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We show that the teleportation of an unknown quantum state can be achieved without the irreversible
amplification of an intermediate detector, as required in the original scheme. This allows us to show how the
quantum information is ‘‘hidden’’ within the correlations between the system and the environment while being
wholly absent from any of the individual subsystems. This revival of correlations from the environment is quite
surprising since it seems to go against the usual intuition of the environment irreversibly destroying informa-
tion. By developing a description of quantum teleportation at the amplitude level we can see why the relevant
information is robust to such irreversible actions of the environment.

PACS number~s!: 03.65.Bz, 89.70.1c

The ‘‘teleportation’’ of an unknown quantum state@1# is a
surprising theoretical demonstration of the apparent nonlocal
character of quantum information. Indeed, it is also likely to
be demonstrated soon experimentally@2–6#. Teleportation is
effected by making a joint measurement on a particle~la-
beled particlea! in an unknown state and particleb which is
one-half of a maximally entangled pair of particles (b andc!.
If the result of the joint measurement is transmitted to the
location of particlec then a suitable unitary rotation of that
particle turns its state into that of the fiducial particlea. This
transmission of the state from particlea to particlec in a
disembodied way completes the teleportation.

In this Brief Report we go a long way to resolving the
mysteries of teleportation, in particular the question of where
the information is hidden and why it is so robust. We develop
a reversible description of the detection apparatus involved
in the teleportation scheme. We do this by expressing the
teleportation scheme in terms of unitary evolution withno
collapse of the wave packet. The usual description of tele-
portation involves only a classical channel and a completely
entangled pair of particles without entanglement with any
environment. This description cannot be unitary because uni-
tary evolution does not allow a general state to be mapped
into a product of two states, neither of which contains any
information about the original state. Thus, in order to obtain
a unitary description we must treat the detection apparatus as
a fully quantum mechanical object. As a consequence, the
usually classical signals required to complete the teleporta-
tion procedure are in our scheme orthogonal states of a quan-

tum system. We start by giving a brief review of the telepor-
tation scheme and then proceed to include the detection
apparatus explicitly.

The mathematics behind the teleportation effect is quite
simple and may be summarized by the decomposition

uf&auC~0!&bc5 (
J50

N221

uC~J!&abÛc
~J!†uf&c /N. ~1!

Here particlesa, b, andc each correspond toN-state sys-
tems and$uC (J)&ab% is the complete orthonormal set of maxi-
mally entangled states given by@1#

uC~J!&ab[ (
l 50

N21

exp~2p i l n/N!ul &a

3u~ l 1m!modN&b /AN, ~2!

where on the right-hand-side the pair (n,m) are fixed by the
relationJ5nN1m ~i.e., n5Jdiv N andm5JmodN). Fur-
ther, the unitary operatorÛc

(J) acts only on the subspace con-
taining particlec and is given by@1#

Ûc
~J![ (

l 50

N21

exp~2p i l n/N!ul &cc^~ l 1m!modNu. ~3!

Equation~1! allows the teleportation of a~possibly un-
known! stateuf&a to particlec through the following proto-
col: ~i! Particleb from an entangled stateuC (0)&bc is placed
near particlea. ~ii ! A joint measurement having nondegen-
erate eigenvalues and eigenvectors given byuC (J)&bc is made
on the two-particle subspace ofa and b—such a measure-
ment is called a Bell measurement@7#. ~iii ! The result of this
measurement, labeledJ, is transmitted to the location of par-
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ticle c, where~iv! the unitary operatorÛc
(J) is performed on

particlec yielding in every case the stateuf&c .
At the end of step~ii ! there are 2log2N bits of classical

information independent of the initial stateuf& and the state
of particle c, which by itself is the completely mixed state
( l 50
N-1 ul &cc^l u/AN. Thus, taken individually, none of the

subsystems remaining appear to contain any information
about the original stateuf&. By recasting this procedure en-
tirely at the amplitude level we will be able to see where this
information lies ‘‘hidden.’’

To give a description at the amplitude level we shall need
to introduce an auxiliary particle, here labeledd, with which
to correlate the results of the ‘‘measurement.’’ In other
words, this particle will represent the internal degrees of
freedom of the detector~and environment!. The initial state
of the system is given by

uc0&5uf&auC~0!&bcu0&d , ~4!

where uJ&d is the N2-state system of the detector with
0<J<N221. This initial state corresponds to step~i! in the
standard protocol. Step~ii ! is performed with the Hamil-
tonian

Ĥ15
p\

2
d~ t ! (

J50

N221

uC~J!&ab~ŜJ
x2 1̂!ab^C~J!u. ~5!

