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APPENDIX A: ENCODING

Equation (1) describes a nine-port device acting upon
the signal input mode, two x-squeezed ancilla modes
(“an1” and “an4” in Fig. 1 of main body), and six p-
squeezed ancilla modes (“an2”, “an3”, “an5”, “an6”,
“an7”, and “an8” in Fig. 1). Labeling the nine input
modes by subscripts one through nine, we obtain the out-
put quadrature operators of the encoded state,
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Note that with respect to these subscripts, eq. (1) can be
expressed by T789T456T123T147 for modes 1 (signal input),
2 (“an2”), 3 (“an3”), 4 (“an1”), 5 (“an5”), 6 (“an6”), 7
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(“an4”), 8 (“an7”), and 9 (“an8”).
The encoded state exhibits the following quadrature

quantum correlations in the case of nonzero squeezing,
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In the limit r1−8 → ∞, the quadrature operators become
perfectly correlated,

x̂1 + x̂2 + x̂3 = x̂4 + x̂5 + x̂6 = x̂7 + x̂8 + x̂9,

p̂1 = p̂2 = p̂3,

p̂4 = p̂5 = p̂6,

p̂7 = p̂8 = p̂9. (A3)

These correlations are analogous expressions to the eight
stabilizer conditions of the Shor qubit code (where for
continuous variables, Pauli operators are replaced by
Weyl-Heisenberg phase-space operators). Note that
these correlations hold for any signal input state, i.e.,
for any resulting “code words”, again similar to the sta-
bilizer conditions for qubits. In order to obtain a suffi-
cient set of entanglement witnesses for verifying a fully
inseparable nine-party state, additional quadrature cor-
relations must be considered; these extra correlations are
expressed in terms of the “logical” quadratures in the
code space which depend also on the signal state (see
appendix E).

APPENDIX B: DECODING AND CORRECTION

Random phase fluctuations are transferred onto one
selected beam of the encoded state, leading to random
phase-space displacements of one of the nine optical
modes. This effect can be described by adding error
quadrature operators to the corresponding mode k, λkx̂e

k
and λkp̂e

k, where the parameter λk will be set to one
for the single mode of the noisy quantum channel and
otherwise chosen to be zero. After the decoding step,
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Modes two through nine are measured via suitable homo-
dyne detectors, i.e., the local oscillator phase is adjusted
to detect those quadratures which are quiet if there was
no error. After the corresponding feedforward operations
on the first mode, the signal input state will be recov-
ered in mode 1 up to the finite squeezing from the ancilla
modes.

3

For example, in the case of an error transferred onto
mode 1, λk = δk1,
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only for detectors 1 and 2 (see Fig. 2 of main body),
measuring x̂′

4 (position of “an1”) and p̂′2 (momentum of
“an2”), respectively, results clearly different from zero
(coming from the error) are obtained. All the remaining
detectors show results around zero. In order to correct
the error, mode 1 is displaced according to
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using eqs. (B1).
Similarly, in the case of an error transferred onto mode

9, λk = δk9, we have
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Now the only nonzero outputs occur at detectors 1 and
4 (Fig. 2), measuring x̂′

4 (position of “an1”) and x̂′
7 (po-

sition of “an4”), respectively, and at detectors 7 and 8,
measuring p̂′8 (momentum of “an7”) and p̂′9 (momentum
of “an8”), respectively. Possible correction displacements
are
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for p. These corrections result in the output quadratures
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always nearly recovering the signal input state.
Similar calculations yield the quadrature operators for

the output state of mode 1 after the error correction pro-
tocol in the case of an error on modes two through eight;
for an error on mode 2,
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for an error on mode 6,
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The additional subscripts “det1”, etc., indicate which
detector outcomes are used for the correction displace-
ments. These detectors (see Fig. 2) measure the quadra-
tures x̂′

4 (“det1”), p̂′2 (“det2”), p̂′3 (“det3”), x̂′
7 (“det4”),

p̂′5 (“det5”), p̂′6 (“det6”), p̂′8 (“det7”), and p̂′9 (“det8”).
Because of the freedom in choosing the correction dis-

placements, there is always an optimal feedforward op-
eration. For example, in the case of an error on mode
2,

x̂out = x̂in − 1√
2
x̂

(0)
an1e

−r1 ,

p̂out,det2 = p̂in +

√
2
3
p̂
(0)
an2e

−r2 ,

p̂out,det3 = p̂in −
√
2
3

p̂
(0)
an3e

−r3 , (B16)

we obtain the following excess noise for the output state,

⟨(x̂out)2⟩ = ⟨(x̂in)2⟩+
1
2
· 1
4
e−2r1 ,

⟨(p̂out,det2)2⟩ = ⟨(p̂in)2⟩+
2
3
· 1
4
e−2r2 ,

⟨(p̂out,det3)2⟩ = ⟨(p̂in)2⟩+
2
9
· 1
4
e−2r3 . (B17)

