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We propose entangled �M 1 1�-mode quantum states as a multiuser quantum channel for contin-
uous-variable communication. Arbitrary quantum states can be sent via this channel simultaneously
to M remote and separated locations with equal minimum excess noise in each output mode. For
a set of coherent-state inputs, the channel realizes optimal symmetric 1 ! M cloning at a distance
(“telecloning”). It also provides the optimal cloning of coherent states without the need of amplify-
ing the state of interest. The generation of the multiuser quantum channel requires no more than two
10 log10��

p
M 2 1���

p
M 1 1�� dB squeezed states and M beam splitters.
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Quantum information encoded in nonorthogonal quan-
tum states can be perfectly transferred between two distant
locations that are linked by a maximally entangled state
and a classical communication channel. This quantum tele-
portation [1] is a prime example of quantum information
processing [2] where otherwise impossible cryptographic,
computational, and communication tasks can be performed
through the presence of shared entanglement. In principle,
perfect teleportation with unit fidelity from a sender to a
single receiver is possible in accordance with quantum me-
chanics. What about conveying quantum information via
a “multiuser quantum channel” (MQC) simultaneously to
several receivers? Of course, the no-cloning theorem [3]
of quantum theory forbids perfect cloning (or copying)
of arbitrary quantum states and does so also over a dis-
tance. This prevents the MQC from being able to produce
exact clones of the sender’s input state at all receiving
stations. The MQC, however, can provide each receiver
with at least a part of the input quantum information
and distribute approximate clones [4]. This cloning at
a distance or “telecloning” may be seen as the “natu-
ral generalization of teleportation to the many-recipient
case” [5].

The original teleportation proposal for d-level systems
(“qudits”) [1] was later extended to infinite-dimensional
Hilbert spaces [6,7] followed by a successful demonstra-
tion of continuous-variable teleportation [8]. The initial
results on quantum cloning referred to finite-dimensional
systems, in particular, qubits [4,9–12]. Qubit telecloning
has also been studied theoretically, first with one input sent
to two receivers [10], and more generally with one input
[5] and N identical inputs [13] distributed among M re-
ceivers. Later, telecloning with one input and M receivers
was generalized to qudits [14].

The first investigations on continuous-variable cloning
led to cloning transformations enabling optimal “local”
1 ! 2 cloning (one state mapped to two approximate
copies) of coherent states with fidelity 2�3 [15]. Subse-
quently, fidelity boundaries of Gaussian N ! M cloners
were derived, F # MN��MN 1 M 2 N� � F

coh st,`
clon,N ,M

[16]. In Ref. [17], it was shown that for any Hilbert space
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dimension, the optimal universal local cloner that clones
all possible input states equally well can be constructed
from a single family of quantum circuits. In the con-
tinuous limit, the optimal universal cloner reduces to a
classical probability distributor attaining F � N�M [17],
consistent with the limit of Werner’s optimum fidelity
for qudits, F � �N�d 2 1� 1 M�N 1 1���M�N 1 d� �
F

univ,d
clon,N ,M [12]. The optimal local N ! M coherent-state

cloner that achieves F
coh st,`
clon,N ,M turns out to be a classical

amplitude distributor which can be built from a phase-
insensitive amplifier and beam splitters [18] (see also
[19]). Here we propose a continuous-variable protocol
that relies on finite-squeezing resources and linear optics
and enables in principle an experimental realization of
symmetric 1 ! M coherent-state telecloning with the
maximum fidelities allowed by quantum theory. It is the
first feasible telecloning scheme, taking into account that
the entangled states of existing qudit schemes are hard
to produce. More generally, our MQC transfers arbitrary
quantum states from a sender to M receivers with equal
minimum excess noise in each output state. Further, it
forms a cloning circuit with no need to amplify the input.

Clearly a telecloner needs entanglement as soon as its
fidelity is greater than the maximum fidelity attainable by
“classical teleportation” Fclass. In fact, for universal 1 !

