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Abstract: We employ a basic formalism from convex analysis to show a simple rela-
tion between the entanglement of formation EF and the conjugate function E∗ of the
entanglement function E(ρ) = S(TrAρ). We then consider the conjectured strong
superadditivity of the entanglement of formation EF (ρ) ≥ EF (ρI ) + EF (ρII ), where
ρI and ρII are the reductions of ρ to the different Hilbert space copies, and prove that it
is equivalent with subadditivity ofE∗. Furthermore, we show that strong superadditivity
would follow from multiplicativity of the maximal channel output purity for quantum
filtering operations, when purity is measured by Schatten p-norms for p tending to 1.

1. Introduction

One of the central quantities in quantum information theory is the entanglement cost
of a state, defined as the number of maximally entangled pairs (singlets) required to
prepare this state in an asymptotic way. Calculating the entanglement cost of a general
mixed state as such is, with the present state of knowledge, a formidable task because
one has to consider an infinite supply of singlets and construct a protocol using local
or classical (LOCC) operations only, such that the resulting (infinite-dimensional) state
approximates an infinite supply of the required state to arbitrary precision. Furthermore,
the protocol must have maximal yield, the number of states produced per singlet. The
entanglement cost is the inverse of this yield.

An important theoretical breakthrough was achieved in [1], where the entanglement
cost EC was shown to be equal to the regularised entanglement of formation: EC(ρ) =
limn→∞ EF (ρ

⊗n)/n. The entanglement of formation (EoF) (defined below in (4)) is
defined in a mathematical and non-operational way and is therefore much more ame-
nable to calculation. Moreover, for 2-qubit mixed states, a closed formula for the EoF
exists [2]. Nevertheless, calculating the entanglement cost still requires calculations over
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infinite-dimensional states. For that reason one would hope for the additivity property to
hold for the EoF:EF (ρ1 ⊗ρ2) = EF (ρ1)+EF (ρ2), because thenEC = EF . Additivity
of the EoF has been proven in specific instances [3–8]. Some of these additivity results
are sufficiently powerful to allow calculating the entanglement cost for certain classes
of mixed states [5–7]. The much sought-after general proof, however, remains elusive
for the time being and, in fact, general additivity is still a conjecture.

It is very easy to show that the EoF is subadditive:

EF (ρ1 ⊗ ρ2) ≤ EF (ρ1)+ EF (ρ2). (1)

Additivity would then follow from superadditivity:

EF (ρ1 ⊗ ρ2) ≥ EF (ρ1)+ EF (ρ2). (2)

In [4] a stronger property, which would imply (super)additivity, has been conjectured
for the EoF, namely strong superadditivity:

EF (ρ) ≥ EF (ρI )+ EF (ρII ), (3)

whereρ is a general state over a duplicated Hilbert space andρI andρII are its reductions
to the different copies of that space.

In this paper we show that strong superadditivity of EoF is equivalent to subadditiv-
ity of a much simpler quantity, the so-called conjugate of the entanglement functional
E(ρ) = S(TrA ρ). We then exploit this equivalence to show that strong superadditivity
would follow as a consequence of multiplicativity of the maximal output purity, mea-
sured by a Schatten norm, for quantum filtering operations (this quantity will also be
defined in due course).

The main results are stated in Theorems 1 and 2. To arrive at these results, we have
made use of a basic formalism from convex analysis [9, 10] and we hope that our results
will stimulate usage of this elegant theory in other areas of quantum information.

2. Notations

Let us first introduce the basic notations. Let S(ρ) denote the von Neumann entropy
S(ρ) = − Tr ρ ln ρ. For state vectors we will typically use lowercase Greek letters, ψ ,
φ. For mixed states we will use lowercase Greek letters ρ, σ , τ . The identity matrix will
be denoted by I.

We shall denote the set of bounded Hermitian operators over the Hilbert space H by
Bs(H), the set of non-negative elements in Bs(H) by B+(H), and the (convex) set of
all states (trace 1 positive operators) over H by S(H).

We will frequently slim down expressions like maxρ∈S{. . . } to maxρ{. . . }. When the
domain of, say, a maximisation over states is missing it will be implicitly understood
that the whole of state space S(H) is meant. The abovementioned naming convention
for states and vectors will be adhered to exactly for that reason.