However, for r2 = r3 = r, the optimal feedforward oper-
ation leads to

p̂out,opt = p̂in +
1

2
√
6
p̂
(0)
an2e

−r −
√
2
4

p̂
(0)
an3e

−r, (B18)

corresponding to

⟨(p̂out,opt)2⟩ = ⟨(p̂in)2⟩+
1
6
· 1
4
e−2r, (B19)

which is the same as for the case of an error on mode
1. For unequal squeezing, r2 ̸= r3, the optimal feedfor-
ward depends on the squeezing values. Therefore, in the
current experiment, we use only the output of detector 3
for the feedforward. Table B shows which outputs of the
homodyne detectors are used for error correction.

TABLE I: Homodyne detector outputs for feedforward in the
current experiments.

channel with quadrature detectors for

an error feedforward

1 x 1

p 2

2 x 1

p 3

3 x 1

p 3

4 x 4

p 5

5 x 4

p 6

6 x 4

p 6

7 x 4

p 7

8 x 4

p 8

9 x 4

p 8

APPENDIX C: RESULTS OF ERROR
SYNDROME MEASUREMENTS

Fig. 1 shows error syndrome measurement results.
Here, the input state is a vacuum state. This case is
also described in the main body of the paper. A ran-
dom displacement error in phase space is transferred onto
quantum channels one through nine for A-I, respectively.
With Table 1 in the main body of the paper and Fig. 1
here, we can decide which quantum channel is subject to
an error and derive a corresponding feedforward opera-
tion to correct the error.

APPENDIX D: RESULTS OF ERROR
CORRECTION

Fig. 2 shows the results of error correction. The results
are summarized in Table 2 in the main body of the paper.

5

FIG. 1: Results of error syndrome measurements. A-I correspond to the cases of an error in quantum channels 1-9, respectively.
(a)-(h) correspond to outputs from homodyne detectors 1-8, respectively.

APPENDIX E: THE ROLE OF MULTIPARTITE
ENTANGLEMENT

The encoded nine-mode state, as created in the current
experiment and described by eqs. (A1), approaches the

following state in the limit of infinite squeezing,

|ψencode⟩ =
1

π3/2

∫
dp dp1 dp2 dp3 ψ̄(p) e−2ip(p1+p2+p3)

×|p1, p1, p1, p2, p2, p2, p3, p3, p3⟩. (E1)

Clearly, even for infinite squeezing and perfect encod-
ing, the inseparability properties of the total nine-party
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FIG. 1: Results of error syndrome measurements. A-I correspond to the cases of an error in quantum channels 1-9, respectively.
(a)-(h) correspond to outputs from homodyne detectors 1-8, respectively.

APPENDIX E: THE ROLE OF MULTIPARTITE
ENTANGLEMENT

The encoded nine-mode state, as created in the current
experiment and described by eqs. (A1), approaches the

following state in the limit of infinite squeezing,

|ψencode⟩ =
1

π3/2

∫
dp dp1 dp2 dp3 ψ̄(p) e−2ip(p1+p2+p3)

×|p1, p1, p1, p2, p2, p2, p3, p3, p3⟩. (E1)

Clearly, even for infinite squeezing and perfect encod-
ing, the inseparability properties of the total nine-party
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FIG. 2: Results of error correction. A-I correspond to the cases of an error in quantum channels 1-9, respectively. The LO
phase of the homodyne detector is locked at x or p, which is indicated after the capital letters. Trace numbers are the same as
in Figs. (5) and (6) in the main body of the paper.

state depend on the signal input wave function ψ̄(p).
In particular, for ψ̄(p) ≡ δ(p), we obtain |ψencode⟩ =∫

dp |p, p, p⟩⊗
∫

dp |p, p, p⟩⊗
∫

dp |p, p, p⟩, which is clearly
not fully nine-party entangled, but rather a product state
of three fully tripartite entangled GHZ-type three-mode
states. So in order to obtain full nine-party entangle-
ment, the input state should not correspond to an in-
finitely x-squeezed state (corresponding, after Fourier
transform, to ψ̄(p) ≡ δ(p)). Similarly, an infinitely p-

squeezed input state leads to vanishing GHZ-type corre-
lations within each of the three triplets, but it has ex-
cellent GHZ-type correlations between the three triplets.
For an input state between these two extremes, for in-
stance, a vacuum input state as used in the experiment,
we obtain quadrature correlations of both types, poten-
tially leading to full nine-party entanglement.