In this equation

ŜJ
x[H 1̂, J50

u0&^Ju1uJ&^0u1 (
kÞ0,J

N221

uk&^ku, 0,J,N2,
~6!

where this operator acts on the detector degrees of freedom
only. This unitary operator maps the fiducial state of the
detectoru0&d to stateuJ&d . The evolution operator associated
with HamiltonianĤ1 in Eq. ~5! is given by

Û15 (
J50

N221

uC~J!&abŜJ
x
ab^C

~J!u; ~7!

it is easy to check thatÛ1
†Û15Û1Û1

†5 1̂.
The action of this evolution operator yields the interme-

diate state

Û1uc0&5 (
J50

N221

uC~J!&abÛc
~J!†uf&cuJ&d /N, ~8!

from which we can study the absence or presence of infor-
mation aboutuf&. The key difference between this equation
and the decomposition in Eq.~1! is that the measurement
results are incorporated here explicitly; otherwise these equa-
tions are identical. Unlike an ordinary measurement this cor-
responds to a reversible procedure.

As before, any of the particles taken separately in Eq.~8!
yield completely mixed states with all outcomes being
equally likely. That is, we have reproduced the ‘‘disembod-
ied’’ characteristic of this form of transportation of the quan-
tum information. Where has the information gone? It is sit-

ting in the very large part of Hilbert space which is
inaccessible to single particle measurements; it is within the
correlations between particlec and the environmental state
d. How large is this part of Hilbert space? Ifc is anN-state
system and the detector state corresponds to anN2-state sys-
tem we haveDcorr5N32N22N degrees of freedom in the
correlations between these two subsystems. ForN52 it is
Dcorr52, forN53 it is Dcorr515 — asymptotically it grows
asN3 @8#.

Stage~iii ! in our new protocol is identical to that of the
standard procedure except now the singleN2-state system of
particled ~instead of 2log2N classical bits! are transported
to a location near particlec where a local interaction will be
performed for the final stage. In stage~iv! we must perform
a different unitary evolution on particlec depending on the
state of particled. Before we give the form of the interaction
capable of doing this we note that any unitary operator may
be written in the formÛ5exp(2iĥ), whereĥ is an Hermitian
operator@9#. Given this we may implicitly rewrite the opera-
tors Û (J) of Eq. ~3! as

Û ~J![exp~2 i ĥ ~J!!, ~9!

for each of theJ50, . . . , N221.
Using this we write a Hamiltonian which produces stage

~iv!:

Ĥ25\d~ t !(
J

uJ&d ĥc
~J!

d^Ju. ~10!

The unitary operater corresponding to this Hamiltonian is
easily calculated to be

Û25expS 2 i(
J

uJ&d ĥc
~J!

d^Ju D
5 1̂1(

J
uJ&d @exp~2 i ĥc

~J!!2 1̂c#d ^Ju

5(
J

uJ&d Ûc
~J!

d^Ju; ~11!

again it is easy to check thatÛ2
†Û25Û2Û2

†5 1̂.
After this second evolution operator the system now takes

the form

Û2Û1uc0&5uf&c (
J50

N221

uC~J!&abuJ&d /N, ~12!

where we have moved the state of particlec out of the sum
to show explicitly that it is independent of the outcome of the
measurement. Note that the outcome of our reversible mea-
surement is still faithfully recorded in the state of particled.

The action of the operatorÛ1 unitarily copies the infor-
mation from the Bell state of theab subsystem into the blank
detector state. It is thus curious that this detector state is not
restored to its initial blank state at the end of the procedure
when it is no longer needed. Because the detectord is en-
tangled with remote particlesa andb @see Eq.~12!#, there is
no local reversible way of restoring it to a pure state. How-
ever, if d were brought back to the vicinity ofa and b, a
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local unitary operation could be used to restore all three par-
ticles to their standard states. We might ask what would hap-
pen if the detector variables decohered enroute to particlec?
The teleportation would work, but the restoration process
just described would fail.

We have shown that quantum teleportation can be
achieved without the irreversible amplification of an interme-
diate detector. In this way we have implicitly incorporated
the correlations between the system and the environment
which hide the relevant information in the teleportation
scheme. In general, the state of the environment is inacces-
sible and so its action is an irreversible one on the system.

This occurs when orthogonal states in the environment are
correlated to various system states. Yet this is precisely the
case we have studied here. The difference is that we have
artificially designated these othogonal outcomes to corre-
spond to the macroscopic states in a detector. The surprising
lesson appears to be that there is in principle no distinction-
between those environments from which we can extract use-
ful information and those from which we cannot~at least as
long as their evolution is not in some sense chaotic!.
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