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Improving the signal-to-noise ratio in optical communication
systems is a fundamental requirement for cost-effective data
transmission. This is particularly important for the transmission
of noise-intolerant quantum states: excess noise at the quantum
level destroys the coherence of the states, rendering classical error
correction or ampli®er-based schemes1 useless for quantum com-
munication. Only quantum error correction2,3 can remove the
effects of noise without corrupting the fragile superpositions of
quantum states. But dif®culties arise in the practical implementa-
tion of such a correction process because nonlinear operations4

have been thought to be required, greatly reducing the ef®ciency
of any optical scheme. Here I report an ef®cient, compact scheme
involving only linear optical elements and feedback, which per-
forms error correction for both quantum and classical noise. In
the classical case, the noise penalty incurred is no worse than for
ideal ampli®cation. But for low-noise quantum optical commu-
nication, this penalty may be eliminated entirely. This quantum
error-correction scheme may thus ®nd application in quantum
cryptographic networks5±7 (where low noise is equivalent to high
security), possibly extending their range far beyond limits
imposed by system losses7.

The discovery of quantum error-correcting codes2,3 substantially
enhanced the feasibility of building a quantum computer and of one
day using it to ef®ciently factor large numbers8. The basis of this
substantial advance lies in the ability to tame the hazards of
decoherence by encoding the information of a given state in a set
of entangled states, without violating the no-cloning theorem of
quantum mechanics9. Recently, quantum error-correction proto-
cols have been extended from discrete quantum variables, such as
quantum bits (qubits), to continuous ones, such as arbitrary-
intensity optical wavepackets10,11. Implementing continuous quan-
tum error correction in optical communications systems is, there-
fore, the next logical step. Yet, the prevailing view had been that
nonlinear operations, such as the exclusive-OR gate4, are essential
for a compact construction. According to this view, replacing these
nonlinear components by linear ones would require an exponential
increase in their number12. A hint that we may be able to use only a
handful of linear optical elements when dealing with continuous
variables is found in a recent realization13 of quantum teleportation
using only beam-splitters, feedback and a source of optical squeezed
states14. The degree of squeezing would determine the noise penalty
in the correction ®delity: completely classical light would cause
relatively small, ®nite errors, and perfect squeezing would yield an
ideal quantum optical repeater.

The implementation I describe here involves a nine-wavepacket
code, which completely encodes the full quantum state of a single
wavepacket such that if one of those nine wavepackets were to be
disturbed in any way the original information may be recovered10,11.
This nine-wavepacket code is the continuous-variable analogue of
Shor's original code for discrete quantum states2. To implement
Shor's qubit code using only linear operations would require
29 � 512 channels and exponentially many more components12.
By contrast, the code described here uses nine channels and
encoding is performed with only eight beam-splitters. An opti-
mal-ef®ciency ®ve-wavepacket code (with the same encoding and
noise-resistant properties) has recently been found10. I prefer to

work with the nine-wavepacket code here, owing to its simple and
intuitive structural properties.

I focus attention on the state of a single polarization of a
transverse mode of electromagnetic radiation, which may be suc-
cinctly described by a one-dimensional wavepacket. As the electric
quadrature amplitudes (the real and imaginary parts of the complex
electric ®eld) form a canonically conjugate pair, in analogy with
position and momentum, it is convenient to use the latter terms. In
a units-free notation:

position � xL

momentum � p=L �1�

where x and p are scaled position and momentum (with some
arbitrary length scale L) and ~ � 1=2. (I henceforth drop the
modi®er `scaled'.) The position basis eigenstates | xi are normalized
according to hx9jxi � d�x9 2 x� with the momentum basis given by:

jpi � 1���
p

p #
`

2 `
dxe2ixp

jxi �2�

To avoid confusion, I shall work in the position basis throughout.
The Fourier transform is de®ned as an active operation on a state by

ÃFjxi � 1���
p

p #
`

2 `
dye2ixy

jyi �3�

where both x and y are variables in the position basis and symbols
marked with a circum¯ex denote linear operators. Note that
equations (2) and (3) correspond to a change of representation
and a physical change of state, respectively. For optical wavepackets
this Fourier transform describes the action of a 1/4-wave delay.

It turns out that all one needs to construct an encoding element is
a series of beam-splitters and phase delays. The linearity of the
coding device is facilitated by the freedom in the choice of length
scale in equation (1), which is meaningful only for systems with
continuous variables.