Any state ρ can be realised by an ensemble of pure states. An ensemble is specified
by a set of pairs {(pi, ψi)}Ni=1, consisting of N state vectors ψi and associated statisti-
cal weights pi (with pi ≥ 0 and

∑
i pi = 1). Here, N is called the cardinality of the

ensemble. The entanglement of formation (EoF) of a bipartite state ρ (i.e., a state over
the bi-partite Hilbert space HA ⊗ HB ), is defined by [11]

EF (ρ) = min
{(pi ,ψi)}

{ ∑
i

piS(TrA |ψi〉〈ψi |) :
∑
i

pi |ψi〉〈ψi | = ρ
}
. (4)
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3. Convex Closures

Admittedly, the definition of the EoF just mentioned is not very handy to work with.
Not in the least because for generic states ρ the cardinality N of the optimal realising
ensemble must be larger than R1.5/4, where R is the rank of ρ [12]. This is one of the
reasons why no really efficient numerical algorithms have been found yet to calculate
the EoF [13]. Furthermore, the mere fact that the minimisation involves ensembles at all
makes a theoretical study of the EoF rather difficult. One of the first attempts at proving
additivity of EoF relied on the investigation of these optimal ensembles [3].

The results in the present work depend on the following simple observation. The
import of the definition (4) of the EoF, as has been shown in [14, 4], is that the EoF is
the convex closure (or convex roof, as it is called in [14]) of the pure state entanglement
function E(|ψ〉〈ψ |) = S(TrA |ψ〉〈ψ |), restricted to the set of pure states. This means
that the epigraph of the EoF (being the set of points (ρ, x) in S(H)×R with x ≥ EF (ρ))
on the complete state space S(H) is the convex closure of the epigraph of the function
E′ defined over S(H), where

E′(ρ) =
{
E(ρ), ρ pure
+∞, ρ not pure.

This follows immediately from Cor. 17.1.5 of [9] and the definition (4). Note now that
E is concave over its domain. There is, therefore, no need to explicitly exclude mixed
states 1, so EF is the convex closure of E as well.

In the following paragraphs we will apply the standard convex analytical formalism
for convex closures to general bounded functions f whose domain is the convex set of
states S(H). We will denote the convex closure of f by f̂ . One definition of the convex
closure of f is

f̂ (ρ) = min
{(pi ,ρi )}

{∑
i

pif (ρi) :
∑
i

piρi = ρ

}
, (5)

agreeing, indeed, with the definition of the EoF. A less cumbersome formulation of the
convex closure is based on Cor. 12.1.1 of [9], which states that the convex closure of a
function f is the pointwise supremum of the collection of all affine functions on S(H)
majorised by f . So, for all states ρ:

f̂ (ρ) = sup
X∈Bs (H)

{Tr ρX : (∀ψ ∈ H : 〈ψ |X|ψ〉 ≤ f (|ψ〉〈ψ |))}. (6)

The mentioned affine functions are here the functions 〈ψ |X|ψ〉, whereX ranges over
Bs(H) 2. This dual formulation is then further simplified by defining an intermediate
function f ∗:

f ∗(X) = max
ρ∈S(H)

Tr[ρX] − f (ρ), (7)

1 Of course, E(ρ) has no real physical significance for mixed states. Moreover, we must be careful
to distinguish between the two possible definitions E(ρ) = S(TrA ρ) and E′(ρ) = S(TrB ρ). On pure
states, these two definitions yield the same value, but for mixed states this is not so anymore.

2 For our purposes the corollaries from [9] have to be restated with R
n replaced by S(H). This causes

no problems if one extends the domain of f to the affine space of all trace 1 Hermitian operators and
defines f (x) = +∞ for negative x.
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the so-called conjugate function of f [9]. If f is continuous, then the conjugate function
is just the Legendre transform of f . The conjugate function is convex inX, because it is
a pointwise maximum of functions that are affine inX. The importance of the conjugate
function is that the conjugate of the conjugate of f is the convex closure of f , f̂ = f ∗∗,
and the conjugate of the convex closure of f is the conjugate of f , f̂ ∗ = f ∗ ([9], the
remark just before its Theorem 12.2). Thus

f̂ (ρ) = max
X∈Bs (H)

Tr[ρX] − f ∗(X), (8)

f ∗(X) = max
ρ∈S(H)

Tr[ρX] − f̂ (ρ). (9)

In other words, the conjugate and convex closure determine each other completely.
Because f ∗ and f̂ are convex functions, the optimal X and ρ in (8) and (9), respec-

tively, both form convex sets (possibly singleton sets). Furthermore, there is a corre-
spondence between the optimal X in (8) and the optimal ρ in (9).

