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the behaviour is strengthened11,12. This mecha-
nism is adaptive in evolutionary terms as it
normally causes a fairly selective enhancement
of those responses that generate the reward. 

The authors hypothesize that the formation
of associations between a reward and the rep-
resentation of elements of a rat’s trajectory in
the immediate past is boosted during sharp-
wave-associated replay by a neuromodulatory
signal such as dopamine. Dopamine is a
chemical released in the forebrain (in the stria-
tum and cortex, and presumably the hippo-
campus) at the time of reward, especially 
when reward is not expected by the ani-
mal13–15. Because ripple trains are variable in
length, the effects of the boosting signal would
be most reliable if it occurred at the beginning
of the sharp wave; however, an early boost
could be linked to the key later elements of the
preceding firing sequence only if the sequence
were reactivated in reverse order, as in Foster
and Wilson’s study. It remains to be seen
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Size isn’t everything
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From probing living cells under a microscope to scanning the heavens for 
gravity waves, the limitations of precision measurements constrain our 
capacity to discover more about the world. But what exactly are those limits?

Just how accurate can measurements get?
Whereas classical physics places no funda-
mental limits on how well we can do, in the
quantum world it’s a different story. Writing in
Physical Review Letters, Giovannetti, Lloyd
and Maccone1 derive general limits for the 
precision with which a single variable can be
measured quantum mechanically. 

But is this new? After all, Heisenberg’s
uncertainty principle — one of the earliest
results in quantum mechanics — already
places a fundamental limitation on the preci-
sion with which we can make a measurement.
In its simplest form, the uncertainty principle
identifies so-called complementary observ-
ables, pairs of quantities for which knowing
one quantity precisely means that the other
can only be poorly known. This fundamental
principle makes it impossible to learn every-
thing about a quantum-mechanical system. 

If we monitor only one quantity, however,
there is no such in-principle limitation. In fact,
this is exactly the strategy exploited in inter-
ferometric measurements, in which light 
travels down a pair of distinct paths and the
difference between the two path lengths leads
to an observable change in the output of the
device. This path difference can be measured
to an arbitrary accuracy. But what if we are
given some constraint, such as a total energy
budget or total light intensity? We all know

whether these speculations will stand up to
experimental testing. At the moment, we 
do not know whether dopamine-releasing
neurons fire in synchrony with hippocampal
sharp waves. 

If reverse replay is a mechanism for
strengthening hippocampal sequence memo-
ries during goal-directed behaviour, several
questions arise. For example, is the firing
sequence stored as an ordered memory or as a
unitary representation with a stronger repre-
sentation of the later than of the earlier ele-
ments? Moreover, is reverse replay specific to
sharp waves that coincide with reward? Sharp
waves are observed during breaks without
rewards. Do these sharp waves also exhibit
reverse replay and, if so, are these associated
with memory storage? Finally, can memories
of events be stored without interleaved sharp
waves? Whatever the answers may be, the dis-
covery of reverse replay is bound to pave the
way for more surprises. ■
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that it is easier to see in a well-lit room than in
a dim one. Similarly, the higher the energy or
light intensity in an interferometer, the higher
its resolution. One may therefore ask, for a
fixed budget, how small a path difference can
be discerned?

Our intuition from everyday experience tells
us that the most promising strategy for mea-
suring a distance is to choose a measuring stick
with marked intervals of length comparable to
the distance we wish to measure. We would
not, for example, choose a metre stick to mea-
sure a molecule. Following similar logic, we
might choose the wavelength of light for our
interferometer to be comparable to the path
difference we want to measure. Surprisingly,
Giovannetti and colleagues’ latest result1 can be
used to show that, for optimal quantum strate-
gies, there is no such bias to the size of our mea-
suring stick or the separation of its tick marks. 