M qudit cloning we have F
univ,d
clon,1,M . Fclass � 2��1 1 d�

[9,11,12]; for 1 ! M cloning of coherent states we have
F

coh st,`
clon,1,M . Fclass � 1�2 [16,20]. Therefore, optimal tele-

cloning cannot be achieved by simply measuring the in-
put state and sending copies of the classical result to all
receivers (“classical telecloning”). On the other hand,
in the limit M ! `, F

univ,d
clon,1,M ! Fclass � 2��1 1 d� and

F
coh st,`
clon,1,M ! Fclass � 1�2 which implies that no entangle-

ment is needed for infinitely many copies.
The most wasteful scheme would be a protocol in which

the sender locally creates M optimum clones and perfectly
teleports one clone to each receiver using M maximally
entangled two-party states [5,14]. In fact, a much more
economical strategy is that all participants share a par-
ticular multipartite entangled state as a quantum channel.
© 2001 The American Physical Society 247901-1
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This MQC may contain maximum bipartite entanglement
(log2d ebits) between the sender and all receivers as
does the d-level telecloning state of Murao et al. [5,14].
Maximum entanglement for any M, however, is more en-
tanglement than we expect from the most frugal scheme
(the entanglement should become vanishingly small as
M ! `). In a continuous-variable scenario based on the
247901-2
quadratures of single electromagnetic modes, multipar-
tite entangled states can be generated using squeezers
and beam splitters [21,22], and any maximum bipartite
entanglement involved would require infinite squeezing.
Having said that entanglement is the essential ingredient
of a telecloner, we propose as an MQC a two-parametric
family of pure entangled �M 1 1�-mode quantum states
described by the Wigner function
WMQC�x, p� �
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, (1)
where x � �x1, x2, . . . , xM11� and p � �p1, p2, . . . ,
pM11� are the “positions” and “momenta” corresponding
to a pair of quadratures for each mode (�â, ây� � 1,
â � x̂ 1 ip̂ or h̄ �

1
2 ). The free parameters are s and

u0 with

1
p

M 1 1
# sinu0 #

s
M

M 1 1
, (2)

e22r1 �
p

M sinu0 2 cosu0p
M sinu0 1 cosu0

, (3)

e22r2 �
p

M cosu0 2 sinu0
p

M cosu0 1 sinu0
. (4)

We explain the meaning of the parameters in WMQC later
but first look at the potential telecloning protocol in which
WMQC is used. Mode 1 may be used as a “port” at the
sending station and is combined at a phase-free symmetric
beam splitter with mode “in,” au � �ain 2 a1��

p
2, av �

�ain 1 a1��
p

2, where a � x 1 ip. With mode “in” in
an arbitrary quantum state described by Win, the Wigner
function for the whole system after the beam splitter
is W�au, av, a2, . . . , aM11� � Win�ain � �av 1 au��p

2 �WMQC�a1 � �av 2 au��
p

2, a2, . . . , aM11�. The re-
maining steps are now the same as in the 1 ! 1 quantum
teleportation protocol [7], except for the crucial difference
that each of the M distant and separated locations of
modes 2 through M 1 1 need to be provided with the
classical results of the “Bell detection,” i.e., homodyne de-
tections of xu and pv. Finally, after “displacing” all these
modes correspondingly, x2...M11 ! x2...M11 1

p
2 xu and

p2...M11 ! p2...M11 1
p

2 pv, we obtain the M-mode
output Wigner function
Wout�a2, . . . , aM11� ~
Z

d2au d2av W�au, av, a2 2
p

2 �xu 1 ipv�, . . . , aM11 2
p

2 �xu 1 ipv�� . (5)
The Wigner function Wout�a2, . . . ,aM11� is totally sym-
metric with respect to all M modes. We may therefore
choose an arbitrary mode and trace out (integrate out) the
remaining M 2 1 modes which gives us the one-mode
Wigner function of each individual “clone”:

Tr3...M11Wout�a2, . . . , aM11� � Wclon�a2� � Wclon�a� .
(6)

Wclon is a convolution of Win with a bivariate Gaussian,

Wclon�x, p� �
1

2p
p

lxlp

Z
dx0 dp0 Win�x0, p0�

3 exp

∑
2

�x 2 x0�2

2lx
2

�p 2 p0�2

2lp

∏
, (7)

with the excess noise variances lx � e2s�M 2 1��2M
and lp � e22s�M 2 1��2M independent of u0 [23].
Note that in our scales, a quadrature vacuum variance
is 1

4 , i.e., �x̂, p̂� �
i
2 . Let us now consider the fidelity

F � 	cinjr̂clonjcin
 � p
R

d2a Win�a�Wclon�a� for a
coherent-state or squeezed-state input with coherent
amplitude x0 1 ip0 and squeezing parameter s0,

Win�x, p� �
2
p

exp�22e22s0

�x 2 x0�2

2 2e2s0�p 2 p0�2� . (8)