Proposition 1. (a) If X′ is an optimal X for τ in (8), then (i) τ is an optimal ρ for X′ in
(9), and (ii) all members of an optimal realising ensemble for τ are optimal ρ for X′ in
(7). (b) If ρ′ is an optimal ρ for Y in (9), then Y is an optimal X for ρ′ in (8).

Proof. Statement (a)(i) is proven by inserting (9) in (8) and exploiting the premise that
X′ is an optimal X. This gives f̂ (τ ) = Tr τX′ − maxρ(Tr ρX′ − f̂ (ρ)). Putting ρ = τ

yields an upper bound on the right-hand side because τ is not necessarily optimal in the
maximisation. However, the value of the bound we obtain is f̂ (τ ), which happens to be
equal to the left-hand side. Thus this choice really is an optimal one, proving optimality
of τ for X′ in (9).

Statement (b) is proven similarly, by inserting (8) in (9).
Considering statement (a)(ii), let {(pi, τi)} be an optimal ensemble for τ (with

pi > 0). Thus f̂ (τ ) = ∑
i pif (τi). By assumption, f̂ (τ ) = Tr τX′ −f ∗(X′). Inserting

(7) and expanding unity as
∑
i pi yields

∑
i pif (τi) = Tr τX′ −∑

i pi maxρ(Tr ρX′ −
f (ρ)). If we now replace ρ by τi in the ith summation term we get an upper bound on
the right-hand side, with equality only if all the τi are optimal ρ for X′. The bound is
easily seen to be

∑
i pif (τi), which is actually equal to the left-hand side. We find again

that the bound is sharp, and optimality of the τi follows. �

4. Additivity

These basic results will now prove to be a powerful tool for studying the additivity issue
of the EoF. Let HI and HII be two copies of the Hilbert space HA ⊗ HB , and define
H = HI � HII . We will reserve the symbol ⊗ for tensor products with respect to the
A-B subdivision, and the symbol � for tensor products regarding the I-II subdivision.
Strong superadditivity of the EoF [4] is the inequality

EF (ρ) ≥ EF (ρI )+ EF (ρII ), (10)

for ρ a state on H, and ρI and ρII its reductions to HI and HII , respectively.
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The following Lemma is simple but crucial:

Lemma 1. For any bounded function f defined on S(H), strong superadditivity of f̂ ,

f̂ (ρ) ≥ f̂ (ρI )+ f̂ (ρII ), (11)

is equivalent to subadditivity of the conjugate function f ∗ with respect to the Kronecker
sum:

f ∗(X1 � I + I �X2) ≤ f ∗(X1)+ f ∗(X2). (12)

Proof. Set Z = X1 � I + I � X2. Then, using (8) and assuming the validity of (12)
yields

f̂ (ρ) = sup
X

Tr[ρX] − f ∗(X)

≥ sup
X1,X2

Tr[ρZ] − f ∗(Z)

≥ sup
X1,X2

Tr[ρIX1 + ρIIX2] − f ∗(X1)− f ∗(X2)

= f̂ (ρI )+ f̂ (ρII ),

which is (11).
The converse follows from (9). Assuming the validity of (11) yields

f ∗(Z) = max
ρ

Tr[ρZ] − f̂ (ρ)

≤ max
ρ

Tr[ρIX1 + ρIIX2] − f̂ (ρI )− f̂ (ρII )

= max
ρ1,ρ2

Tr[ρ1X1 + ρ2X2] − f̂ (ρ1)− f̂ (ρ2)

= f ∗(X)+ f ∗(Y ),

which is (12). �
The appearance of the Kronecker sum in Lemma 1 suggests that the consideration

of the function f ∗ ◦ log is a more natural setting for studying additivity. Defining g :=
f ∗ ◦ log and setting Xi = logMi , (12) becomes

g(M1 �M2) ≤ g(M1)+ g(M2),

for M1,M2 ∈ B+(H). Restating (8) and (9) in terms of M , we have

g(M) = max
ρ∈S(H)

Tr[ρ log(M)] − f (ρ), (13)

f̂ (ρ) = max
M∈B+(H)

Tr[ρ log(M)] − g(M). (14)

Strictly speaking, these quantities are defined only for positiveM . However, whenM is
singular, we can still make sense out of it by the usual extension Tr[ρ log(M)] = −∞
for any ρ that is not completely supported on the range of M .
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We can now restate Lemma 1 in the form of a theorem, which is our first main result:

Theorem 1. For any function f defined on S(H), and with g defined on B+(H) by (13),
strong superadditivity of the convex closure f̂ ,

f̂ (ρ) ≥ f̂ (ρI )+ f̂ (ρII ), (15)

is equivalent to subadditivity of g,

g(M1 �M2) ≤ g(M1)+ g(M2). (16)

Note that the expression Tr[ρ log(M)] − g(M) is invariant under multiplication of
M by a positive scalar. Hence, one could impose the restriction TrM = 1, i.e. that M
should be a state, or alternatively M ≤ I, which is what we shall do.