I now seek a device that will encode a position-state eigenstate |xi
in a nine-wavepacket code of the form10:

jxencodei � 1

p3=2 #dwdydze2ix�w�y�z� 3 jw; w; w; y; y; y; z; z; zi �4�

First, consider two light ®elds | xi and | yi incident on an `ideal'
(phase-free) beam-splitter. The output light ®elds are given by:

ÃB12�v�jx; yi � jx cosv 2 y sinv; y cosv � x sinvi �5�

where the subscripts 12 refer to the wavepackets acted upon. From
these ideal beam-splitters I construct a three-port device called a
tritter15:

ÃT123 [ ÃB23�p=4� ÃB12 cos 2 1 1���
3

p !
�6�

for which ÃT123jx; 0; 0i � jx=
���
3

p
; x=

���
3

p
; x=

���
3

p
i. Finally, all the above

elements are combined to produce the encoding device. A suitable
choice for the nine-wavepacket code is a nine-port beam-splitter,
which I shall call a nona-splitter:

ÃN1 2 9 [ ÃT789
ÃT456

ÃT123
ÃF7

ÃF4
ÃF1

ÃT147 �7�

where I have not explicitly included the free propagation factors
between optical elements. This device could be implemented either
as a series of eight ordinary beam-splitters or as a single (mass-
produced) integrated-optics element.

The nine-wavepacket code, equation (4), may now be formed
with the nona-splitter acting on the initial unencoded state, via
jxencodei ~ ÃN1 2 9jxiniti. Written in this order, FÃ7FÃ4FÃ1TÃ 147 forms the
momentum-error-correction code (or Fourier-transformed posi-
tion code), and the remaining tritters TÃ 789TÃ 456TÃ 123 form the posi-
tion-error-correction codes for each of the three momentum-
encoded wavepackets.

By linearity, it is suf®cient to consider the encoding procedure on
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a position eigenstate | xi. The eight auxiliary inputs are prepared
with zero-position eigenstates (that is, ideally squeezed states, an
assumption that is relaxed below), so the initial unencoded state has
the form jxiniti � jx; 0; 0; 0; 0; 0; 0; 0; 0i. Having introduced the
coding device, I proceed with a discussion of the error detection
and correction procedure. The three states constituting error
correction described here are: inverted encoding, error-syndrome
identi®cation and error correction. In the case of perfect signal-
transmission, inverted encoding trivially recovers the initial (unen-
coded) state with the auxiliary wavepackets returning to their zero
positions. If, however, one of the encoded wavepackets suffers from
noise, then following inverted encoding the auxiliary wavepackets
will display a non-zero `syndrome', indicating the type and size of
the error. More speci®cally, position measurements are performed
on each of the eight auxiliary ports. Syndrome identi®cation then
involves only simple comparisons between these real numbers.
Once identi®ed, the syndrome is translated to the appropriate
remedy which, for my scheme, corresponds to a pure linear
displacement (whose parameters are obtained by a linear combina-
tion of these real numbers). This remarkable fact, that an arbitrary
error can be corrected with a linear displacement, is general and very
important for purposes of implementation.

As an example, consider an inverted encoding algorithm which
inverts NÃ 1±9 in two steps, enabling independent correction of
position and momentum errors. First I invert the last three tritters
(those to the left) in equation (7) and identify the syndrome for the
position error. There are three sets of syndromes here corresponding
to the positions of auxiliary wavepackets (2, 3), (5, 6) and (8, 9).
Then I invert the remaining terms to obtain the momentum error.
The syndrome in this case is given by the positions of auxiliary
wavepackets 4 and 7. Finally, I perform a linear displacement based
on the identi®ed syndrome and retrieve the original wavepacket.

So far, I have presented the error-correction code and procedure.
This code will operate ideally (that is, perform perfect error-
correction) under noise-free conditions, corresponding to ideal-
squeezing of the auxiliary wavepackets, noiseless manipulation and
perfect detection. (Indeed, this is also the prediction one would
obtain from classical wave theory.) What would be the penalty of
operating this scheme with imperfect resources and detection? As a
®rst source of errors, I examine the use of auxiliary wavepackets
with an initial squeezing parameter r and uncertainty e-r/2. More-
over, I suppose that the position measurements necessary for read-
ing the error-syndrome are carried out by homodyne detectors with
an energy ef®ciency h, yielding a noise term that is represented by
vacuum leakage (with uncertainty 1/2) into the device13. In this case,
the jth component of the syndrome xsyn (that is, the position
measured at the jth output port) becomes randomized by the
uncertainty. Thus, for an error originating on the kth wavepacket
(k � 1¼9) each component of the syndrome takes the generic
form:

xj
syn � xj

0;syn �

l̂

ck
jlx

l
sq �

����������������
h2 1 2 1

p
x9j

vac �8�

Here x0,syn is the ideal syndrome, and xsq and x9vac are noise terms due
to limited squeezing of the input states and imperfect detection at
the output, respectively, for some constants ck

jl.
Under these noisy conditions, some non-zero syndrome will

always be identi®ed, even in the absence of an actual error (to the
encoded state). Correcting ®ctitious errors accumulates small yet
undesired penalties. A more careful, bayesian, approach to syn-
drome identi®cation may avoid this and would be especially
useful when real errors occur rarely per error-correction cycle.
Precisely how big would the penalty be if correction was carried
through? After displacement, the output state may be represented
as a Wigner function by a convolution of the Wigner function
of the original unencoded state with an error gaussian
exp�2 2jaj2=�e 2 2r � h2 1 2 1�� (up to normalization). For the case

of ef®cient detection but auxiliary wavepackets in the vacuum state,
this gaussian reduces to the Wigner representation for vacuum, and
a noise penalty of roughly one unit of vacuum ¯uctuations is
incurred16. By squeezing the auxiliary wavepackets, even this penalty
may be reduced to allow for long-distance, error-corrected quan-
tum state transmission.

Perhaps the most promising potential application of quantum
error correction within an optical channel lies in quantum crypto-
graphy. Today, system losses impose a limit to the range of quantum
communication7. Quantum error correction can be applied to
attack this problem, both in the case of the cryptographic transmission
of continuous variables and in more conventional qubit-transmission.
In the former case, this calls for further consideration of recently
proposed schemes for ideal (noiseless) continuous-variable quan-
tum cryptography17,18. For ®nite squeezing or imperfect detection,
however, some residual noise will be present. This noise has the
effect of helping the eavesdropper mask her attack, so our guarantee
of absolute security is lost.

The ability to encode qubits in continuous variables suggests a
more likely alternative for implementation within my quantum
error-correction scheme. There are several ways qubits could be
represented within our scheme. They could be encoded as polariza-
tions (requiring a duplication of our scheme for each polarization
channel)5. Less expensive alternatives might involve encoding
qubits as the phase between pulses in unbalanced Mach±Zehnder
interferometers6, or encoding them as the time between pulses in
interferometers using Faraday mirrors7. All of these schemes have
been implemented in quantum cryptography. Unlike continuous
variable schemes, there exist well-developed methods for dealing
with noise in qubit-based quantum cryptography including
classical19 and quantum20 privacy ampli®cation.

Finally, I consider the performance of my error-correction
scheme as a classical tool for long-distance communication and
data-transmission. In particular, can error correction provide a
realistic alternative to ampli®er-based repeaters? First, I note that
ampli®er-based repeaters are phase insensitive, while for error-
correction a high degree of interferometric stability is required.
Having said this, the low noise in my scheme still offers possible
advantages over conventional ampli®cation methods. Even though
the basic penalty of one unit of vacuum ¯uctuations for my scheme
is equal to that of strongly amplifying a signal with an ideal
ampli®er1, distributing ampli®ers along a channel introduces
extra complications: an ampli®er placed at the beginning of a
channel produces a greater energy throughput, thus requiring
higher channel capacities. By comparison, in error-correction
schemes, a ®xed reduction of channel capacity is incurred due to
the transmission of redundant information in the auxiliary wave-
packets. This penalty can, in principle, be made arbitrarily small for
asymptotically ef®cient codes. Ampli®ers also suffer penalties when
placed at the end of channels, as the additional noise from the
channel is ampli®ed along with the signal. By contrast, my scheme is
designed to correct errors, rather than maintain the signal-to-noise
ratio. One example of a dif®culty faced by conventional ampli®ca-
tion schemes is the occurrence of large burst errors in space
communications. Using only classical resources (that is, r � 0),
my scheme would correct single wavepacket errors independent of
the burst intensity.