An optimal strategy refers to a measurement
procedure that minimizes the effects of noise
on a signal. Ultimately, any measurement is
limited by the amount of noise in the system: 
to discern a signal, the signal-to-noise ratio
should be around one or larger. This premise
underpins all parameter-estimation theory,
both classical and quantum. Classically, statis-
tical averaging over N repeated but indepen-
dent measurements will lead to a √N reduction
in the noise. This improvement is known to 

be optimal because it achieves the bound,
known as the Cramér–Rao lower bound2, 
that expresses the best accuracy that can be
accomplished in the statistical estimation of a
parameter. When this classical bound is gener-
alized to repeated quantum measurements, the
analogous quantum bound provides a tighter
form of the uncertainty principle recast in the
language of parameter estimation3. However,
quantum theory allows much more freedom 
in choosing measurement strategies than is
possible in the classical world.

One of the most bizarre features of the quan-
tum world is quantum ‘entanglement’, which
allows systems to exhibit stronger correlations
than are possible classically. Using entangle-
ment and other tricks, quantum mechanics 
has led us to devise sophisticated information-
processing algorithms that one day may lie at
the heart of the enormous speed-ups promised
by quantum computation. For example, search-
ing for a needle in a haystack would be much
faster — in principle — on a quantum com-
puter than a classical one. The possibility of
using entangled systems and/or entangled
measurements, and sophisticated algorithms
built into measurement devices, raises ques-
tions about the ultimate (most general) quan-
tum bounds to measurement.

Giovannetti and colleagues’ key insight1

into this question is to recast the measurement
process in terms of quantum circuits, analo-
gous to electrical circuits, with various quan-
tum gates, similar to logic gates, representing
different quantum-mechanical ‘operators’.
They then introduce black-box operators that
perturb the quantum state in a known fashion,
but by an unknown amount. Such an opera-
tion might, for instance, be adding a phase
delay along one arm of an interferometer: the
unknown parameter associated with the black
box thus corresponds to the parameter we
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limit of an infinite number of spins4.
Currently, we are far from putting the ulti-

mate bounds described by Giovannetti et al.1

into practice. One example would be the Laser
Interferometer Gravitational-Wave Observa-
tory (LIGO), an exciting experiment that aims
to detect tiny ripples in the fabric of space-
time. The LIGO interferometer currently
implements only classical strategies scaling 
as 1/√N (where N is the number of photons 
in the interferometer). In its current set-up,
LIGO requires a circulating power of 10–20
kilowatts to achieve minimal sensitivities for
detecting gravity waves. In principle, if we
could implement a quantum-limited scheme,
a similar sensitivity could be achieved with

would like to estimate. Once such a black box
is conceptualized, it may be reused in the cir-
cuit again and again (each black box having
the same unknown parameter). The beauty of
this language lies in its generality, which allows
a rich class of measurement strategies involv-
ing N such identical black boxes in a circuit of
arbitrary design.

Using this formalism, Giovannetti et al.
show that the optimal accuracy achievable in
estimating the value of the black-box para-
meter can be obtained in a simple circuit with
N black boxes, running on an N-fold entan-
gled state. Surprisingly, recourse to entangled
measurements (joint measurements of multi-
ple paths of the circuit), or rearrangements 
of the circuit to correspond to sophisticated
quantum-search strategies, will not lead to any
further improvement.

What is this optimal performance? In fact, it
depends entirely on the range of observable
values of the black-box operator. In any circuit
with N black boxes, the noise associated with
the estimation of the black boxes’ parameter
will be reduced at most N-fold compared with
the noise in the best circuit with only a single
black box. That represents a considerable
advantage over the √N improvement of the
classical case. The good (and reassuring) news
is that this limit is exactly what one would have
expected from a naive application of the good
old Heisenberg uncertainty principle: it is
none other than the Heisenberg limit. 

So what relevance does all this have to the
choice of size in our metre sticks? Well, let’s
return to our interferometer. For a given
energy budget (or light intensity), but free-
dom in our choice of wavelength, we would
naively expect the shorter wavelength to 
yield higher sensitivity. However, the longer
the wavelength, the more photons we can
squeeze into our interferometer. In other
words, with the same budget, we can sample
the black box exactly that many more times.
Indeed, the Heisenberg-limited measurement
is equally good, independent of our choice of
measuring stick.