In order to witness full nine-party entanglement, in ad-
dition to the correlations of eqs. (A3), p-correlations be-

7

tween the triplets and x-correlations within each triplet
are required. Equations (A3) only describe x-correlations
between the triplets and p-correlations within each
triplet. The missing correlations are of the type of
p̂1 + p̂4 + p̂7 → 0 and x̂1 + x̂2 + x̂3 → 0. These linear
combinations correspond to the “logical” quadratures in
the code space,

X̂ ≡ x̂1 + x̂2 + x̂3 = x̂in +
√
2x̂(0)

an1e
−r1 ,

P̂ ≡ p̂1 + p̂4 + p̂7 = p̂in +

√
2
3
p̂
(0)
an2e

−r2

+

√
2
3
p̂
(0)
an5e

−r5 +

√
2
3
p̂
(0)
an7e

−r7 , (E2)

obviously depending on the signal input state. Only
for infinite ancilla squeezing, the encoding is perfect,
X̂ = x̂in and P̂ = p̂in. The excess noise in each quadra-
ture is 2 × e−2r/4 for equal squeezing of the ancilla
modes. In this case, an infinitely x-squeezed input state
would lead to excellent intra-triplet x-correlations; an in-
finitely p-squeezed input state, favorable for good inter-
triplet p-correlations, leads to vanishing intra-triplet x-
correlations. With a vacuum input state, as used in the
experiment, we have both types of quantum correlations
for nonzero squeezing of the ancilla modes. Similar quan-
tum correlations also exist for the combinations

x̂4 + x̂5 + x̂6 = x̂in − 1√
2
x̂

(0)
an1e

−r1 +

√
3
2
x̂

(0)
an4e

−r4 ,

x̂7 + x̂8 + x̂9 = x̂in − 1√
2
x̂

(0)
an1e

−r1 −
√

3
2
x̂

(0)
an4e

−r4 ,

p̂2 + p̂5 + p̂8 = p̂in − 1√
6
p̂
(0)
an2e

−r2 +

√
1
2
p̂
(0)
an3e

−r3

− 1√
6
p̂
(0)
an5e

−r5 +

√
1
2
p̂
(0)
an6e

−r6

− 1√
6
p̂
(0)
an7e

−r7 +

√
1
2
p̂
(0)
an8e

−r8 ,

p̂3 + p̂6 + p̂9 = p̂in − 1√
6
p̂
(0)
an2e

−r2 −
√

1
2
p̂
(0)
an3e

−r3

− 1√
6
p̂
(0)
an5e

−r5 −
√

1
2
p̂
(0)
an6e

−r6

− 1√
6
p̂
(0)
an7e

−r7 −
√

1
2
p̂
(0)
an8e

−r8 .

(E3)

The total set of quadrature quantum correlations can
be sufficient for a fully inseparable nine-party entangled
state. The corresponding nine-party entanglement wit-
nesses lead to the known criteria for multi-party insepa-
rability of continuous-variable states1. In order to verify
three-party inseparability within each triplet ρ̂123, ρ̂456,

and ρ̂789, we have, for ρ̂123,

⟨[∆(p̂1 − p̂2)]2⟩+ ⟨[∆(x̂1 + x̂2 + g1a x̂3)]2⟩ < 1,
⟨[∆(p̂2 − p̂3)]2⟩+ ⟨[∆(g1b x̂1 + x̂2 + x̂3)]2⟩ < 1,

(E4)

for ρ̂456,

⟨[∆(p̂4 − p̂5)]2⟩+ ⟨[∆(x̂4 + x̂5 + g2a x̂6)]2⟩ < 1,
⟨[∆(p̂5 − p̂6)]2⟩+ ⟨[∆(g2b x̂4 + x̂5 + x̂6)]2⟩ < 1,

(E5)

for ρ̂789,

⟨[∆(p̂7 − p̂8)]2⟩+ ⟨[∆(x̂7 + x̂8 + g3a x̂9)]2⟩ < 1,
⟨[∆(p̂8 − p̂9)]2⟩+ ⟨[∆(g3b x̂7 + x̂8 + x̂9)]2⟩ < 1.