An immediate corollary of this theorem is the equivalence of the strong superaddi-
tivity of the EoF with the subadditivity of g = E∗ ◦ log, where E∗ is the conjugate
of the entanglement functional E(ρ) = S(TrA ρ). We have chosen to present Theorem
1 in the more general way because it obviates the rather remarkable independence of
the theorem on any property of the function f at all. Specifically, while for the sake of
defining the EoF it is necessary to split up the Hilbert space into two parties A and B,
this is something the theorem is completely oblivious of.

The only interesting feature of E we can exploit at this level is its concavity. Con-
cavity allows to simplify the conjugation expression by replacing the maximisation over
all mixed states by a maximisation over pure states. Indeed, the argument of the maxi-
misation in

g(M) = max
ρ∈S(H)

Tr[ρ log(M)] − E(ρ)

is a convex function of ρ, and it is well-known [9] that a convex function achieves its
maximum over a convex set always in an extreme point of that set, in this case in a pure
state. Thus:

g(M) = max
ψ∈H

〈ψ | log(M)|ψ〉 − E(�).

Theorem 1 reduces the additivity problem for the convex closure, originally defined
as a minimisation over ensembles, to an equivalent problem for the conjugate function,
defined as a maximisation over pure states. If counterexamples are found for (16), this
automatically disproves strong superadditivity (15), so this simplification does not come
at the cost of reduced power. Specifically, by “inverting” the proof of Lemma 1 (or
Theorem 1) and employing Proposition 1, we easily get the following:

Proposition 2. If ρ violates strong superadditivity of f̂ , (15), M1 is optimal for ρI in
(14), andM2 is optimal forρII , thenM1�M2 violates subadditivity of g (16). IfM1�M2
violates (16) and ρ is optimal for M1 �M2 in (13), then ρ violates (15).

5. Maximal Output Purity

Exploiting Theorem 1, we will now show that strong superadditivity ofEF would follow
as a consequence of another additivity conjecture, concerning quantum channel capaci-
ties. Recollect that, since E is concave, the optimal ρ in (7) will be an extreme point of
the feasible set, i.e. a pure state, so:

E∗(X) = max
ψ∈H

〈ψ |X|ψ〉 − E(|ψ〉〈ψ |). (17)
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From the additivity ofE over pure states it easily follows that the corresponding function
g = E∗ ◦ log is superadditive, hence subadditivity of g implies its additivity.

5.1. Step 1. The maximisation in g can be rewritten in terms of a maximal eigenvalue
λmax:

Lemma 2. For any M ∈ B+(H),

g(M) := max
ψ
(〈ψ | logM|ψ〉 − S(TrA |ψ〉〈ψ |))

= max
τ∈S(HB)

λmax(logM + log(IA ⊗ τ)). (18)

Note that we will henceforth consider logM + log(IA ⊗ τ) as an operator restricted to
the range intersection ran(M) ∩ ran(I ⊗ τ).

Proof.

max
τ
λmax(logM + log IA ⊗ τ)

= max
τ

max
ψ

Tr[|ψ〉〈ψ |(logM + log IA ⊗ τ)] (19)

= max
τ

max
ψ

Tr[|ψ〉〈ψ | logM] + Tr[TrA(|ψ〉〈ψ |) log τ ]

= max
ψ

Tr[|ψ〉〈ψ | logM] − S(TrA |ψ〉〈ψ |). (20)

In step (19) we have used the Rayleigh-Ritz representation of a maximal eigenvalue,
and in step (20) we have used the fact that relative entropy is non-negative and attains
the value zero when (and only when) its arguments are equal. Specifically:

0 = min
τ
S(ρ||τ)

= min
τ

−S(ρ)− Tr[ρ log τ ]

= −S(ρ)− max
τ

Tr[ρ log τ ]. �

5.2. Step 2. Using the Lie-Trotter formula, the logarithm can be replaced by a limit of
a power function.

Lemma 3.

