, with the general POVMEk , this will not be the
case. The resulting state will be different. In order to quan
the reliability of a state preparation process we introduce
confidenceof a process.

Definition: Theconfidencein the preparation of a particu
lar state is given by the fidelity of the preparation proce
That means that using Eqs.~4! and ~8! the confidenceC is
given by

C5
Tr@~Ek^ ubk&^bku!r12#

Tr@~Ek^ 1!r12#
5

ucku2^akuEkuak&

(
l

ucl u2^al uEkual&

, ~9!

where theucl u2 are the diagonal elements of the density m
trix. In the context of measurement and state identificati
the fidelity is a widely used and well-studied conce
@15,16#. Since the confidence is defined as the fidelity of t
preparation process, these results also apply here.

We prefer the term confidence in this context, becaus
is reminiscent of the confidence in statistics@17#. Statistical
confidence denotes the probability that the value of a qu
tity lies within a fixed interval around the observed me
value. In this paper, we extend this meaning to the quant
mechanical case. It is the probability that thepreparedstate
passes a projective test for theexpectedstate in a single-sho
experiment.

The confidenceC in Eq. ~9! can be interpreted as th
probability of obtaining outcomeak from the ‘‘branch’’ con-
taining uak& in Eq. ~4! divided by the unconditional probabil
ity of obtaining outcomeak . We will also call this the ‘‘con-
fidence of state preparation.’’ This interpretation sugge
that there does not need to be a second system to give
idea of confidence meaning. Suppose, for instance, that
have an ‘‘electron factory’’ that produces electrons with ra
dom spin. A Stern-Gerlach apparatus in the path of such
electron will make a spin measurement along a certain di
tion r . Suppose we find that the electron has spin ‘‘up
alongr . Before this measurement the electron was in a s
of random spin (r in5 1

2 u↑&^↑u1 1
2 u↓&^↓u), and after the mea-

surement the electron is in the ‘‘spin-up’’ state (rout5

i-
2-2
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DETECTION DEVICES IN ENTANGLEMENT-BASED . . . PHYSICAL REVIEW A63 033812
u↑&^↑u). The state of the electron hascollapsed into
the spin-up state. We will now investigate how we can defi
the confidence of the detection of a single system.

Formally, we can model state collapse by means of
superoperatorF̂ak

, where ak is again the outcome of th
measurement of observableA ~spin up in the above ex
ample!. In general, a superoperator yields a~non-normalized!
mappingr→F̂m(r) ~see Fuchs and Peres@18,19# and refer-
ences therein!. When the eigenstate corresponding toak is
given byuak&, we can define the confidence of this measu
ment as

Cm5
^akuF̂ak

~r!uak&

Tr@F̂ak
~r!#

5
Tr@F̂ak

~r!uak&^aku#

Tr@F̂ak
~r!#

, ~10!

with Tr@F̂ak
(r)# the proper normalization. However, this e

pression depends strongly on the details of the detec
Amn . This is a more complicated generalization than
POVM’s Ek . The confidence of state preparation, on t
other hand, is a function of the POVMEk . Furthermore,Cm
will in generalnot be equal to the confidence of state prep
ration derived in Eq.~9!.

In conclusion, there are two distinct versions of the co
fidence: the confidence ofmeasurementand the confidence
of state preparation. Later in this paper we will use the con
cept of the confidence to make a quantitative compari
between different detection devices. This suggests that
need to calculate the confidence of measurement with a
difficulties. One way to circumvent this problem is to calc
late the confidence of state preparation using a fixed s
Instead of concentrating on the state preparation proces
now choose a standard input state and calculate the c
dence for different types of measurement devices. One s
choice might be the maximally entangled state

uC&125
1

AN
(
k50

N21

uak ,ak&. ~11!

WhenN→`, this is perhaps not the ideal choice and anot
state may be preferred. For any choice, the confidence o
a quantitative measure of performance for different types
measurement devices.

II. OPTICAL DETECTION DEVICES

Having set the stage for state preparation conditioned
measurement outcomes, we will now restrict the remain
of this paper to optical implementations. Let’s consider
measurement of optical Fock states using photodetector
order to classify different types of detectors we use the
lowing terminology: a detector is said to have asingle-
photon sensitivitywhen it is sensitive enough to detect
single-photon wave packet. This is the case with, for
ample, the avalanche photodetector. When a detector
distinguish betweenn- and (n11)-photon wave packets, it i
said to have asingle-photon resolution.