(E6)

The “gains” g1a, etc., can be used to optimize these
conditions. In order to rule out a state of the form∑

i ηiρ̂
(i)
123 ⊗ ρ̂

(i)
456 ⊗ ρ̂

(i)
789 ≡

∑
i ηiρ̂

(i)
a ⊗ ρ̂

(i)
b ⊗ ρ̂

(i)
c , we need

further criteria, for example,

⟨[∆(p̂1 + p̂4 + g11 p̂7)]2⟩ (E7)
+⟨[∆(x̂1 + g12 x̂2 + g13 x̂3 − x̂4 − g14 x̂5 − g15 x̂6)]2⟩ < 1,

⟨[∆(g21 p̂1 + p̂4 + p̂7)]2⟩ (E8)
+⟨[∆(x̂4 + g22 x̂5 + g23 x̂6 − x̂7 − g24 x̂8 − g25 x̂9)]2⟩ < 1,

which describe the inter-triplet correlations. Equa-
tion (E7) rules out the forms

∑
i ηiρ̂

(i)
a ⊗ ρ̂

(i)
bc and∑

i ηiρ̂
(i)
b ⊗ ρ̂

(i)
ac ; eq. (E8) rules out the forms

∑
i ηiρ̂

(i)
c ⊗

ρ̂
(i)
ab and

∑
i ηiρ̂

(i)
b ⊗ ρ̂

(i)
ac . Thus, any form of separability

between the triplets a, b, and c can be ruled out. The
inter-triplet conditions can be understood as GHZ-type
correlations of modes 1, 4, and 7 after LOCC operations;
namely, x-measurements of modes 2, 3, 5, 6, 8, 9 and the
corresponding displacements of modes 1, 4, and 7.
In the experiment, it was verified that in any of the

nine cases of an error in any one of the nine channels,
the classical cutoff (zero-squeezing limit) was exceeded.
This confirms that all 8 ancilla modes are in a squeezed
state (see Table 1 and Fig.2), as the quadrature noise
of every ancilla mode contributes to the excess noise of
the corrected signal for some of the detector results used
for feedforward. This squeezing translates into nonclas-
sical correlations for all combinations in eqs. (A2), (E2),
and (E3) (with a vacuum input state). The set of quadra-
ture combinations corresponds to the “unit-gain” version
of the entanglement witnesses in eqs. (E4), (E5), (E6),
(E7), and (E8). In order to satisfy the witness inequali-
ties, in particular, for small squeezing values (as those of
roughly 1 dB in the experiment), non-unit gain must be
chosen. Although these non-unit gain combinations have
not been measured directly in the quantum error correc-
tion experiment, the nonclassicality in all the unit-gain
combinations may be interpreted as an indirect confir-
mation of the presence of nine-party entanglement.
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tween the triplets and x-correlations within each triplet
are required. Equations (A3) only describe x-correlations
between the triplets and p-correlations within each
triplet. The missing correlations are of the type of
p̂1 + p̂4 + p̂7 → 0 and x̂1 + x̂2 + x̂3 → 0. These linear
combinations correspond to the “logical” quadratures in
the code space,

X̂ ≡ x̂1 + x̂2 + x̂3 = x̂in +
√
2x̂(0)

an1e
−r1 ,

P̂ ≡ p̂1 + p̂4 + p̂7 = p̂in +

√
2
3
p̂
(0)
an2e

−r2

+

√
2
3
p̂
(0)
an5e

−r5 +

√
2
3
p̂
(0)
an7e

−r7 , (E2)

obviously depending on the signal input state. Only
for infinite ancilla squeezing, the encoding is perfect,
X̂ = x̂in and P̂ = p̂in. The excess noise in each quadra-
ture is 2 × e−2r/4 for equal squeezing of the ancilla
modes. In this case, an infinitely x-squeezed input state
would lead to excellent intra-triplet x-correlations; an in-
finitely p-squeezed input state, favorable for good inter-
triplet p-correlations, leads to vanishing intra-triplet x-
correlations. With a vacuum input state, as used in the
experiment, we have both types of quantum correlations
for nonzero squeezing of the ancilla modes. Similar quan-
tum correlations also exist for the combinations

x̂4 + x̂5 + x̂6 = x̂in − 1√
2
x̂

(0)
an1e

−r1 +

√
3
2
x̂

(0)
an4e

−r4 ,

x̂7 + x̂8 + x̂9 = x̂in − 1√
2
x̂

(0)
an1e

−r1 −
√

3
2
x̂

(0)
an4e

−r4 ,

p̂2 + p̂5 + p̂8 = p̂in − 1√
6
p̂
(0)
an2e

−r2 +

√
1
2
p̂
(0)
an3e

−r3

− 1√
6
p̂
(0)
an5e

−r5 +

√
1
2
p̂
(0)
an6e

−r6

− 1√
6
p̂
(0)
an7e

−r7 +

√
1
2
p̂
(0)
an8e

−r8 ,

p̂3 + p̂6 + p̂9 = p̂in − 1√
6
p̂
(0)
an2e

−r2 −
√

1
2
p̂
(0)
an3e

−r3

− 1√
6
p̂
(0)
an5e

−r5 −
√

1
2
p̂
(0)
an6e

−r6

− 1√
6
p̂
(0)
an7e

−r7 −
√

1
2
p̂
(0)
an8e

−r8 .

