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Abstract
A time-dependent dielectric cmedium is used to model a time-varying
beam-splitter inside a cavity. The time-varying boundary conditions
smoothly evolve from a highly transmitting to a highly reflecting
beam-splitter. These approximately correspond to a transformation from a
single cavity to a pair of cavities. Quantum field-theoretic calculations show
that such a smooth change yields non-singular evolution of the field.
However, it predicts a production of photons up to frequencies comparable
to the rate of change of the transition. We find that a time-varying
beam-splitter operating at optical frequencies would produce an observable
number of photons.
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In this paper we deal with a model problem in a second-
quantized field theory: an ideal laser cavity with a variable
reflectivity mirror at its centre. Such a partial mirror is
called a beam-splitter. Absorption is neglected. We are
interested in changing the reflectivity of the central ‘partition’
in order to study the evolution from a single cavity to a pair
of disconnected cavities. The outer mirrors remain perfectly
reflecting.

We start by reviewing the quantum theory of static beam-
splitters and give a heuristic explanation for why time-varying
beam-splitters might be expected to yield photon production.
Then we consider a field-theoretic formulation of a time-
varying beam-splitter.

Static beam-splitters

Earlier treatments of the quantized time-stationary beam-
splitter [1–5] all rely on the behaviour of the classical, time-
stationary beam-splitter [6]. In this case, the beam-splitter is a
two-input, two-output device that obeys relations like

âout(t) = cos θ âin(t) + eiϕ sin θ b̂in(t)

b̂out(t) = cos θ b̂in(t) − e−iϕ sin θ âin(t),
(1)

where â and b̂ are the annihilation operators of the incoming
and outgoing modes, t denotes time and where the transmission
and reflection amplitude coefficients are cos θ and eiϕ sin θ ,
respectively. One of these papers [4] introduces an inner
product to confirm that the modes are orthogonal in order
to derive the above input–output relations (or so-called

Bogoliubov transformations), though their choice of inner
product appears to be somewhat ad hoc.

In this paper we seek to incorporate dynamics into
the beam-splitter element by allowing its transmission and
reflection coefficients to change in time in some prescribed
manner [7]. We show that the above equations are no longer
sufficient as they stand. One effect of these time-varying
boundary conditions is particle creation.

A heuristic way to see that particle creation might result
from a time-varying beam-splitter is to consider the effect
of a time-varying reflection coefficient on equation (1). The
simplest time-dependence we might add is harmonic

θ(t) = �t.

Decomposing the output modes into their frequency
components, we find two predominant effects: each incoming
frequency ω produces a pair of sidebands at ω ± �; negative
frequency contributions appear when ω < �. The former
effect is the expected sideband modulation from the time-
varying transmission. The latter is a purely quantum effect.
By making the replacement

â(−ω) → â†(ω),

the creation of quanta is expected for frequencies up to
the beam-splitter modulation frequency. We confirm this
qualitative behaviour for our model of a time-varying beam-
splitter.
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Time-varying beam-splitter

There are numerous ways to construct a variable beam-splitter
in the laboratory. Our model is an infinitely thin slab of
dielectric, for which we assume full control over the dielectric
permittivity. Consider the ‘electromagnetic’ field Lagrangian
density in one spatial dimension:

L = 1

2

[
ε(x, t)

(
∂φ

∂t

)2

−
(

∂φ

∂x

)2
]

,

with boundary conditions φ(x = ±L , t) = 0. Here ε(x, t)
is the time-dependent, inhomogeneous dielectric permittivity
and φ(x, t) is the scalar analogue of the vector potential in one
spatial dimension. For convenience, units were chosen so that
the magnetic permeability and the speed of light are unity.