Real detectors have a variety of characteristics. M
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common detectors do not have single-photon resolution,
though they can distinguish between a few and many p
tons. When small photon numbers are detected, howe
these are single-photon sensitivity detectors to a good
proximation. There are also single-photon resolution det
tors @20,21#. Currently, these detectors require demand
operating conditions. At this point we note that here, we o
consider the detection of single modes. In practice, howe
detectors are multimode detectors. Since we are dealing
direct detection, these other modes only contribute to
background noise, with the quantum efficiency to the sin
mode being the key parameter.

When we need single-photon resolution but do not ha
the resources to employ single-photon resolution detect
we can use a so-calleddetector cascade@22#. In a detector
cascade an incoming mode~populated by a number of pho
tons! is split into N output modes with equal amplitude
which are all detected with single-photon sensitivity dete
tors. The idea is to choose the number of output modes la
enough, so that the probability that two photons enter
same detector becomes small. In general, an optical s
that transformsN incoming modes intoN outgoing modes is
called anN port ~see Fig. 2! @23#. A detector cascade is
symmetricN port with detectors at the outgoing modes a
vacuum states in all input modes except the first mode. In
next section we will study the statistics of symmetricN ports,
but first we need to elaborate on the types of errors that oc
in detectors.

There are two sources of errors for a detector: it might
to detect a photon, or it might give a signal although the
wasn’t actually a photon present. The former may be ch
acterized as a ‘‘detector loss’’ and the latter as a ‘‘da
count.’’ Here, the emphasis will be on detector losses.
some experiments~like the Innsbruck teleportation exper
ment @24#! the detectors operate within short gated time
tervals. This greatly reduces the effect of dark counts and
will not consider them here.

Detector losses are not so easily dismissed. Every pho
entering a detector has a certain probability of triggering
This probability is called theefficiencyof the detector. For
the purpose of brevity, when a detector is perfectly efficie
we will call it a unit-efficiencydetector. When it has som
lower efficiency, we speak of afinite-efficiencydetector.
Here, we study detector cascading with unit-efficiency det
tors, as well as cascading with finite-efficiency detect
@25#. We are interested in the case where cascading dis
guishes between photon-number statesuk& and uk8& with k
.k8.

FIG. 2. An N port with unit-efficiency, non-resolving detector
The N incoming modes are unitarily transformed intoN output
modes. TheN ports considered here consist of mirrors and be
splitters and do not mix creation operators with annihilation ope
tors.
2-3
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III. N PORTS

In this section we treat the properties of detector casca
or symmetricN ports with single-photon sensitivity detecto
in the outgoing modes. SymmetricN ports yield a~unitary!
transformationU of the spatial field modesak , with j ,k
51, . . . ,N:

b̂k→(
j 51

N

U jkâj and b̂k
†→(

j 51

N

U jk* â j
† , ~12!

where the incoming modes of theN port are denoted byaj

and the outgoing modes bybj . Here, â j
† and â j are the

respective creation and annihilation operators of modeaj ,
and similarly for modebk . The unitary matrixU can be
chosen to be

U jk5
1

AN
exp@2p i ~ j 21!~k21!/N# ~13!

without loss of generality up to an overall phase factor. P
et al.have studied such devices in the context of tomogra
and homodyne detection@26#.

Here, we studyN ports in the context of optical stat
preparation, where only one copy of a state is given, inst
of an ensemble. We will use the concept of theconfidence,
introduced in Sec. I.

A. Statistics of N ports

Suppose we have a detector cascade, consisting of a
metric N port with single-photon sensitivity detectors in th
outgoing modes. According to Eqs.~12! and ~13! incoming
photons will be redistributed over the outgoing modes.
this section we study the photon statistics of this device
particular, we study the case wherek photons enter a single
input mode of theN port, with vacuum in all other inpu
modes. This device~i.e., the detector cascade! will act as a
subideal single-photon resolution detector since there
probability that some of the photons end up in the sa
outgoing mode, thus triggering the same detector.

To quantify the single-photon resolution of the casca
we use the confidence given by Eq.~9!. Suppose we have
two spatially separated entangled modes of the electrom
netic field a and b with number statesum& in a and some
other orthogonal statesufm& in b:

uC&5(
m

gmum&aufm&b , ~14!

where the second mode is used only to give the confide
an operational meaning. The POVM governing the detec
can be written asEk5(mpN(kum)um&^mu, since we assume
that the photons are not lost in theN port. In this expression
pN(kum) is the probability thatm incoming photons cause
k-fold detector coincidence in theN-port cascade. The con
fidence can then be written as
03381
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C5
ugku2^kuEkuk&

(
l

ugmu2^muEkum&

5
ugku2pN~kuk!

