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Limitations on the creation of maximal entanglement

Pieter Kok and Samuel L. Braunstein
Informatics, University of Wales, Bangor LL57 1UT, United Kingdom

~Received 5 June 2000; published 14 November 2000!

We study a limited set of optical circuits for creating near maximal polarization entanglementwithout the
usual large vacuum contribution. The optical circuits we consider involve passive interferometers, feed-
forward detection, down converters, and squeezers. For input vacuum fields we find that the creation of
maximal entanglement using such circuits is impossible when conditioned on two detected auxiliary photons.
So far, there have been no experiments with more auxiliary photons. Thus, based on the minimum complexity
of the circuits required, if near maximal polarization entanglement is possible it seems unlikely that it will be
implemented experimentally with the current resources.

PACS number~s!: 03.67.2a, 42.50.Dv
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Entanglement is one of the key ingredients in quant
communication and information. For instance, quantum p
tocols such as dense coding, quantum error correction,
quantum teleportation@1# rely on the nonclassical correla
tions provided by entanglement. Currently, substantial
forts are being made to useoptical implementations for
quantum communication.

The advantages of this are obvious: light travels at h
speed and it weakly interacts with the environment. Ho
ever, this weak interaction poses serious drawbacks. The
that photons do not interact with each other makes it har
manipulate them. For example, it has recently been sh
that it is impossible to perform so-called complete Bell me
surements on two-mode polarization states in linear quan
optics @2,3# ~although theoretical schemes involving Ke
media @4# and atomic coherence@5# have been reported!.
Furthermore, maximally polarization-entangled two-phot
states have not been produced. In this paper we investi
the possibility of creating such states with linear optics an
specific class of nonlinear elements.

The maximally polarization-entangled states that are m
commonly considered are the Bell states,

uC6&5~ ul,↔&6u↔,l&)/A2,
~1!

uF6&5~ ul,l&6u↔,↔&)/A2,

whereul& andu↔& denote single-photon states with orthog
nal polarizations. In practice, these states have only b
producedrandomly, using for instance parametric down co
version@6#. This process can yield a state

uc&}u0&1juC2&1O~j2!, ~2!

whereu0& denotes the vacuum andj!1. This means that the
Bell stateuC2& is only produced with a small probability o
the order ofuju2. Although uc& has a maximally entangle
component, as a state it is very weakly entangled~this may
be quantified by its partial von Neumann entropy@7#!. Since
we have no way of telling that an entangled photon-pair w
produced without measuring~and hence destroying! the out-
going state, we call this randomly produced entanglem
Currently, in quantum optics we have access to this type
entanglement only.
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By contrast, we would like to be able to tell that we in fa
produced a maximally entangled state before it is used. T
is, we wish to have a source which gives a macrosco
indication that a maximally polarization-entangled state h
been produced. Such a source is said to createevent-ready
entanglement. The vacuum contribution in Eq.~2! can be
eliminated by means of a polarization-independent quan
nondemolition ~QND! measurement. However, this wou
involve higher-order nonlinearities~like the Kerr effect!
which, in practice, are very noisy~especially when they are
required to operate at the single-photon level!. In general, the
creation of event-ready entanglement can be quantified b
certain probability of ‘‘happening.’’ When this probability i
equal to one, we have adeterministicsource of event-ready
entanglement.

Random entanglement has been used to demonstrate
example, nonlocal features of quantum teleportation and
tanglement swapping@8–10#. One might, therefore, suppos
that in practice we do not really need event-ready entan
ment. However, on a theoretical level Bell states appea
primitive notions. This means that protocols like entang
ment purification and error correction@11,12# have been de-
signed for maximally entangled states, rather than for r
dom entanglement. For quantum communication to beco
a mature technology, one most certainly needs the ability
perform entanglement purification and error correction. It
not at all clear how these protocols can be convincin
implemented with random entanglement. One appro
would be to try and investigate such protocols. However, t
is not our aim here.

