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Using the Bloch-Messiah reduction we show that squeezing is an “irreducible” resource which remains
invariant under transformations by linear optical elements. In particular, this gives a decomposition of any
optical circuit with linear input-output relations into a linear multiport interferometer followed by a unique set
of single-mode squeezers and then another multiport interferometer. Using this decomposition we derive a
no-go theorem for creating superpositions of macroscopically distinct states from single-photon detection.
Further, we demonstrate the equivalence between several schemes for randomly creating polarization-
entangled states. Finally, we derive minimal quantum optical circuits for ideal quantum nondemolition cou-
pling of quadrature-phase amplitudes.
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There is still no consensus as to the eventual working
material which will be used by large-scale quantum comput-
ers to store and process quantum information. By contrast,
there seems to be no dispute about using optical or near-
infrared photons for quantum communication. The advan-
tages are obvious: high-speed transmission, weak coupling to
the environment, negligible thermal noise. Some disadvan-
tages include the difficulties in coupling light to light and in
creating suitable input states. Some proposals involve cavity
QED f1–3g. However, to dateall implementations of
quantum-communication protocolssover distances larger
than micrometersd have used only coherent state inputs and
optical components which are no more nonlinear than para-
metric down-converters or photodetectors. Thus, outside
detection, this suggests that near-future quantum-
communication experiments will also involve information
processing which can be described by at most a, possibly
time-dependent, linear mixing of annihilation and creation
operatorsslinear Bogoliubov transformations corresponding
to quadratic interactionsd for optical modes. In this paper we
will demonstrate that for such systemssqueezingf4g forms
an “irreducible” resource which allows us to quantify their
power.

It has been known for some time how to analytically and
numerically calculate the evolution of systems under the ac-
tion of linear Bogoliubov transformationsf5–7g. In quantum
optics, however, and especially in quantum communication,
an explicit Fock space description is important. This is
equivalent to developing a normal-ordered description of the
evolution. The analytic tools for this, however, have been
limited to one or two modes at mostf8g. Here we develop a
tool that can leverage the Campbell-Baker-Hausdorff result
to an arbitrary number of modes, in particular, a tool that will
allow us to predict the strengths and limitations of devices
sand resourcesd. To that end, we would like to formalize our
equations in terms of a universal set of irreducible resources
and a restricted set of operations.

As a first step, we will see that any optical system that is
modeled by linear Bogoliubov transforms can be decom-
posed into strictly “linear” and strictly “nonlinear” compo-
nents. For photonic modes, quantum optics provides a well-
developed correspondence between laboratory components

and theoretical mode couplings. In this correspondence, tra-
ditional optics involves only linear elementssbeam splitters,
mirrors, half-wave plates, etc.d. Mathematically, linear opti-
cal components have Bogoliubov transformations given by

b̂j = o
k

Ujkâk, s1d

whereU is an arbitrary unitary matrix and there is no mixing
of the mode annihilation and creation operators. Any such
unitary U may be explicitly constructed from linear optical
primitive componentsf9g.

By contrast,nonlinear opticalcomponentssin particular
squeezers, parametric amplifiers, and down-convertersd are
used to generate quantum resourcesssqueezed states, en-
tangled states, etc.d. These nonlinear components may pro-
duce alinear mixing between annihilation and creation op-
erators when some pumping field or fields are strong enough
that their quantum fluctuations and pump depletion may be
neglectedsthe so-called parametric approximationd. It is this
regime of linear transformations onsphotonicd modes that is
of interest to us. Without attempting to be exhaustive we
shall explicitly label three types of nonlinear optical ele-
ments which yield linear Bogoliubov transformations.

SqueezerssSd. These are single-mode down-converters
salso known as parametric amplifiersd and may be described
by an interaction Hamiltonian of the form

Ĥint = ir sâ1
†2 − â1

2d/2; s2d

here r is the squeezing parameter and we drop extraneous
phases from our descriptions without loss of generality.