(E3)

The total set of quadrature quantum correlations can
be sufficient for a fully inseparable nine-party entangled
state. The corresponding nine-party entanglement wit-
nesses lead to the known criteria for multi-party insepa-
rability of continuous-variable states1. In order to verify
three-party inseparability within each triplet ρ̂123, ρ̂456,

and ρ̂789, we have, for ρ̂123,

⟨[∆(p̂1 − p̂2)]2⟩+ ⟨[∆(x̂1 + x̂2 + g1a x̂3)]2⟩ < 1,
⟨[∆(p̂2 − p̂3)]2⟩+ ⟨[∆(g1b x̂1 + x̂2 + x̂3)]2⟩ < 1,

(E4)

for ρ̂456,

⟨[∆(p̂4 − p̂5)]2⟩+ ⟨[∆(x̂4 + x̂5 + g2a x̂6)]2⟩ < 1,
⟨[∆(p̂5 − p̂6)]2⟩+ ⟨[∆(g2b x̂4 + x̂5 + x̂6)]2⟩ < 1,

(E5)

for ρ̂789,

⟨[∆(p̂7 − p̂8)]2⟩+ ⟨[∆(x̂7 + x̂8 + g3a x̂9)]2⟩ < 1,
⟨[∆(p̂8 − p̂9)]2⟩+ ⟨[∆(g3b x̂7 + x̂8 + x̂9)]2⟩ < 1.

(E6)

The “gains” g1a, etc., can be used to optimize these
conditions. In order to rule out a state of the form∑

i ηiρ̂
(i)
123 ⊗ ρ̂

(i)
456 ⊗ ρ̂

(i)
789 ≡

∑
i ηiρ̂

(i)
a ⊗ ρ̂

(i)
b ⊗ ρ̂

(i)
c , we need

further criteria, for example,

⟨[∆(p̂1 + p̂4 + g11 p̂7)]2⟩ (E7)
+⟨[∆(x̂1 + g12 x̂2 + g13 x̂3 − x̂4 − g14 x̂5 − g15 x̂6)]2⟩ < 1,

⟨[∆(g21 p̂1 + p̂4 + p̂7)]2⟩ (E8)
+⟨[∆(x̂4 + g22 x̂5 + g23 x̂6 − x̂7 − g24 x̂8 − g25 x̂9)]2⟩ < 1,

which describe the inter-triplet correlations. Equa-
tion (E7) rules out the forms

∑
i ηiρ̂

(i)
a ⊗ ρ̂

(i)
bc and∑

i ηiρ̂
(i)
b ⊗ ρ̂

(i)
ac ; eq. (E8) rules out the forms

∑
i ηiρ̂

(i)
c ⊗

ρ̂
(i)
ab and

∑
i ηiρ̂

(i)
b ⊗ ρ̂

(i)
ac . Thus, any form of separability

between the triplets a, b, and c can be ruled out. The
inter-triplet conditions can be understood as GHZ-type
correlations of modes 1, 4, and 7 after LOCC operations;
namely, x-measurements of modes 2, 3, 5, 6, 8, 9 and the
corresponding displacements of modes 1, 4, and 7.
In the experiment, it was verified that in any of the

nine cases of an error in any one of the nine channels,
the classical cutoff (zero-squeezing limit) was exceeded.
This confirms that all 8 ancilla modes are in a squeezed
state (see Table 1 and Fig.2), as the quadrature noise
of every ancilla mode contributes to the excess noise of
the corrected signal for some of the detector results used
for feedforward. This squeezing translates into nonclas-
sical correlations for all combinations in eqs. (A2), (E2),
and (E3) (with a vacuum input state). The set of quadra-
ture combinations corresponds to the “unit-gain” version
of the entanglement witnesses in eqs. (E4), (E5), (E6),
(E7), and (E8). In order to satisfy the witness inequali-
ties, in particular, for small squeezing values (as those of
roughly 1 dB in the experiment), non-unit gain must be
chosen. Although these non-unit gain combinations have
not been measured directly in the quantum error correc-
tion experiment, the nonclassicality in all the unit-gain
combinations may be interpreted as an indirect confir-
mation of the presence of nine-party entanglement.
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APPENDIX F: APPLICABILITY OF
CONTINUOUS-VARIABLE CODES