In this paper we give limitations to the creation of ne
maximal entanglement with linear optics and some nonlin
optical components~such as down converters and squeeze!.
First we present the tools with which we will attempt
produce event-ready entanglement. Then we derive a gen
condition for an optical setup, which should be satisfied
order to yield event-ready entanglement. We subseque
examine this condition in the context of several types
photon-sources.

Given a pair of photons in one maximally polarizatio
entangled state, we can obtain any other such state b
combination of a polarization rotation and a polarizatio
dependent phase shift. When we study the creation of m
©2000 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW A 62 064301
mal polarization entanglement we shall therefore restrict o
selves to theuC2& Bell state without loss of generality.

In order to makeuC2&, we will assume that we hav
several resources at our disposal.In this paper, the class o
reasonable elements will consist of beam splitters, ph
shifters, photodetectors, and nonlinear components, suc
down converters, squeezers, etc.These elements are then a
ranged to give a specific optical circuit@see Fig. 1~a!#. Part of
this setup might be so-calledfeed-forwarddetection. In this
scheme the outcome of the detection of a number of mo
dynamically chooses the internal configuration of the sub
quent optical circuit based on the interim detection res
~see also Ref.@2#!. Conditioned on these detections we wa
to obtain a freely propagatinguC2& Bell state in the remain-
ing undetected modes.

We now introduce two simplifications for such an optic
circuit. First, we will show that we can discard feed-forwa
detection. Second, we will see that we only have to cons
the detection of modes with at most one photon.

Theorem 1. In order to show that it ispossibleto produce
a specific outgoing state, any optical circuit with fee
forward detection can be replaced by afixed optical circuit
where detection only takes place at the end.

Proof. Suppose a feed-forward optical circuit@like the one
depicted in Fig. 1~a!# giving uC2& exists. That means tha
the circuit createsuC2& conditioned on one of potentially
many patterns of detector responses. It is sufficient to c
sider a single successful pattern. We can then take e
interferometer to be fixed and postpone all detections of
auxiliary modes to the very end@Fig. 1~b!#. Note that this
procedure selects generally onlyone setup in which en-
tanglement is produced, whereas a feed-forward optical
cuit potentially allows more setups. It therefore might redu
the efficiency of the process. However, since we are o
interested in thepossibilityof creatinguC2&, the efficiency
is irrelevant.h

Theorem 2. Suppose an optical circuit produces a spec
outgoing state conditioned onn1 detected photons in mode 1
n2 detected photons in mode 2, etc.~with ni50,1,2, . . . ).
The same output can be obtained by a circuit where in ev
detected modeat mostone photon is found.

Proof. If there are more photons in a mode, we can
place the corresponding detector by a so-called detectorcas-

FIG. 1. If an optical circuit with feed-forward detection~a! pro-
duces a specific state, the same output can be obtained by an o
circuit where detection of theauxiliary modes takes place at the en
~b!. The efficiency of the latter, however, will generally be small
06430
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cade @13#. This device splits the mode into many mod
which are all detected. For a sufficiently large cascade th
is always a nonvanishing probability to have at most o
photon in each outgoing mode. In that case, the same sta
created while at most one photon enters each detector. N
that this again yields a lower efficiency.h

Applying these results to the creation ofuC2&, it is suf-
ficient to consider a singlefixed interferometer acting on an
incoming state, followed at the end by detection of the
called auxiliary modes.uC2& is signaled by at least on
fixed detection pattern with at most one photon in each
tector.

How do we proceed in trying to make theuC2& Bell
state? Let the time-independent interaction HamiltonianHI
incorporate both the interferometerU and the creation of
uc in& @see Fig. 1~b!#. The outgoing stateprior to the detection
can be formally written as

ucout&5Uuc in&[exp~2 i tHI /\!u0&, ~3!

with u0& the vacuum. This defines an effective Hamiltoni
HI which is generally not unique.

At this point we find it useful to change our descriptio
Since the creation and annihilation operators satisfy the s
commutation relations asc numbers and their derivatives, w
can make the substitutionai

†→a i and ai→] i , where ] i

[]/]a i . Furthermore, we defineaW 5(a1 , . . . ,aN). Quan-
tum states are then represented by functions ofc numbers
and their derivatives. This is called the Bargmann repres
tation @14#.