Several people have studied quantum fields with time-
dependent metrics, boundaries or dielectrics [8–26]. In our
field-theoretic calculations we follow Law’s ‘frozen mode’
formulation [16]. The exact equations of motion are linear:

∂

∂t

(
ε(x, t)

∂φ

∂t

)
− ∂2φ

∂x2
= 0, (2)

with φ(x = ±L , t) = 0. Canonical quantization of
the field φ̂(x, t) proceeds by enforcing the standard equal-time
commutation relations with conjugate momentum π̂(x, t) ≡
ε(x, t) ∂φ̂(x, t)/∂t . At each instant in time the quantum field
φ̂(x, t) can be decomposed into the ‘instantaneous’ modes
satisfying the eigenvalue equation

(
∂2

∂x2
+ ε(x, t)ω2

k (t)

)
U (t)

k (x) = 0,

with U (t)
k (x = ±L) = 0 and the frequencies ωk(t) chosen to

satisfy the instantaneous boundary conditions [16]. The time
t parametrizes the set of mode functions. In accordance with
the Sturm–Liouville theory, let these modes be represented as
a complete orthonormal set for any ‘time’ t , satisfying

∫ L

−L
dx ε(x, t) U (t)

k (x) U (t)
k′ (x) = δkk′ .

Using these instantaneous modes we may define an
instantaneous ‘annihilation operator’

âk ≡
∫ L

−L
dx U (t)

k (x)

×
(√

ωk(t)

2
ε(x, t) φ̂(x, t) +

i√
2ωk(t)

π̂ (x, t)

)
,

which, by virtue of the equal-time commutation relations for
φ̂ and π̂ , satisfies the canonical commutation relations

[âk, â†
k′ ] = δkk′ .

When ε(x, t) is constant in time, these annihilation operators
and their associated instantaneous modes take on the
conventional interpretation.

The equations of motion for these operators may
be derived from the field equation (2) and the above
decomposition, yielding

∂âk

∂t
= −i ωk(t) âk +

1

2

∂ ln ωk(t)

∂t
â†

k

+ 1
2

∑
k′

[(µkk′ + µk′k) â†
k′ + (µkk′ − µk′k) âk′ ], (3)

with

µ jk(t) ≡ −
√

ω j (t)

ωk(t)

∫ L

−L
dx ε(x, t) U (t)

j (x)
∂

∂t
U (t)

k (x),

in agreement with Law’s effective Hamiltonian [16]. It should
be noted that no approximations have been made and that
this represents an exact solution to the equations of motion
equation (2). Finally, the physical occupation number for each
mode is readily accessible whenever dε(x, t)/dt = 0 with

〈n̂k(t)〉 = 〈â†
k (t) âk (t)〉, (4)

in the Heisenberg picture.
To apply these results to our beam-splitter model let

ε(x, t) = 1 + κ(t) δ(x), where κ(t) represents the integrated
permittivity in the thin dielectric slab. The thickness of
the slab is taken to be zero to avoid multiple reflections
from its surfaces. This approximation greatly simplifies our
calculations and allows us to concentrate on the effects of the
time-varying boundary conditions. Because of the symmetry
of our cavity, the instantaneous mode functions Uk(x) may be
written as

un(x) = sin[ωn(L − |x |)]√
L + κ sin2(ωn L)/2

vm(x) = sin(mπx/L)/
√

L,

in terms of the symmetric and antisymmetric modes,
respectively, with

tan(ωn L) = 2

ωnκ
,

following from satisfying the instantaneous boundary
conditions. Since the antisymmetric modes always satisfy the
instantaneous boundary conditions they are not affected by
changes in κ . We henceforth drop them from our discussions.
We shall suppose that the integrated permittivity undergoes a
smooth transition between κ0 and κ1 chosen as

κ(t) ≡




κ0, t � 0

κ0 + (κ1 − κ0) sin2(�t), 0 < t < π/2�

κ1, π/2� � t ,

where � represents the rate of transition. A very similar model
is studied by Crocce et al [26], though with a periodically time-
varying permittivity instead of our idealized model of a shutter
smoothly ‘opening’ or ‘closing.’