The continuous-variable nine-mode code corrects an
arbitrary error occurring in any one of the nine channels.
Similar to the qubit case, for realistic scenarios, we should
consider imperfect transmissions in every channel under
the reasonable assumption of errors acting independently
in all the channels. The performance of the code can then
be evaluated by comparing the transfer fidelities for the
encoded scheme with a direct transmission of the signal
state through a single noisy channel2.
Using the example of a 3-wavepacket code, we shall

demonstrate that for certain stochastic error models,
the continuous-variable code leads to a dramatic im-
provement of fidelity even when the errors occur in
every channel3. In this case, the errors should cor-
respond to x-displacements or any errors decompos-
able into x-displacements (including non-Gaussian “x-
errors”). A code for correcting arbitrary errors includ-
ing non-commuting x and p-errors is obtainable, for in-
stance, by concatenating the 3-mode code into a 9-mode
code, as implemented in the current experiment. The ap-
propriate error models are reminiscent of the most typ-
ical qubit channels such as bit-flip and phase-flip chan-
nels. In the continuous-variable regime, these types of
stochastic errors would map a Gaussian signal state into
a non-Gaussian state represented by a discrete, incoher-
ent mixture of the input state with a Gaussian (or even
a non-Gaussian) state,

Wout(x, p) = (1− γ)Win + γWerror . (F1)

Here, the input state described by the Wigner function
Win is transformed into a new state Werror with prob-
ability γ; it remains unchanged with probability 1 − γ.
A special case of the above channel model is an erasure
channel4. The generalized erasure model here may find
applications in free-space communication with fluctuat-
ing losses and beam point jitter effects5–7.
As an example, we will consider a coherent-state input,

|ᾱ1⟩ = |x̄1 + ip̄1⟩, described by the Wigner function,

Win(x1, p1) =
2
π
exp[−2(x1 − x̄1)2 − 2(p1 − p̄1)2] . (F2)

Moreover, we assume that the effect of the error is just
an x-displacement by x̄2 such that

Werror(x1, p1) = Win(x1 − x̄2, p1) . (F3)

The sign of the displacement error shall be fixed and
known, x̄2 > 0.
Now in order to encode the input state, we use two

ancilla modes, each in a single-mode x-squeezed vacuum
state, represented by

Wanc(xk, pk) =
2
π
exp[−2e+2rx2

k − 2e−2rp2
k] , (F4)

with squeezing parameter r and k = 2, 3. The total three-
mode state before encoding is

W (α1, α2, α3) = Win(x1, p1)Wanc(x2, p2)Wanc(x3, p3),
(F5)

with αj = xj + ipj , j = 1, 2, 3. The encoding may
be achieved by applying a “tritter”, i.e., a sequence of
two beam splitters with transmittances 1 : 2 and 1 : 1.
The total, encoded state will be an entangled three-mode
Gaussian state with Wigner function,

Wenc(α1, α2, α3) =
(
2
π

)3

(F6)

× exp
{
− 2

[ 1√
3

(
x1 + x2 + x3

)
− x̄1

]2

−2
3
e−2r

[
(p1 − p2)2 + (p2 − p3)2 + (p1 − p3)2

]

−2
[ 1√

3

(
p1 + p2 + p3

)
− p̄1

]2

−2
3
e+2r

[
(x1 − x2)2 + (x2 − x3)2 + (x1 − x3)2

]}
.

Now we send the three modes through individual chan-
nels where each channel acts independently upon every
mode as described by Eq. (F1) with Werror corresponding
to an x-displacement by x̄2. As a result, the three noisy
channels will turn the encoded state into the following
three-mode state,

W ′
enc(α1, α2, α3) (F7)

= (1− γ)3Wenc(α1, α2, α3)
+γ(1− γ)2Wenc(x1 − x̄2 + ip1, α2, α3)
+γ(1− γ)2Wenc(α1, x2 − x̄2 + ip2, α3)
+γ(1− γ)2Wenc(α1, α2, x3 − x̄2 + ip3)
+γ2(1− γ)Wenc(x1 − x̄2 + ip1, x2 − x̄2 + ip2, α3)
+γ2(1− γ)Wenc(x1 − x̄2 + ip1, α2, x3 − x̄2 + ip3)
+γ2(1− γ)Wenc(α1, x2 − x̄2 + ip2, x3 − x̄2 + ip3)
+γ3Wenc(x1 − x̄2 + ip1, x2 − x̄2 + ip2, x3 − x̄2 + ip3).