(
m

ugmu2pN~kum!

. ~15!

In order to find the confidence, we therefore first have
calculate the probability distributionpN . This will allow us
to compare single-photon resolution detectors with vario
arrangements (N ports! of single-photon sensitivity detec
tors.

Supposek photons enter the first input mode and all oth
input modes are in the vacuum state. The density matrix
the pure input stater05uk&^ku will be transformed according
to r5UNr0UN

† with UN the unitary transformation assoc

ated with the symmetricN port. Let nW be the N-tuple
of the photon number in every outgoing mode:nW
5(n1 ,n2 , . . . ,nN). The probability of findingn1 photons in
mode 1 andn2 photons in mode 2, etc., is given bypnW

5^nW urunW &. Using theN port transformation this probability
yields

pnW5^nW uUNr0UN
† unW &5u^nW uUNukW &u2, ~16!

wherekW5(k,0, . . . ,0),since only the first input mode inhab
its photons and the rest are vacuum. From Refs.@27# and
@28# we find that this can be rewritten as

pnW5
@HkWnW

R
~0!#2

n1! •••nN!k!
. ~17!

Here,HkWnW
R (xW ) is a so-called multidimensional Hermite poly

nomial ~MDHP! @29# and the matrixR is defined as

R[S 0 2U†

2U† 0 D . ~18!

For our present purposes it is convenient to characterize
N port by its transformation of the field modes given by Eq
~12! and ~13!. We therefore concentrate onU rather than
UN .

Since there is a one-to-one correspondence between tN
port ~U! and the matrixR, knowledge ofU is sufficient to
calculate the confidence of a given event using theN port.
The MDHP for N input modes withk photons in the first
mode and zero in the others~giving an N-tuple kW ! and N

output modesnW is given by

HkWnW
R

~xW !5~21!2k expS 1

2
xWRxWT

“kWnW
2kD expS 2

1

2
xWRxWTD ,

~19!

wherexWRxWT5( i j xiRi j xj , xW5(x1 , . . . ,x2N) and

“kWnW
2k

[
]2k

]x1
k]xN11

n1 . . . ]x2N
nN

. ~20!
2-4
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The number of photons in the input mode is equal to the t
number of photons in the output modes. The dimension oxW

obeys dimxW5dim kW1dim nW 52N. For example, for a two-
photon input state we have

expS 1

2
xWRxWT

]4

]x1
2]xl]xk

D expS 2
1

2
xWRxWTuxW50D52R1lR1k .

~21!

There are many different ways in whichk incoming pho-
tons can trigger ak-fold detector coincidence. These diffe
ent ways correspond to different photon distributions in
outgoing~detected! modes, and are labeled bynW r . The prob-
ability that allk photons enter a different detector is found
determining thepnW r

’s, where everyni in nW r is at most one.

The sum over all thesepnW r
’s is equal to the probability

pN(kuk) of a k-fold coincidence in anN port conditioned on
k incoming photons:

pN~kuk!5(
nW r

pnW r
5

k!

Nk S N

k D . ~22!

Finally, in order to find the probability of ak-fold detector
coincidence conditioned onm photons in the input state
~with m>k) we need to sum all probabilities in Eq.~17! with
k nonzero entries in theN-tuple nW :

pN~kum!5 (
nW PSk

@HmW nW
R

~0!#2

n1! . . . nN!m!
, ~23!

whereSk is the set of allnW with exactlyk nonzero entries.

B. Realistic N ports

We now consider a symmetricN-port cascade with finite-
efficiency single-photon sensitivity detectors. Every one
the N detectors has a certain loss, which means that s
photons do not trigger the detector they enter. We can mo
this situation by putting a beam splitter with intensity tran
mission coefficienth2 in front of the ideal detectors@25#.
The reflected photons are sent into the environment and
be associated with the loss. The transmitted photons are
tected~see Fig. 3!.

The implementation of the beam splitters responsible
the detector losses transform ourN port into a 2N port and

FIG. 3. A 2N port with N modes, which are detected with ide
detectors andN undetected modes. These modes are associated
the detector losses.
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the unitary transformationU of the field modes in thisN port
now becomes a 2N32N unitary matrixU→U ^ 12 ~where
12 is the two-dimensional unit matrix!. Applying a transfor-
mationVh to implement the beam splitters with transmissi
coefficienth2 will give a new unitary transformation govern
ing the behavior of the 2N port. Although nothing holds us
from considering detectors with different efficiencies, f
simplicity we will assume that all detectors have the sa
efficiencyh2. In terms of the original unitary matrixU from
Eq. ~13! the new unitary matrixŨ becomes

U→Ũ5S hU A12h2U

2A12h2U hU
D . ~24!