exp g(M) = lim
p→0

h
1/p
p (M),

where

hp(M) := max
τ

||Mp/2(I ⊗ τ)pMp/2||

and ||.|| denotes the operator norm.
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Proof. Taking the exponential of both sides of (18) and noting exp λmax(M) =
λmax exp(M), we get

exp g(M) = max
τ

|| exp(logM + log(I ⊗ τ))||.
To make sense of this formula, we extend exp(logM + log(I ⊗ τ)) as 0 on the com-
plement of ran(M) ∩ ran(I ⊗ τ), as in [15]. The Lie-Trotter formula has a continuous
version (see the remark after Lemma 3.3 in [15])

exp(A+ B) = lim
p→0

(
exp(pA/2) exp(pB) exp(pA/2)

)1/p
.

In particular, this gives us

exp(logM + log(I ⊗ τ)) = lim
p→0

(
Mp/2(I ⊗ τ)pMp/2)1/p

. (21)

Define the shorthand functions

f (τ) := || exp(logM + log(I ⊗ τ))||,
fp(τ ) := ||(Mp/2(I ⊗ τ)pMp/2)1/p||

over S(H). By (21) and the triangle inequality for norms, fp converges pointwise to
f . The functions fp are clearly continuous for p > 0. By Lemma 4.1 of [15], f is
continuous too. From [16] (p. 118) we have that fp decreases monotonously to f as p
decreases to 0. The set S(H), over which f and fp are defined, is compact. Hence, all the
prerequisites are fulfilled to apply Dini’s theorem [17], and we get that the convergence
of fp to f is uniform over S(H).

Finally, uniform convergence is equivalent with convergence in the sup-norm. By
the triangle inequality for norms, that in turn implies that the sup-norm of fp con-

verges to the sup-norm of f . Therefore, h1/p
p (M) = maxτ fp(τ ) = ||fp||S converges

to ||f ||S = maxτ f (τ ) = exp g(M). �
Additivity of gwould thus follow as a consequence of multiplicativity ofhp,hp(M1�

M2) = hp(M1)hp(M2), for p ↓ 0. Following [18], we say that a property holds for
p ↓ a if it holds for an arbitrarily small, but finite, interval p ∈ (a, a + ε], ε > 0.

5.3. Step 3. The quantity hp(M) is formally equal to the maximal output purity [18–20]
of quantum filtering operations. Indeed,

hp(M) = max
τ,φ

Tr[|φ〉〈φ|(Mp/2(I ⊗ τ)pMp/2)]

= max
τ,φ

Tr[τp TrA[Mp/2|φ〉〈φ|Mp/2]]

= max
φ

|| TrA[Mp/2|φ〉〈φ|Mp/2]||q
= νq(
),

where q = 1/(1 − p) and ||.||q denotes the Schatten q-norm [21], and νq(
) is the
maximal output purity measured by the Schatten q-norm of the (non-trace preserving)
operation


 : ρ �→ 
(ρ) = TrA[Mp/2ρMp/2]. (22)

If this operation would be trace preserving, we would call it a channel.
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5.4. Step 4. We now claim that there is no advantage in restricting attention to oper-
ations of the form (22). It is of course true that the class of operations (22) is rather
specific. They admit a Kraus representation such that the block column matrix (Ai)i
obtained by stacking the Kraus element matrices Ai vertically, equals Mp/2, which is a
positive matrix. Necessary conditions are that

∑
i A

†
i Ai = Mp (which is ≤ I) and the

input dimension of the operation should equal the output dimension times the number
of elements.

However, as regards the maximal output purity question, these structural peculiarities
offer no additional mileage. To see this, consider the specific case that M is a partial
isometry M = U�U†, where � = |1〉〈1| ⊗ IB and U is any unitary, then

νq(
) = max
φ∈H

|| TrA[U�p/2U†|φ〉〈φ|U�p/2U†]||q
= max

φ′∈H
|| TrA[U�p/2|φ′〉〈φ′|�p/2U†]||q

= max
φ′′∈HB

|| TrA[U(|1〉〈1| ⊗ |φ′′〉〈φ′′|)U†]||q,

which is the generic case for operations from HA to HA. Thus, the case for the “special
operations” H �→ HA contains the generic HA �→ HA case and is therefore not easier
to prove.