The decoding procedure now simply means inverting
the tritter, which results in

Wdec(α1, α2, α3) (F8)
= (1− γ)3Win(x1, p1)Wanc(x2, p2)Wanc(x3, p3)
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)
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6
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)
Wanc(x3 −
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(
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3
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)
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(
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6
x̄2, p2

)
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2
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+γ2(1− γ)Win

(
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3
x̄2, p1
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×Wanc

(
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3
x̄2, p2

)
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(
x1 −
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)

×Wanc (x2, p2)Wanc(x3, p3).

By looking at this state, we can easily see that x-
homodyne detections of the ancilla modes 2 and 3
(the syndrome measurements) will almost unambigu-
ously identify in which channel a displacement error oc-
curred and how many modes were subject to a displace-
ment error. The only ambiguity comes from the case
of an error occurring in every channel at the same time
(with probability γ3), which is indistinguishable from the
case where no error at all happens. In both cases, the two
ancilla modes are transformed via decoding back into the
two initial single-mode squeezed vacuum states. All the
other cases, however, can be identified, provided the ini-
tial squeezing r is sufficiently large such that the displace-
ments ∝ x̄2, originating from the errors, can be resolved
in the ancilla states.
The recovery operation, i.e., the final phase-space dis-

placement of mode 1 depends on the syndrome mea-
surement results for modes 2 and 3 which are consistent
with either undisplaced squeezed vacuum states (‘0’) or
squeezed vacua displaced in either ‘+’ or ‘−’ x-direction.
The syndrome results for modes 2 and 3 corresponding
to the eight possibilities for the errors occurring in the
three channels are (0,0) for no error at all, (+,0) for an
error in channel 1, (−,+) for an error in channel 2, (−,−)
for an error in channel 3, (+,+) for errors in channels 1
and 2, (+,−) for errors in channels 1 and 3, (−,0) for
errors in channels 2 and 3, and, again, (0,0) for errors
occurring in all three channels.
In the limit of infinite squeezing of the ancilla modes,

the ensemble output state of mode 1 (upon averaging over
all syndrome measurement results x2 and x3 including
suitable feedforward operations) can be described as

(1− γ3)Win(x1, p1) + γ3Win

(
x1 −

√
3x̄2, p1

)
. (F9)

This output state emerges, because in almost all cases,
the feedforward operations turn mode 1 back into the
initial state (in the case of finite squeezing, only up to
some Gaussian-distributed excess noise depending on the
degree of squeezing used for the encoding). The only case
for which no correction occurs is when errors appear in
every channel at the same time, at a probability of γ3.
In this case, the initial state remains uncorrected, with
an x-displacement error of

√
3x̄2.

We see that a fidelity of 1−γ3 can be achieved, assum-
ing x̄2 ≫ 1 (for smaller x̄2, the fidelity would even exceed
1 − γ3, but those smaller x̄2 may be too hard to detect
at the syndrome extraction, depending on the degree of
squeezing, see below). Note that this result implies that
the encoded scheme performs better than the unencoded
scheme (direct transmission with Fdirect = 1− γ) for any
0 < γ < 1. In other words, by employing the quantum
error correction protocol, the error probability can be
reduced from γ to γ3. The continuous-variable scheme
in this model is more efficient than the analogous qubit
repetition code and it does not require error probabilities
γ < 1/2 as for the case of qubit bit-flip errors2.
We may consider two different regimes for the error dis-

placements x̄2. First, the regime e−2r/4 < x̄2 < 1/4, cor-
responding to small displacements below the shot noise
limit; these can only be resolved provided the squeezing
is large enough. In the limit of infinite squeezing r → ∞,
arbitrarily small shifts can be detected and perfectly cor-
rected (with zero excess noise in the output states corre-
sponding to unit fidelity).
Secondly, the regime x̄2 ≫ 1. For these large shifts,

even zero squeezing in the ancilla modes (i.e., vacuum
ancilla states) is sufficient for error identification. Even
with r = 0, the syndrome measurements still provide
enough information on the location of the error and, to
some extent, on the size of the error. We may refer to
this kind of scheme as quantum-limited error correction
(QLEC), corresponding to the “classical” cutoff used as
a classical/quantum boundary in the main body of the
paper. This classical cutoff depends on the particular
encoding and decoding circuit used; in the experiment,
it is the same circuit as that employed for quantum error
correction (neither of these are necessarily optimal).
QLEC for large shifts x̄2 ≫ 1 (the regime of the ex-