Two-mode down-converterssD2d are described by

Ĥint ~ isâ1
†â2

† − â1â2d. s3d

(Entangling) four-mode down-converterssE4d are de-
scribed by

Ĥint ~ isâ1
†â2

† + â3
†â4

† − â1â2 − â3â4d. s4d

These latter devices may be thought of asentanglingdown-
converters if, for example, the evensoddd numbered modes
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represent differing polarization states for a mode heading left
srightd.

We are now in a position to describe the reduction of
linear Bogoliubov transformations. This reduction is given
by the so-called Bloch-Messiah theorem for bosonssa formal
extension of the original result for fermions inf10g; see the
Appendix for a compact proofd, which is as follows.

Theorem (Bloch-Messiah reduction). For a general linear
unitary Bogoliubov transformation of the form

b̂j = o
k

sAjkâk + Bjkâk
†d + b j , s5d

whereâj ,b̂j are bosonic annihilation operators, the matrices
A andB may be decomposed into a pair of unitary matrices
U andV and a pair of non-negative diagonal matricesAD and
BD satisfying

AD
2 = BD

2 + 1, s6d

with 1 the identity matrix, by

A = UADV†, B = UBDVT. s7d

Corollary. For optical modes, Bloch-Messiah reduction
says that the general form of multimode evolution with linear
Bogoliubov transformations may be decomposed into a mul-
tiport linear interferometer, followed by the parallel applica-
tion of a set of single-mode squeezers followed by yet an-
other multiport linear interferometerf11g. This reduction is
illustrated in Fig. 1.

One common application for down-converters is as
sources of interesting quantum states. We shall use Bloch-
Messiah reduction to tell us something about how versatile
such devices may be. The simplest way of operating such a
source is unconditionally, for which we state the following
result.

Theorem. Given initial vacuum states, an arbitrarily com-
plicated combination of linear multiport interferometers,
down-converters, squeezers, etc., will deterministically gen-
erate only Gaussian states with normal ordered form

ucoutl ~ expS1

2o
jk

Bjkb̂j
†b̂k

†Du0l, s8d

where without loss of generalityBjk may be chosen to be

complex symmetric andb̂j
† are the outgoing mode creation

operators.
Proof. Consider such a combination of components acting

on the vacuum. By Bloch-Messiah reductionssee Fig. 1d the
initial linear multiport interferometer described byV† pre-
serves the vacuum state, so only the later components have
an effect. Since the individual single-mode squeezers have
evolution operators which may be trivially normally ordered
we may immediately write out the general form for the out-
going state as shown in Eq.s8d. sNote that this result would
be nontrivial using traditional techniques.d

There are at least two other modes of state generation
which might be considered of interest.

Conditional state generationoccurs where the required
state leaves some part of the apparatus whenever a suitable
sequence of photodetection events is found in another part.
For example, a weakly coupled two-mode down-converter
s3d can make a single-photon state to a good approximation
in either of the two modesconditionedon a single-photon
count in the other.

Random state generationoccurs where the required state
is “polluted” by contributions from the vacuum state. In this
case, the state may be inferred by destructive photodetection,
but then it cannot leave the apparatus. For example, a weakly
coupled four-mode down-converters4d can make
polarization-entangled statesrandomly sin the sense given
aboved.

We see from these examples that the “cheap” nonlinearity
introduced by particle detection can increase the versatility
of linear Bogoliubov transformations. However, there still
appear to be limitations.

Theorem (no-go for macrosuperpositions). Detection of a
single photon in one mode and no photons in any number of
other modes cannotconditionally create superpositions of
macroscopically distinct states given an initial vacuum state
and using an arbitrarily complicated combination of linear
multiport interferometers, down-converters, squeezers, etc.
sall described by quadratic interactionsd.