Numerical integration of equation (3) and use of
equation (4) yields the mean number of quanta created from the
vacuum by opening or closing the central partition. Figure 1
shows the mean number of quanta per mode created in this
manner for integrated permittivities κ ranging between 0.1 and
10. Five hundred field modes were used for the numerical
integration. We take the (half) cavity size as L = 1 and
calculate 〈n̂m(π/2�)〉 for two frequencies � = 1 and 10.
These plots show that a tenfold increase in the opening or
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Figure 1. Log–log plots of the mean number of quanta created from
vacuum versus mode number (starting arbitrarily with m = 1) for
transitions in the integrated permittivity κ between 0.1 and 10 for
fixed cavity size L = 1. The plots with open circles denote
‘opening’ the central partition with κ0 = 10 and κ1 = 0.1; those
with closed circles denote ‘closing’ it with κ0 = 0.1 and κ1 = 10.
The lower pair of plots was computed for � = 1 and the upper pair
for � = 10.

closing rate roughly corresponds to a tenfold increase in energy
production. It is difficult to extend these numerical calculations
to the limit κ → 0 (opening) because successively more modes
must be included. By contrast, the limit κ → ∞ (closing)
appears to present no special problems.

Yablonovitch [10], Hizhnyakov [13] and Mendonça
et al [25] have investigated the quantum emission in an
infinite medium with a time-dependent refractive index using
Maxwell’s equations. They interpreted this infinite-medium
model as a non-linear optical equivalent of an accelerating
mirror. In their calculations particle creation comes from
the properties of the bulk medium rather than from boundary
conditions. By contrast, we have studied the opposite
limit of an infinitely thin time-varying dielectric. We are
tempted to interpret this as a model of the time-varying
boundary conditions such as one might expect in a time-
varying topology. For these boundary conditions to be
satisfied, a smooth change of the dielectric permittivity must
be imposed; instantaneous changes in the boundary conditions
would result in divergences1 that are directly analogous to those
found in quantum fields propagating on a classical topology
change [27–30]. We have found that smooth time-varying
boundary conditions can produce a finite number of quanta if
the boundary conditions change at the amplitude level.

Fearn et al [31] have considered the sudden replacement
of a cavity mirror by a detector. Their analysis was semi-
classical in that the mirror boundary conditions were treated
heuristically, glueing together the dynamics of a closed cavity
to that of an open cavity without ensuring self-consistent
behaviour of the electromagnetic field in response to such
instantaneous changes. They showed that a detector placed

1 The key point is that an instantaneous change of boundary condition will, in
general, enforce an infinite gradient on the field which will introduce an infinite
energy. For example, suppose we had a smooth field φ(x, t) at time t . If we
were to introduce a perfectly reflecting boundary instantaneously at x = x0
the instantaneous new solution would be φ(x, t)|2�(x − x0) − 1|, where
�(x) is the Heaviside–Lorentz step function. However, the infinite gradient
at x = x0 would introduce an infinite energy via the term (∂φ(x, t)/∂x)2 and
hence result in divergences.

outside the cavity could immediately detect photons if the
cavity had an ‘excited’ atom in it. Their heuristic explanation
for this was that the excited atoms are actually dressed and
that the excitation is shared between atom and cavity mode
which immediately begins propagating away once the cavity is
opened. By comparison to their completely classical treatment
of the field’s time-varying boundary conditions, in our model
removal of a cavity end-mirror on optical timescales could
produce a detectable number of photons even with an initially
empty cavity in vacuum. The sudden removal of a mirror
(which is not possible in our model) might be approximated if
the mirrors are good reflectors only within a finite bandwidth,
implying a natural cut-off.

To conclude, we have studied the quantization of a field-
theoretic model for a time-varying beam-splitter based upon
a time-varying permittivity within a narrow dielectric. We
found that quanta may be generated with frequencies up to the
inverse timescale required to shift between highly transmitting
and highly reflecting limits. An observable number of
photons could be produced if such changes occurred on optical
timescales.
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