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Abstract

Given a single copy of an unknown quantum state, it is impossible in principle to identify it. The
mostly inaccessible information carried by the state is termed quantum information. In contrast to
classical information, it cannot be copied or cloned. This concept provides a theoretical underpinning
for all aspects of quantum communication and quantum computation. Here we use it to consider quan-
tum teleportation.

1. Introduction

During this symposium we have heard many things about Heisenberg’s life as a brilliant
physicist, including his struggles with both scientific and moral questions. While preparing
to give this talk I looked at information about his life and found a very surprising fact: he
nearly failed his final Ph.D. orals. The difficulty arose when Wien, who was on his examin-
ing committee, moved from mathematical questions to those on experimental physics. Hei-
senberg was unable to derive the resolving power of such devices as microscopes and tele-
scopes. In the end, Heisenberg received a III, equivalent perhaps to a C, as the overall
grade for his doctorate. This was in 1923.

It is perhaps ironic then, that this young man had within 4 years understood the limits to
resolution better than anyone else of his time. The Heisenberg microscope gedanken experi-
ment helped lay the foundations of quantum mechanics and the uncertainty principle. This
principle has re-emerged as a corner stone of our understanding of the limitations of quan-
tum information processing. Here we will consider its role in our understanding of quantum
teleportation.

2. What’s in a Name

Before we begin we shall discuss the term ‘teleportation’ which has only recently appeared
within the scientific literature [1].

Having seen sufficient science-fiction movies in my time, I can make an initial stab at
defining teleportation as:

Some kind of instantaneous ‘disembodied’ transport.
Now, this is inconsistent with relativity, so let’s immediately change our definition to
Some kind of ‘disembodied’ transport.

The term disembodied requires some explanation, however, we shall prefer to be vague
about it: The object moves from one place to another without manifestly appearing within
the intervening space.
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In the classical day-to-day world we already have many examples which could fit this
definition: a fax machine transports an image as electricity; a telephone transporting sound
waves; overhead projectors, etc. Should these really count as teleportation? After all they
are all really copying processes. They leave the image, the sound, what-have-you behind
and send the copy across space in some disembodied way. An object is scanned, the infor-
mation is transmitted in a different form and a copy is reconstructed.

Let us keep away from philosophical questions at the moment. However, we note that
the above procedure has intrinsic limitations. It will not work, in general, for quantum
systems. Consider for example a single-photon wavepacket prepared in a state of linear
polarization down to a 1° accuracy. This means that the preparation procedure requires
almost 8 bits worth of polarization orientation information.

Any attempt at measuring this orientation, will yield at most one bit’s worth of informa-
tion. For example, simply running this photon through a polarization-dependent beamsplit-
ter will cause the photon to be transmitted or reflected. Yielding at most one bit. This
demonstrates the principle, that in general, it is impossible to accurately determine an un-
known quantum state. This is essentially a general statement of the Heisenberg uncertainty
principle for quantum systems. A consequence of this is that it is likewise impossible to
perfectly copy an unknown quantum state. For if a device were capable of perfect copying,
we could apply it many times to our original system, yielding a vast ensemble. Then with
this ensemble we could then measure the system’s state to any desired accuracy.

This latter form of the quantum limitation is today called the no-cloning theorem [2] and
embodies many of the key features of Heisenberg’s original principle.

3. Teleportation Protocol

If no-cloning appears to forbid a copying mechanism for performing disembodied transport,
what can teleportation of an unknown quantum state be? Clearly, it cannot be a copying
procedure. Nonetheless, the aim of quantum teleportation is to:

move an unknown quantum state across a classical communication channel.

Let us call the sender Alice and the receiver Bob. There is no in-principle restriction to the
eavesdropping on a classical communication channel (classical information may be freely
copied). So it would seem that another agent Bob’ could receive a copy of Alice’s message
and follow the same protocol as the real Bob. His actions would produce a copy of Alice’s
state! However, this cannot be, as it would violate the no-cloning theorem.

To get around this problem quantum teleportation, distinguishes the ‘real Bob’ as special,
since only he shares one-half of a maximally entangled state with Alice, whose half is
somehow used in her part of the protocol. Even if another agent were to share such a state
with her, it would not participate in her actions. This ‘quantum link’ between Alice and
Bob is sufficient to get around the limitations placed on transport through a classical com-
munication channel.

To see how this works, we shall give the mathematics here only for the teleportation of a
state from a two-dimensional Hilbert space. A key feature which allows the protocol to
work is that there is, in general, a basis of maximally entangled states
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Let us label the incoming state given to Alice as |w);, and suppose that Alice and Bob
share between themselves the first of these entangled states. The total state would then be
described as

|P)inag = [W)in @ [Entr), p - (2)

Since Egs. (1) describe a complete set for a four-dimensional Hilbert space, we may
decompose the states in Alice’s hand. Formally we have

4
‘(p in,A,B — = Z |Entj>in,A ® Uj |W>B ’ (3)

where U; are fixed unitary operators on a two- dimensional Hilbert space suitably chosen
for this decomposmon to hold. It is clear from the linearity of this equation that the U;
cannot depend on the state |) itself.