Proof. Consider such a combination of components acting
on the vacuum prior to detection. The above theorem gives
the form Eq.s8d of the outgoing stateucoutl. Suppose now a

single photon is detected in some modeb̂, and vacuum in
several others, the conditioned state is

uccondl ~ detk0ub̂,ucoutl ~ o
m

8B,mb̂m
†

detk0ucout, s9d

where u0ldet is the vacuum state for the subset of detected
modes and the sum runs only over nondetected modes. It
is easy to see thatdetk0ucoutl is a Gaussian state on the
remaining modes, so the conditionally created state from
single-photon detection is seen to be a sum of branches
which differ by the placement of only a single photon in
one mode or another. j

Remark. Large-amplitude coherent states are “macro-
scopic superpositions” only in the sense that they are super-

FIG. 1. An arbitrarily complicated combination of linear multi-
port interferometers, squeezers, down-converters, etc.sS, D2, E4,
etc.d. Each component describable by a quadratic interaction may
be decomposed by Bloch-Messiah reduction into a linear multiport
described byV†, a parallel set of single-mode squeezerssSd, and a
second linear multiportU.
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positions of macroscopic statessalthough these states are not
macroscopically distinguishabled. Thus, we have given a
no-go theorem against creating so-called Schrödinger cat
states for any such scheme without regard to the specific
details of any particular implementation. A consequence of
this result is thatentanglementmay not be “amplified” by,
say, injecting microscopic superpositions into strongly
pumped down-converters as has been suggested bysthe title
ofd Ref. f12g sthough obviously superposition states may be
sent through an amplifierf13gd. A detailed analysis of Ref.
f12g supports our more general result in Eq.s9d f14g.

The Bloch-Messiah reduction theorem teaches us some
important lessons about the interconvertibility of different
kinds of sources. For example, we find that a single squeezed
state is an irreducible resource which cannot be made from
any number of lesser squeezed states and linear optics. Simi-
larly, if some device requires some given number of squeez-
ers in Bloch-Messiah reduced form then fewer squeezers
plus linear optics will never suffice for the device’s construc-
tion. Let us use these observations to relate the three types of
down-convertersS, D2, andE4.

A nonentangling two-mode down-convertersD2d with
coupling s3d requires two squeezers in reduced form as is
illustrated in Fig. 2. For weak coupling this device is a
source of random photon pairs generated into distinct modes.
The Bloch-Messiah reduction into two squeezers and a 50:50
beam-splitter gives us a more sophisticated understanding of
the Hong-Ou-Mandel interferometerf15g. Away from the
weak-coupling limit we retrieve the twin-beam scheme for
making two-mode squeezed states from a pair of indepen-
dently squeezed statesf16g. Bloch-Messiah reduction neatly
formalizes these multiphoton interference phenomena.

Similarly, Bloch-Messiah reduction applied to the entan-
gling four-mode down-convertersE4d of Eq. s4d shows that
four squeezers are required in reduced form. Thus, a random
polarization-entangled state cannot be formed from asingle
pass through a single nonentangling down-converterfD2, Eq.
s3dg. Nonetheless, it may be made easily enough with two
such devicesf17g. In Fig. 3 we give just such an equivalence.
Curiously, this construction produces entanglement without
erasing the which-way information about the photons. It
should be noted that this scheme is very differentsin terms of
the irreducible resources usedd than the entanglement swap-
ping scheme of Zukowskiet al. f18g which starts with a pair
of entangling down-converters.

As a final application for the Bloch-Messiah reduction
theorem we consider constructing optimal optical circuits us-
ing as little squeezing as possible. Consider the ideal quan-
tum nondemolitionsQNDd coupling between a pair of opti-
cal quadrature-phase amplitudes

b̂1 = â1 −
1

2
â2 +

1

2
â2

†,

b̂2 =
1

2
â1 + â2 +

1

2
â1

†. s10d

The relevant decomposition is given by

A = Ssinu − i cosu

cosu i sinu
D1

Î5

2
0

0
Î5

2
2Scosu − i sinu

sinu i cosu
D†

,

B = Ssinu − i cosu

cosu i sinu
D1

1

2
0

0
1

2
2Scosu − i sinu

sinu i cosu
DT

,

s11d

where u= 1
2sin−1s2/Î5d.31.72°. The circuit consists of a

pair of squeezers with equal squeezing parameters ofr
=lnfs1+Î5d /2g scorresponding to roughly 4.18 dBd and a
pair of unequal unbalanced beam splitters with energy trans-
mission coefficients of 27.64% and 72.36%.