Since the mean amplitude is preserved through tele-
cloning, the fidelity does not depend on x0 and p0.
For s � 0, our MQC exactly realizes optimal sym-
metric 1 ! M telecloning of coherent states (s0 � 0),
F � F

coh st,`
clon,1,M . Furthermore, the above protocol demon-

strates that our MQC is capable of transferring arbi-
trary quantum states Win simultaneously to M remote
and separated receivers with equal minimum excess
noise in each output mode, lx � lp � �M 2 1��2M
for s � 0 (less excess noise emerging at each output for
arbitrary Win would imply that we could also beat the
optimal-cloning limit for coherent-state inputs [16]). This
observation highlights the quantum character of the MQC:
247901-2
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for any M, it excels the classical telecloner, because the
latter creates at least two units of vacuum excess noise
in each output mode (“two quduties” [7]). A compelling
example is one half of an Einstein-Podolsky-Rosen (EPR)
state [7] as the MQC input resulting in entanglement of the
other EPR half with every single output mode. The easiest
way to see this is by applying Duan et al.’s sufficient
inseparability criterion in terms of total variances [24] for
sufficiently large squeezing of the EPR state and s � 0.

Minimum excess noise symmetrically added in
phase space does not necessarily ensure optimum tele-
cloning fidelities at the outputs. It does for coherent-
state inputs, but squeezed-state inputs (s0 fi 0) require
asymmetric excess noise s � s0, lx � e2s0 �M 2 1��
2M, lp � e22s0�M 2 1��2M, according to F � 2�
�
q

�4lxe24s0 1 2e22s0 � �4lpe4s0 1 2e2s0��. Adjustment of
s � s0 in WMQC maintains optimum fidelities in a nonuni-
versal fashion where s0 must be fixed and known. We
study now how to generate the state WMQC.

Let us define a sequence of ideal phase-free beam
splitters acting on M modes (“M-splitter” [21]) as
U�M� � BM21 M�sin211�

p
2 �BM22 M21�sin211�

p
3 � 3

· · · 3 B12�sin211�
p

M �, where Bkl�u� is an M-
dimensional identity matrix with the entries Ikk , Ikl ,
Ilk , and Ill replaced by sinu, cosu, cosu, and 2 sinu,
respectively. A single symmetric beam splitter, for
example, is described by �ĉ0

1, ĉ0
2�T � U�2� �ĉ1, ĉ2�T .

The recipe to build an MQC is now as follows (see
Fig. 1): first produce a bipartite entangled state by
combining two squeezed vacua [one squeezed in p with
r1 and the other one squeezed in x with r2 as defined
in Eqs. (3) and (4)] at a phase-free beam splitter with
reflectivity/transmittance parameter u � u0. Then keep
one half as a “port” mode (our mode 1) and send the
other half together with M 2 1 ancilla modes through an
M-splitter. The ancilla modes, b̂0

i � coshsb̂i 1 sinhsb̂
y
i

with b̂3, b̂4, . . . , b̂M11 being vacuum modes, are either
vacua s � 0 or squeezed vacua s fi 0. In the latter

FIG. 1. Optimal telecloning of an arbitrary coherent state from
Alice to M spatially separated Bob’s. Alice and the Bob’s share
the entangled state WMQC, here generated with vacuum ancilla
modes j0
 corresponding to s � 0 in WMQC.
247901-3
case, in order to obtain WMQC, the squeezing of the
two inputs of the first beam splitter needs to be adjusted
correspondingly, b̂0

1 � cosh�s 1 r1�b̂1 1 sinh�s 1 r1�b̂y
1

and b̂0
2 � cosh�s 2 r2�b̂2 1 sinh�s 2 r2�b̂y

2 , with b̂1 and
b̂2 also being vacuum modes. The circuit to generate the
state WMQC is then simply

�â1, â2, . . . , âM11�T � U�M 1 1�B21
12 �sin211�

p
M 1 1 �

3 B12�u0� �b̂0
1, b̂0

2, . . . , b̂0
M11�T ,

(9)

where B12�u� is an �M 1 1� 3 �M 1 1� matrix as
defined above. Note that the optimality is not affected
by the particular choice of u0. These instructions imply
that, although WMQC is an entangled multimode or multi-
party state, it is actually bipartite entanglement between
mode 1 and the other M modes that makes telecloning
possible [the symmetry properties of WMQC in Eq. (1)
underline this]. The squeezing responsible for the en-
tanglement corresponds to j10 log10��

p
M 2 1���

p
M 1

1��j dB if r1 � r2 (about 7.7 dB for M � 2, 5.7 dB for
M � 3, 4.8 dB for M � 4, and 4.2 dB for M � 5).
In agreement with F

coh st,`
clon,1,M ! Fclass for M ! `, the

squeezing and hence the entanglement approach zero as
M increases.