5.5. Step 5. The exponent p of M , occurring in 
, is coupled to q, occurring in νq ,
via the relation q = 1/(1 − p). To cap off our argument, we “decouple” p and q by
replacing Mp/2 with a general matrix 0 ≤ X ≤ I, strengthening our multiplicativity
conjecture ever so slightly. This is allowed only when we first fix the interval of the
values p for which multiplicativity has to hold, i.e. these values should not depend on

. Noting finally that p ↓ 0 corresponds to q ↓ 1, we get our second main result:

Theorem 2. If there exists a real number q0 > 1 such that νq(
) is multiplicative for
all 1 ≤ q ≤ q0 and for any filtering operation
, then the entanglement of formation is
strongly superadditive.

Multiplicativity of νq had been conjectured in [18] for trace preserving channels.
It has been proven for entanglement breaking channels [20], unital qubit maps [22]
and depolarising channels [23], but, unfortunately, was refuted in [19] for q > 4.79.
Nevertheless, the conjecture might still be true for q ↓ 1.

Theorem 2 has to be compared to the main technical result in [7], which states that
additivity of the Holevo capacity for given channels implies additivity of the EoF for
certain states. In a sense, our Theorem 2 is stronger because we get the stronger outcome
of strong superadditivity. On the other hand, this comes at the price of having to consider
non-trace-preserving operations.

After the appearance of the first draft of this manuscript, Shor proved [24] the equiva-
lence of four additivity conjectures: strong superadditivity of the EoF, ordinary additivity
of the EoF, additivity of the maximal output purity νS of a channel as measured by the
entropy, and additivity of the classical (Holevo) capacity of a channel.As multiplicativity
of νq(
) for q ↓ 1 implies additivity of νS(
) [18], Shor’s third equivalence provides
an alternative proof for our result Theorem 2.
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6. Conclusion

In conclusion, we have shown how a simple convex analytical argument leads to a sim-
pler formulation of the entanglement of formation and an especially simple equivalent
condition for strong superadditivity of the EoF. Based on this we have found the sec-
ond result that strong superadditivity of the EoF would follow as a consequence of the
multiplicativity of the maximum output purity νq of quantum filtering operations, for
q ↓ 1.
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References

1. Hayden, P.M., Horodecki, M., Terhal, B.M.: J. Phys. A 34(35), 6891–6898 (2001)
2. Wootters, W. : Phys. Rev. Lett. 80, 2245 (1998)
3. Benatti, F., Narnhofer, H.: Phys. Rev. A 63, 042306 (2001)
4. Vollbrecht, KG.H., Werner, R.F.: Phys. Rev. A 64, 062307 (2001)
5. Vidal, G., Dür, W., Cirac, J.I.: Phys. Rev. Lett. 89, 027901 (2002)
6. Horodecki, M., Sen De, A. Sen, U.: quant-ph/0207031, 2002
7. Matsumoto, K., Shimono, T., Winter, A.: quant-ph/0206148, 2002
8. Heng Fan: quant-ph/0210169, 2002
9. Rockafellar, R.T.: Convex Analysis. Princeton, NJ: Princeton University Press, 1970

10. Boyd, S., Vandenberghe, L.: Convex Optimization. Available online at http://www.stan-
ford.edu/∼boyd/cvxbook.html, 2002

11. Bennett, C.H., DiVincenzo, D.P., Smolin, J., Wootters, W.K.: Phys. Rev. A 54, 3824 (1996)
12. Lockhart, R.B.: J. Math. Phys. 41(10), 6766–6771 (2000)
13. Audenaert, K.M.R., Verstraete, F., DeMoor, B.: Phys. Rev. A 64, 052304 (2001)
14. Uhlmann, A.: quant-ph/9704017, 1997
15. Hiai, F., Petz, D.: Lin. Alg. Appl. 181, 153–185 (1993)
16. Ando, T., Hiai, F.: Lin. Alg. Appl. 197, 198, 113–131 (1994)
17. Apostol, T.M.: Mathematical Analysis. Reading MA: Addison-Wesley, 1974
18. Amosov, G.G., Holevo, A.S., Werner, R.F.: Problems in Information Transmission 36, 25–34 (2000)

and math-ph/0003002 (2000)
19. Werner, R.F., Holevo, A.S.: J. Math. Phys. 43(9), 4353–4357 (2002)
20. King, C.: quant-ph/0212057, 2002
21. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge: Cambridge University Press,

1991
22. King, C.: J. Math. Phys. 43(9), 4334–4340 (2002)
23. King, C.: quant-ph/0204172 (2002)
24. Shor, P.W.: quant-ph/0305035 (2003)

Communicated by M.B. Ruskai