Furthermore, suppose we can normal order the oper
exp(2itHI /\) in Eq. ~3!. This would leave us with a func
tion of only the creation operators, acting on the vacuum
the Bargmann representation we then obtain a function
complex numbers without their derivatives. In particula
when we have an optical circuit consisting ofN distinct
modes~for notational convenience we treat distinct polariz
tions like, for instance,x andy as separate modes!, we obtain
the functioncout(aW ) after the unitary evolutionU and normal
ordering. The normal ordering of the evolution operator
conjunction with the vacuum input state is crucial, since
allows us to simplify the problem significantly.

We now treat the~ideal! detection of the auxiliary mode
in the Bargmann representation. Suppose the outgoing s
after the detection ofM photons emerges in modesa1 , a2 ,
a3, and a4. After a suitable reordering of the detecte
modes the state which is responsible for the detec
coincidence indicating success can be written
u15 , . . . ,1M14 ,0M15 , . . . & ~possibly on a countably infinite
number of modes!. We then have the postselected sta
ucpost&

ucpost&1•••4}^15 , . . . ,1M14 ,0M15 , . . . ucout&

5^0u a5•••aM14ucout&. ~4!

In the Bargmann representation the right-hand side of Eq.~4!
is

]5•••]M14cout~aW !uaW 850 , ~5!
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BRIEF REPORTS PHYSICAL REVIEW A 62 064301
where we writeaW 85(a5 , . . . ,aM14 , . . . ).
Writing out the entanglement explicitly in the four mod

~treating the polarization implicitly!, we arrive at the follow-
ing condition for the creation of two photons in the antisy
metric Bell state:

]5•••]M14cout~aW !uaW 850}a1a22a3a41O~j!. ~6!

The termO(j) will allow for a small pollution (j!1) in the
outgoing state. We will show that for certain special clas
of interaction Hamiltonians this condition is very hard~if not
impossible! to satisfy. This renders the experimental realiz
tion of two maximally polarization entangled photons at le
highly impractical.

We are now ready to shapecout in more detail. In this
paper we consider two distinct classes of interaction Ham
tonians.

First, supposeHI is linear in the creation operators. Th
means that the optical circuit consists of coherent inp
linear operations, and no squeezing. The state prior to
detection can be written as exp((idiai). We immediately see
that the detection in condition~6! only yields constant fac-
tors. This can never give us theuC2& Bell state.

By contrast, we consider optical circuits including mod
mixing, squeezers, and down converters. The correspon
interaction HamiltoniansHI are quadratic in the creation
operators. There are no linear terms, so there are no coh
displacements. More formally

HI5 (
i , j 51

N

ai
†Ai j

(1)aj
†1 (

i , j 51

N

ai
†Ai j

(2)aj1H.c., ~7!

with A(1) and A(2) complex matrices. According to Braun
stein @15#, such an active interferometer is equivalent to
passive interferometerV, followed by a set of single-mode
squeezers and another passive interferometerU8. We can
view the photon source described by Eq.~7! as an active
bilinear component of an interferometer. For vacuum in
and after normal ordering@16#, the optical setup then give
rise to

cout5exp@~aW ,BaW !#, ~8!

with (aW ,BaW )5( i j
Na iBi j a j . Such an optical setup would co

respond to a collection of single-mode squeezers acting
the vacuum, followed by a passive optical interferometerU8.
Here, B is a complex symmetric matrix determined by t
interaction HamiltonianHI and the interferometerU8. We
takeB to be proportional to a common coupling constantj.
The outgoing auxiliary modesa5 to aN are detected~see Fig.
2!. We will now investigate whether we can produceuC2&
conditioned on a given number of detected photons.

In the case of a bilinear interaction Hamiltonian, photo
are always created in pairs. In addition, we seek to createtwo
maximally entangled photons. An odd number of detec
photons can never giveuC2& and the number of detecte
photons should therefore be even. The lowest even numb
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zero. In this case no photons are detected andcout in Eq. ~8!
is proportional to 11O(j), which corresponds to the
vacuum state.