Let us now suppose that Alice makes a measurement in this basis identifying her result
by the associated subscripts jo = 1, 2, 3, 4. Conditioned on knowing this value the best
description of the state remaining in Bob’s hand is then given by

= U lw)g - (4)

If Alice now communicates this identification j, to Bob (requiring two bits of classical
communication) then Bob knows which basis state Alice found. Based on this knowledge,
he then operates U;L on his state, yielding

— ULU, [y)g = |05 (5)

At this stage the protocol is complete and the state has been transferred between Alice
and Bob. This procedure utilizes two channels: one potentially pre-existing channel of
shared quantum entanglement; and one of classical communication used for Alice to trans-
mit her measurement result to Bob. Neither by themselves contains any information about
the original state. This form of transport would seem qualify as disembodied. Further, at no
stage did we produce a copy of the original, nor has either Alice or Bob discovered any
details about the state they participated in transporting.

4. Continuous Quantum Variables

Here we shall discuss one particular implementation of quantum teleportation based, not on
states from a finite-dimensional Hilbert space, but on coherent and squeezed states of the
electromagnetic field. An idealized version was first discussed by Vaidman [3]. This as-
sumed maximally entangled states which in infinite Hilbert space dimensions corresponds
to infinite energy states. Here we discuss a realizable scheme as originated by Braunstein
and Kimble [4].

Optical entanglement is easily created. It turns out that almost any pure states (excluding
coherent states) combined at a beamsplitter will yield entanglement. The simplest choice is
of a pair of squeezed states with opposite squeezing, as shown in Fig. 1.

In this case, a pair of so-called twin beams are generated. To detect this kind of entangle-
ment, one simply reverses the procedure: twin beams of this sort recombined at a beams-
plitter resolve into unentangled squeezed states. The identity of the specific twin-beam state
may be determined by measuring the ‘displacement’ of the position-squeezed beam and the
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Fig. 1. Twin-beam entanglement created by
combining squeezed states on a beamsplitter.
Entanglement is ‘resolved’ into unentangled
states by the time-reversed procedure.

‘kick’ of the momentum squeezed one. As we saw in the previous section the ability to
create and detect entanglement are the key requirements in implementing teleportation. This
also holds for teleportation in infinite dimensional Hilbert spaces. More details about the
scheme for continuous quantum variables may be found in Ref. [4].

5. Criteria and Evidence for Teleporting Unknown Coherent States

In any realistic experiment we will not be able to consider teleporting completely unknown
states. We will have some partial information about them. For example, we may wish to
consider the teleportation of a limited class of easily constructed states, such as coherent
states with a limited peak amplitude [5].

What criteria shall we test in such a circumstance? The limited set of states may be
described as an alphabet of states {|w,)} with some associated probabilities P, for
their selection in any given run. If Alice and Bob follow a teleportation protocol, Bob
hopes to have recreated the original state |y,) during each run. However, in a real
experiment he will only achieve an approximate (probably mixed) state p, compared to
the original.

The average overlap probability

F:fdapa<l//a|pa|t//a>> (6)

will be a measure of the performance of the teleportation. It is called the average fidelity of
the teleportation.

The criteria we consider requires that this mean fidelity be better than Alice and Bob
could achieve using a classical communication channel alone. Such a performance cannot
be reproduced by a conventional copy-and-send strategy. Demonstrating a quantum state
transfer protocol with mean fidelity better than could be achieved without entanglement
guarantees that a quantum channel has been utilized. In teleportation protocols the only
quantum channel is due to the entanglement.

For an alphabet of coherent states it can be shown that no more than a 50% mean fide-
lity is possible in the absence of shared entanglement [5]. This criteria assumes that Alice
and Bob know only the form of the alphabet, but not the actual state being transmitted
during each run. It makes no other assumption about their actions provided only that they
communicate via a classical communication channel.
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Fig. 2. Data from Ref. [6]. The lower plot shows the mean fidelity achievable in the absence of shared
entanglement. Even at optimal feed-forward gain it never exceeds 50%. The upper plot shows the
mean fidelity with twin-beam entanglement shared between sending and receiving stations.

Furusawa et al. implemented just such a protocol and criteria in their experimental de-
monstration of teleportation [6]. Data from that experiment is shown in Fig. 2. The bound
of 50% mean fidelity was beaten only when sender and receiver had access to shared
entanglement.

6. Conclusion

Quantum teleportation is a wholly new protocol for the transmission of quantum states. No
experiments so far have demonstrated all of the features which teleportation has to offer. A
preliminary list of these features reads:

Quantum transport through a classical channel,

Entanglement assisted transport of a quantum state,

Many bits can be ‘sent’ via few bits,

Can teleport to an unknown location,

Can teleport half of an entangled state,

Can teleport an entire space or filter a subspace.

Ultimately, which features are most important to achieve will depend on the applications
to which teleportation is put. After all these years of our studying quantum mechanics, it
still has beautiful surprises for us. There is no uncertainty about that.
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