This changes the matrixR of the MDHP accordingly

R→R̃5S 0 2Ũ†

2Ũ† 0
D ~25!

and R̃ is now a 4N34N matrix dependent onh. The prob-
ability of finding ak-fold detector coincidence in anN-port
cascade with finite-efficient detectors then becomes

pN~kum!5 (
nW PSk

@HmW nW
R̃

~0!#2

n1! . . . n2N!m!
, ~26!

whereSk is the set of allnW with exactlyk nonzero entries in
the detected modes~note that we still call it anN port al-
though technically it is a 2N port!. The confidence of having
a total ofk photons in ak-fold detector coincidence is agai
given by Eq. ~15!. The variables of the MDHP
will be a 2N-tuple kW5(k,0, . . . 0). The output photon
number 2N-tuple can now be written as nW

5(n1
d ,n2

d , . . .nN
d ,n1

u , . . .nN
u ), where the superscriptsd and

u again denote the detected and undetected modes, re
tively. Furthermore we have( i 51

N ni
d[Nd and ( i 51

N ni
u

[Nu .
Using Eq.~22! and observing that every detected phot

carries a factorh2 it is quite straightforward to obtain the
probability thatk photons give ak-fold coincidence in an
efficient N-port cascade:

pN~kuk!5
h2kN!

Nk~N2k!!
. ~27!

C. The single-photon resolution ofN ports

Having determined the probability distributionpN , we
can now calculate the confidence of detector cascading. F
of all, in order to obtain a high confidence in the outcome
a detector cascade, the possible number of photons shou
much smaller than the number of modes in the cascadeN
@k. In practice there is a limit to the number of detectors
can build a cascade with, so we only look at the lowest ord
distinguishing between one and two photons.

ith
2-5
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We will calculate the confidence of having outgoing sta
uf1& conditioned a single detector giving a ‘‘click’’ in the
detector cascade when the input state is given by

uC&125au0&1uf0&21bu1&1uf1&21gu2&1uf2&2 . ~28!

This state corresponds, for example, to the output of a do
converter when we ignore higher-order terms. The co
dence is then

C~1,uC&12)5
ubu2pN~1u1!

uau2pN~1u0!1ubu2pN~1u1!1ugu2pN~1u2!
.

~29!

Eqs.~26! and~21! allow us to calculate the probabilities of
zerofold, onefold, and twofold detector coincidence con
tioned on one or two incoming photons:

pN~0u0!51, ~30a!

pN~1u0!50, ~30b!

pN~0u1!512h2, ~30c!

pN~1u1!5h2, ~30d!

pN~0u2!5~12h2!2, ~30e!

pN~1u2!5
h4

N
12h2~12h2!, ~30f!

pN~2u2!5
N21

N
h4. ~30g!

For example, using these probabilities, together with
~28!, gives us an expression for the confidence that a sin
detector hit was triggered by one photon (d5ugu2/ubu2):

C5
N

N1d@h212N~12h2!#
, ~31!

where, for simplicity, we omitted the functional dependen
of C on the incoming state, the size of the cascade and
order of the detector coincidence. This gives a general m
sure of performance of a cascade ofarbitrary size Nfor the
detection of up to two photons. Since the size of the casc
needs to be comfortably larger than the number of dete
photons, Eq.~31! will be sufficient for most practical pur
poses.

A close look at Eq.~30f! shows us thatpN(1u2) includes
a term that is independent of the number of modes in
N-port cascade. This term takes on a maximum value of
for h25 1

2 . However, the confidence is a monotonously
creasing function ofh2. As expected, for smalld ’s the con-
fidence CN(1,uC&) approaches 1. Detector cascading th
turns a collection of single-photon sensitivity detectors int
device withsomesingle-photon resolution. In the next se
tion we will give a quantitative estimation of this resolutio
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IV. COMPARING DETECTION DEVICES

Let’s return again to the schematic state preparation p
cess depicted in Fig. 1. There we had two modes, one
which was detected, giving the prepared outgoing state in
other. We argued that different detection devices yield d
ferent output states, and the comparison of these states
the ideal case~where we used an ideal detector! led to the
introduction of the confidence of a state preparation proc
Here, we will use the confidence to make a comparison
differentdetection devices, rather than output states. This ca
be done by choosing a fixed entangled input state. The c
fidence then quantifies the performance of these detec
devices.