periment) works fairly well. In fact, the fidelity val-
ues without QLEC drop to near-zero fidelities, as mea-
sured in the experiment, F < 0.007 ± 0.001. Experi-
mentally, this QLEC is a highly nontrivial task and it
is needed to achieve reasonable transfer fidelities (this
is similar to the classical/quantum fidelity benchmarks
for continuous-variable teleportation which are not near
zero, but rather at values such as 1/2 with coherent in-
put states8,9). Nonetheless, the QLEC scheme results in
excess noise for the output state coming from the feedfor-
ward operations based on the fluctuating syndrome mea-
surement results. By employing squeezed-state ancilla
modes, this excess noise can be reduced (down to zero
for infinite squeezing). In this case, the scheme operates
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surement results for modes 2 and 3 which are consistent
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The syndrome results for modes 2 and 3 corresponding
to the eight possibilities for the errors occurring in the
three channels are (0,0) for no error at all, (+,0) for an
error in channel 1, (−,+) for an error in channel 2, (−,−)
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initial state (in the case of finite squeezing, only up to
some Gaussian-distributed excess noise depending on the
degree of squeezing used for the encoding). The only case
for which no correction occurs is when errors appear in
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In this case, the initial state remains uncorrected, with
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3x̄2.

We see that a fidelity of 1−γ3 can be achieved, assum-
ing x̄2 ≫ 1 (for smaller x̄2, the fidelity would even exceed
1 − γ3, but those smaller x̄2 may be too hard to detect
at the syndrome extraction, depending on the degree of
squeezing, see below). Note that this result implies that
the encoded scheme performs better than the unencoded
scheme (direct transmission with Fdirect = 1− γ) for any
0 < γ < 1. In other words, by employing the quantum
error correction protocol, the error probability can be
reduced from γ to γ3. The continuous-variable scheme
in this model is more efficient than the analogous qubit
repetition code and it does not require error probabilities
γ < 1/2 as for the case of qubit bit-flip errors2.
We may consider two different regimes for the error dis-
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responding to small displacements below the shot noise
limit; these can only be resolved provided the squeezing
is large enough. In the limit of infinite squeezing r → ∞,
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rected (with zero excess noise in the output states corre-
sponding to unit fidelity).
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ancilla states) is sufficient for error identification. Even
with r = 0, the syndrome measurements still provide
enough information on the location of the error and, to
some extent, on the size of the error. We may refer to
this kind of scheme as quantum-limited error correction
(QLEC), corresponding to the “classical” cutoff used as
a classical/quantum boundary in the main body of the
paper. This classical cutoff depends on the particular
encoding and decoding circuit used; in the experiment,
it is the same circuit as that employed for quantum error
correction (neither of these are necessarily optimal).
QLEC for large shifts x̄2 ≫ 1 (the regime of the ex-

periment) works fairly well. In fact, the fidelity val-
ues without QLEC drop to near-zero fidelities, as mea-
sured in the experiment, F < 0.007 ± 0.001. Experi-
mentally, this QLEC is a highly nontrivial task and it
is needed to achieve reasonable transfer fidelities (this
is similar to the classical/quantum fidelity benchmarks
for continuous-variable teleportation which are not near
zero, but rather at values such as 1/2 with coherent in-
put states8,9). Nonetheless, the QLEC scheme results in
excess noise for the output state coming from the feedfor-
ward operations based on the fluctuating syndrome mea-
surement results. By employing squeezed-state ancilla
modes, this excess noise can be reduced (down to zero
for infinite squeezing). In this case, the scheme operates
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in the quantum regime. Significantly, in the experiment,
non-commuting errors have been corrected, which means
that QLEC will always result in some excess noise. Al-
though the margin of the demonstrated quantum error

correction (on top of the QLEC) is rather small, the ex-
perimental data provide clear evidence that QLEC has
been outperformed by the quantum scheme.

1 P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315
(2003).

2 M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, 2000).

3 P. van Loock, Los Alamos arXiv, quant-ph/0811.3616
(2008).

4 J. Niset et al., Phys. Rev. Lett. 101, 130503 (2008).

5 J. Heersink et al., Phys. Rev. Lett. 96, 235601 (2006).
6 R. Dong et al., Nature Physics 4, 919-923 (2008).
7 B. Hage et al., Nature Physics 4, 915-918 (2008).
8 S. L. Braunstein et al., Phys. Rev. A 64, 022321 (2001).
9 K. Hammerer et al., Phys. Rev. Lett. 94, 150503 (2005).