Two limitations to the strategy of Giovan-
netti et al.1 lie in the quantum version of the
Cramér–Rao bound on which it is based3.
First, this bound can be reached only for prob-
lems involving single-parameter estimation,
so extensions to multiple parameters may lead
to different results. For instance, the estima-
tion of the orientation of quantum spins
(involving two unknown angles in three-
dimensional space) can be enhanced by entan-
gled measurements4. Second, the Cramér–Rao
bound can be achieved only for an infinite
number of repeated measurements. Thus, a
result that expresses the approach to this
asymptote would fill a gap in our current
understanding. Indeed, it may be just this 
discrepancy that underlies the enhanced 
precision in determining the orientation of
quantum spins using entangled measurements 
— an enhancement that vanishes in the 

only nanowatts. Such prospects promise an
even brighter future for gravity-wave astron-
omy in the long term — and for precision
measurement in general. ■
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MATERIALS SCIENCE

Nanostructures in a new league
John J. Rehr

Aperiodic materials do not surrender details of their structure as readily as
do their crystalline counterparts. The latest computational solution to this
problem brings aspects of ‘the beautiful game’ into play. 

Investigations of crystalline materials through
X-ray and neutron diffraction have been a 
triumph of experimental science, allowing
structures ranging from complex minerals to
proteins and DNA to be unravelled1. But how
can the structure of a material that is aperiodic
— one that is non-crystalline, or cannot be
crystallized — be determined? On page 655 of
this issue2, Juhás et al. present an intriguing
solution to this question with a novel algo-
rithm for reconstructing three-dimensional
structures from ‘pair distribution function’
(PDF) data. Aperiodic materials are among
the technologically most interesting nanoscale
materials currently under study, and the
approach could be widely applicable.

Several techniques exist for determining 
the local, atomic-scale structure of materials.
These range from scanning tunnelling micro-
scopy (STM) to spectroscopic methods that
use X-rays, such as extended X-ray absorption
fine structure (EXAFS) analysis.  Each has 
its advantages and drawbacks. STM can 
give beautiful images, although not in three
dimensions. For structural information to be
inferred from spectroscopic techniques such
as EXAFS, an accurate theoretical model relat-
ing spectra to structure is required3.

PDF analysis avoids some of these problems
because it solely involves data on the distribu-
tion of distances between atoms in a structure
— information that is readily obtained from
X-ray or neutron-scattering experiments3.
Why, then, is PDF not the method of choice
for structure determination? The first factor 
is data quality: although the PDF technique
has been known for decades, the lack of 

high-resolution data has limited its applicabil-
ity, as well as that of many other techniques.
That situation is now changing with the latest 
generation of experiments using modern neu-
tron and synchrotron X-ray sources.  

The second crucial factor is that an algo-
rithm must be found that solves the ‘inverse
problem’; that is, given a set of experimental
data, how to extract the three-dimensional
structure that must have created it. Determin-
ing the structure corresponding to PDF data,
the question tackled by Juhás and colleagues2,
is just such an inverse problem. The inverse
problem is usually not trivial, as it involves vari-
ous assumptions about a material and, poten-
tially, many material-dependent parameters.
Solutions typically involve minimizing the
mean squared deviation between the experi-
mental data and the data predicted from 
a theoretical model of the structure. This
process often needs significant computational
resources, as it requires the ‘direct problem’ —
that is, a theoretical model for the experimen-
tal signal resulting from a trial structure — to
be solved many times in the process of finding
the minimum.

Obtaining a solution to the inverse problem
is equivalent to an optimization strategy for
finding the global minimum of a quantity
involving many variables among a forest of
possible minima. Numerous advances have
been made in such strategies, which are crucial
in fields from economics to protein folding4.
These include the development of ‘genetic’
algorithms inspired by the rules of evolution-
ary biology, and ‘simulated annealing’ tech-
niques that mimic the way metals freeze into a
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