Consider the state preparation process in the setting
quantum optics. We have two spatial modes of the elec
magnetic field, one of which is detected. In this paper we
mostly interested in states containing a few photons, and
detection devices we consider therefore include sing
photon sensitivity detectors, single-photon resolution det
tors, and detector cascades. As an example, we set the ta
distinguishing between one and two photons. Since sin
photon sensitivity detectors are not capable of doing this,
will compare the performance of detector cascading with t
of a single-photon resolution detector. Let the state prior
the detection be given by

uC&5
1

A3
~ u0&uf0&1u1&uf1&1u2&uf2&). ~32!

This state is maximally entangled and will serve as o
‘‘benchmark’’ state. It leads to the choiced51 in Eq.~31! in
the previous section. Suppose the outgoing state conditio
on a ‘‘one-photon’’ indication in the detection device isr.
The confidence is then again given byC5^f1uruf1&.

First, consider the single-photon resolution detector
scribed in Refs.@20,21#. This detector can distinguish be
tween one and two photons very well, but it does suffer fro
detector losses~the efficiency was determined at 88%!. That
means that a two-photon state can be identified as a sin
photon state when one photon is lost. The confidence of
detector is therefore not perfect.

In order to model the finite efficiency of the single-photo
resolution detector we employ the beam-splitter model fr
Sec. III B. We write the input state as

uC&5
1

A3
S u0&uf0&1â†u0&uf1&1

~ â†!2

A2
u0&uf2& D .

~33!

When we make the substitutionâ†→hb̂†1A12h2ĉ† we
obtain a stater. The outgoing density matrix conditioned o
a single photon in modeb is then

rout5
Trbc@~ u1&b^1u ^ 1c!r#

Tr@~ u1&b^1u ^ 1c!r#

5
h2

423h2
uf1&K f1U1

4~12h2!

423h2 Uf2L ^f2u. ~34!
2-6
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With h250.88 the confidence of the single-photon reso
tion detector is easily calculated to beC50.65.

Now we consider a detector cascade with single-pho
sensitivity detectors. In Fig. 4 the confidence of a sing
photon detection withN-port cascades is depicted. When t
cascade consists of four detectors (N54) it can be easily
calculated from Eq.~31! that the detectors need an efficien
of 0.84 to achieve a 0.65 confidence. In the case of infin
cascading (N5`) the single-photon confidence of 0.65
met only if the efficiency is roughly 0.73. This puts a seve
practical limit on the efficiency of the single-photon sensit
ity detectors in the cascade.

Detector cascading would be practically useful if a re
sonably small number of finite-efficiency detectors yields
high confidence. In particular when cascading is viewed
an economical alternative to a detector with single-pho
resolution, the number of detectors in the cascade shoul
small. Additionally, cascading should yield a confiden
similar to single-photon resolution detectors. Unfortunate
as a practical application, detector cascading only appea

FIG. 4. The single-photon confidenceC @Eq. ~31!# as a function
of the detector efficiencyh2. The solid line corresponds to a single
detector cascade~no cascading:N51), the dashed lines correspon
to N54, N516, andN5` in ascending order. We consider
maximally entangled input state uC&5(u0&uf0&1u1&uf1&
1u2&uf2&)/A3 to serve as a benchmark.
er

t.

v

te
d

-

.
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yield a modest boost in resolution, unless the detectors w
single-photon sensitivity have a very high efficiency. In t
context of entanglement-based state preparation, real sin
photon resolution detectors are therefore superior to dete
cascading with currently available detectors, notwithstand
the demanding operating conditions.

V. CONCLUSIONS

In this paper we have studied the use of detection dev
in entanglement-based traveling-wave state preparation
particular we considered optical devices such as sin
photon sensitivity detectors, single-photon resolution det
tors, and detector cascades.

Detector cascading has generally been regarded as a
way to enhance single-photon resolution and conseque
the fidelity of a state preparation process@22#. However, an
extensive theory for the use of these detection devices
not been available so far. The statistics ofN ports have been
considered in the context of tomography@26#, which relies
on the availability of a large number of copies of a quantu
state. In state preparation, however, we perform meas
ments on single systems, and we therefore need pre
bounds on the distinguishability of these measurements.

To this end, we introduced the confidence of preparati
which can also be used to quantify the~preparation! perfor-
mance of a~realistic! detection device. We gave an expre
sion for the confidence of a cascade of arbitrary sizeN, con-
ditioned on an input state of up to two photons. We belie
that this will be sufficient for most practical purposes. Thu
we compared a single-photon resolution detector with a c
cade of single-photon sensitivity detectors and found t
cascadingdoes not give a practical advantageover detectors
with single-photon resolution for entanglement-based s
preparation.
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