The next case involves two detected photons. To h
entanglement in modesa1 to a4 after detectingtwo photons
requires

]5]6e(aW ,BaW )uaW 850}a1a22a3a41O~j!. ~9!

The left-hand side of Eq.~9! is equal to

S B561 (
i , j 51

4

a iBi5Bj 6a j D e(aW ,BaW )uaW 850 . ~10!

To satisfy Eq.~9!, the vacuum contributionB56 should be
negligible. We now ask whether the second term can give
entanglement.

The right-hand side of Eq.~9! can be rewritten according
to a1a22a3a45( i , j 51

4 a iEi j a j , whereEi j are the elements
of a symmetric matrixE. It is easily seen that detE51.

Let Mi j 5Bi5Bj 6. Since only the symmetric part ofM
contributes, we constructM̃ i j 5(Mi j 1M ji )/2. The condition
for two detected photons now yields

(
i , j 51

4

a i M̃ i j a j5 (
i , j 51

4

a iEi j a j1O~j!. ~11!

If this equality is to hold, we would need detE5detM̃
1O(j)51. However, it can be shown that detM̃50. M̃ can
therefore never have the same form asE for small j, so it is
not possible to create maximal polarization entanglem
conditioned upon two detected photons.

The last case we consider here involves four detec
photons. When we defineXi5( jBi j a j , the left-hand side of
Eq. ~6! for four detected photons gives

~B56B781B57B681B58B671B56X7X81B57X6X8

1B58X6X71B67X5X81B68X5X71B78X5X6

1X5X6X7X8!e(aW ,BaW )uaW 850 . ~12!

FIG. 2. The unitary interferometerU8 with conditional photo-
detection and single-mode squeezers which should transformu0&
into uC2&.
1-3
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BRIEF REPORTS PHYSICAL REVIEW A 62 064301
We have not been able either to prove or disprove thatuC2&
can be made this way. The number of terms which contrib
to the bilinear part ina rapidly increases for more detecte
photons.

We have proved that the multimode squeezed vacu
conditioned on two detected photons cannot give maxi
entanglement. We conjecture that this is true for any num
of detected photons. However, suppose wecould create
maximal entanglement conditioned upon four detected p
tons, how efficient would this process be? For four detec
photons yieldinguC2& we need at least three photon pai
These are created with a probability of the order ofuju6.
Currently,uju2, the probability per mode, has a value of 1024

@17#. For experiments operating at a repetition rate of 1
MHz using ideal detectors, this will amount to approximate
one maximally entangled pair every few hours. For realis
detectors this is much less.

So far, there have been no experiments which excee
the detection of more than twoauxiliary photons~not includ-
ing the actual detection of the maximally entangled sta!.
This, and the estimation of the above efficiency appear
place strong practical limitations on the creation of maxim
entanglement.

In this paper we have demonstrated strong limitations
the possibility of creating maximal entanglement with qua
ys

ett
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tum optics. To this end, we introduced two simplifications
our hypothetical optical circuit: first we replaced fee
forward detection by a fixed set of detectors at the end,
second, every detector needs to detect at most one ph
Conditioned on two detected photons, the multimo
squeezed vacuum fails to create maximal entanglement.
leads to our conjecture that maximal entanglement is imp
sible using only these sources and linear interferome
There is a number of open questions. First of all, is o
conjecture true? And second, what happens when we ha
combination of squeezing and coherent displacements
that case the approach taken here fails due to the more c
plex normal ordering of the interaction Hamiltonian.

Entanglement is a fascinating and important phenome
in physics. It not only provides us with insights in the my
terious world of quantum mechanics, but it also appears
fundamental resource in quantum information and commu
cation theory. However,maximal polarizationentanglement
has never been produced in the laboratory. We have sh
here that this type of entanglement proves to be highly e
sive.

S.L.B. would like to thank Klaus Mo” lmer for valuable
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