In fact, this circuit is equivalent to one derived by Yurke
f19g; however, Bloch-Messiah reduction guarantees its opti-
mality. We can improve on it further by noting that the
singular-value eigenvalues in Eq.s11d are degenerate and so
the decomposition is not unique; a construction with much
simpler 50:50 beam splitters is given by

U =
1
Î2

S ieiu ie−iu

− eiu e−iu D, V = S0 1

1 0
DU* , s12d

with u as above. We note that the QND couplings10d has
recently been used in error-correction codes for quantum-
optical fieldsf20,21g.

In conclusion, we have illustrated the utility of the Bloch-
Messiah reduction theorem for linear bosonic Bogoliubov
transformations in the context of quantum optics. We have
shown the equivalence between a number of elementary
sources of weak random states, including a simple scheme to
randomly generate polarization entanglement without a loss
of which-way information. When supplemented by detection

FIG. 2. Bloch-Messiah equivalence: Here we illustrate the
equivalence between a pair of squeezerssSd combined at a 50:50
beam splittersBSd and a single two-mode down-convertersD2d. FIG. 3. Polarization entanglement without loss of which-way

information. Here we illustrate the equivalence between an entan-
gling four-mode down-convertersE4d with a pair of nonentangling
two-mode down-converterssD2d which arerandomlycreating pho-
ton pairs with opposite polarizations( ,z. The polarization-
dependent beam splitterssPBSd direct all photons to the upper
paths. Bloch-Messiah reduction shows that it is impossible tosran-
domlyd create such entangled states with only asinglepass through
a single nonentangling two-mode down-converter.
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of a single photon we have shown that superpositions of
macroscopically distinct states cannot be created out of
vacuum using linear optics and down-converters, squeezers,
etc. sall corresponding to linear Bogoliubov transforma-
tionsd. Finally, we used Bloch-Messiah reduction to study the
construction of minimal optical circuits. Although we have
concentrated on applications for photonic modes in quantum
optics the Bloch-Messiah reduction theorem holds for all
bosonic modes.

APPENDIX: PROOF OF BLOCH-MESSIAH REDUCTION

Without loss of generality, we may set the displacements
in Eq. s5d to zero, i.e.,b j =0. The canonical commutation

relations forb̂j in Eq. s5d impose the conditionsf7g

ABT = sABTdT, sA1d

AA† = BB† + 1. sA2d

SinceAA† andBB† are Hermitian and according to Eq.sA2d
must commute, they also may be diagonalized in the same

basis by some unitary matrixU. However, using the singular-
value decomposition theoremf22g we can always diagonal-
ize A=UADV† andB=UBDW† into non-negative matricesAD
andBD satisfying Eq.s6d whereV andW are a pair of unitary
matrices. Unitarity of Eq.s5d guarantees a unique inverse
which with the aid of Eqs.sA1d and sA2d may be easily
computed to bef7g

âj = o
k

sAkj
* b̂k − Bkjb̂k

†d. sA3d

Imposing the canonical commutation relations again here
yields the conditions

A†B = sA†BdT, sA4d

A†A = sB†BdT + 1. sA5d

Thus we see thatA†A andsB†BdT may be diagonalized in the
same basis by a unitary matrixV=W* which yields Eq.s7d
as required. Finally, we note that this form forA and B
automatically satisfies the subsidiary conditions of Eqs.
sA1d and sA4d. j
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