Their bipartite character is what WMQC and for example
the qubit telecloning state proposed by Murao et al. [5]
have in common. However, as opposed to WMQC (for
M . 1), the qubit state contains maximum bipartite en-
tanglement for any M. On the other hand, the qubit states
are in some sense more symmetric and even more “mul-
tiuser friendly,” as they are actually 2M-partite states con-
taining bipartite entanglement between M parties “on the
left side” and M parties “on the right side.” Because of
this symmetry, each particle on each side can function as
a port enabling the transfer of quantum information to all
particles on the other side [5]. We can also construct such
an MQC for continuous variables with exactly the same
properties as the qubit state, but the price we have to pay
is that we need infinite squeezing, i.e., maximum bipartite
entanglement for any M. The corresponding 2M-mode
state is generated by first producing an infinite-squeezing
EPR state [7] and then sending both halves each together
with M 2 1 ancilla modes through an M-splitter. This
MQC also enables optimal 1 ! M telecloning of coher-
ent states, but instead of a fixed port mode, any mode on
the left side built from the left EPR half or on the right side
built from the right EPR half can now function as a port
for sending quantum information to the other side. Let us
emphasize the analogy between this particular continuous-
variable MQC and Murao et al.’s qubit telecloning state
[5] by displaying the former for M � 2 and s � 0 in the
Schrödinger representation (position basis):

jcMQC0 
 ~
Z

dx dy dz exp�2y2 2 z2�

3 jx 1 y
 jx 2 y
 jx 1 z
 jx 2 z
 . (10)
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FIG. 2. Telecloning of an arbitrary coherent state from Alice
to M spatially separated Bob’s. Alice and the Bob’s share a
multipartite entangled state generated via an arbitrary quadratic
interaction Hamiltonian.

Despite its nice symmetry properties, it is an unphysi-
cal (unnormalizable) state as opposed to WMQC which
does without infinite squeezing. Our results suggest that
also for qubits (or generally qudits), a less symmetric but
more economical version of an MQC might exist (see also
Ref. [10]).

An important question now is whether WMQC is indeed
the most economical version of an MQC. Does our
telecloning protocol rely on minimal squeezing resources?
At least the linear optics part, one beam splitter followed
by an M-splitter, is certainly the simplest possible choice.
Nevertheless, let us consider a much broader class of
(M 1 1)-mode states, namely, all multipartite entangled
states that can be generated via quadratic interaction
Hamiltonians (i.e., an arbitrary combination of multiport
interferometers, squeezers, down-converters, etc.). This
arbitrary combination may be decomposed by Bloch-
Messiah reduction [25] into a set of M 1 1 squeezers
b̂0

j � coshjjb̂j 1 sinhjjb̂
y
j with vacuum inputs b̂j ,

and a subsequent linear multi-port [unitary trans-
formation U�M 1 1�], �a � U�M 1 1� �b0 with �a �
�â1, â2, . . . , âM11�T , etc. Without loss of generality, mode
â1 can be chosen as a port, and rather than assuming a
phase-free symmetric beam splitter before the “Bell de-
tection,” we consider now any unitary matrix U�2� acting
on the input mode âin and â1, �âu, âv�T � U�2� �âin, â1�T

(see Fig. 2). An arbitrary unitary matrix acting on
M 1 1 modes can be decomposed into beam split-
ters and phase shifters as U�M 1 1� � �BM M11 3

BM21 M11 · · · B1 M11BM21 M · · · B12D�21 [26]. Each
of the M�M 1 1��2 beam splitter operations depends
on a reflectivity/transmittance parameter and a phase,
Bkl � Bkl�ukl , fkl�, where Bkl is an (M 1 1)-dimensional
identity matrix with the entries Ikk, Ikl, Ilk , and Ill replaced
by eifkl sinukl , eifkl cosukl , cosukl, and 2 sinukl , respec-
tively. Extra phase shifts are included by the diagonal
matrix D with elements eib1 , eib2 , . . . , eibM11 . The entire
247901-4
telecloning process based on this generalization depends
on M2 1 3M 1 6 parameters. With an optimization
algorithm based on a genetic code [27], we numerically
confirmed for M � 2 (16 parameters) and M � 3 (24
parameters) that WMQC uses the least total squeezing.
In every calculation, the optimization of coherent-state
telecloning forces M 2 1 auxiliary modes to approach
vacuum and only a pair of modes to be squeezed, each
mode by at least 10 log10��

p
M 2 1���

p
M 1 1�� dB (if

equally squeezed, otherwise less squeezing in one mode
is at the expense of more squeezing in the other mode,
exactly as for our proposed state).
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