Quantum error correction will almost certainly play an impor-
tant role in new technologies based on quantum information. I have
shown that continuous error correction can be achieved in an
interferometric set-up with only a handful of linear components
and a standard quantum resource: squeezed states of light. By
comparison, standard quantum computational networks acting
on discrete states require similar numbers of nonlinear compo-
nents. Maintaining the interferometric stability required for oper-
ating the proposed scheme would appear to be feasible with today's
technology. Moreover, I have shown that even in the absence of
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squeezing, the scheme's performance is remarkably good, closely
competing with ideal ampli®er-based repeaters. Replacing such
repeaters may become the ®rst implementation of quantum-
computational concepts to (real-world) classical problems. M

Received 8 December 1997; accepted 14 April 1998.

1. Haus, H. A. & Mullen, J. A. Quantum noise in linear ampli®ers. Phys. Rev. 128, 2407±2413 (1962).

2. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493±
R2496 (1995).

3. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793±797 (1996).

4. DiVincenzo, D. P. & Smolin, J. in Proc. Workshop on Physics and Computation PhysComp '94 14±23

(IEEE Computer Soc. Press, Los Alamitos, CA, 1994).

5. Bennett, C. H. & Brassard, G. The dawn of a new era for quantum cryptography: the experimental
prototype is working! SIGACT News 20, 78±82 (1989).

6. Townsend, P. D., Rarity, J. G. & Tapster, P. R. Enhanced single photon fringe visibility in a 10 km-long

prototype quantum cryptography channel. Electron. Lett. 29, 1291±1293 (1993).

7. Muller, A. et al. Plug and play systems for quantum cryptography. Appl. Phys. Lett. 70, 793±795

(1997).
8. Shor, P. W. in Proc. 35th Annual Symp. on the Foundations of Computer Science (ed. Goldwasser, S.)

124±134 (IEEE Computer Soc. Press, Los Alamitos, CA, 1994).

9. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802±803 (1982).

10. Braunstein, S. L. Error correction for continuous quantum variables. Phys. Rev. Lett. 80, 4084±4087

(1998).
11. Lloyd, S. & Slotine, J.-J. E. Analog quantum error correction. Phys. Rev. Lett. 80, 4088±4091 (1998).

12. Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58±61

(1994).

13. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80,

869±872 (1998).
14. Walls, D. F. Squeezed states of light. Nature 306, 141±146 (1983).

15. Zukowski, M. Entanglement and photons. Laser Phys. 4, 690±709 (1994).

16. Musslimani, Z. H., Braunstein, S. L., Mann, A. & Revzen, M. Destruction of photocount oscillations

by thermal noise. Phys. Rev. A 51, 4967±4973 (1995).

17. Mu, Y., Seberry, J. & Zheng, Y. Shared cryptographic bits via quantized quadrature phase amplitudes
of light. Opt. Commun. 123, 344±352 (1996).

18. Cohen, O. Quantum cryptography using nonlocal measurements. Helv. Phys. Acta 70, 710±726

(1997).

19. Bennett, C. H., Brassard, G. & Robert, J.-M. Privacy ampli®cation by public discussion. SIAM J.
Comput. 17, 210±229 (1988).

20. Deutsch, D. et al. Quantum privacy ampli®cation and the security of quantum cryptography over

noisy channels. Phys. Rev. Lett. 77, 2818±2821 (1996).

Acknowledgements. I thank N. Cohen, H. J. Kimble and A. M. Steane for discussions.

Correspondence and requests for materials should be addressed to the author (e-mail: schmuel@sees.
bangor.ac.uk).

Nanofabricationof solid-
stateFresnel lenses
forelectronoptics
Y. Ito, A. L. Bleloch & L. M. Brown

Department of Physics, University of Cambridge, Cavendish Laboratory,

Madingley Road, Cambridge CB3 0HE, UK
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lenses for precision electron optics are mainly magnetic, requir-
ing large cylinders of soft iron to focus an electron beam. Such
lenses can only be convergent1, and so suffer from spherical
aberration. Electrostatic lenses are sometimes used, but tend to
be even more cumbersome. The advent of high-brightness elec-
tron guns for scanning transmission electron microscopy has
made it possible to use the resulting tightly focused electron
beams to drill holes a few nanometres in size and of controlled
depth in some inorganic thin ®lms2±5: such patterned structures
can then be used to manipulate the phase of an electron wave in a
manner analogous to light optics6,7. Here we use this approach to
fabricate compact solid-state `pixelated' Fresnel lenses for elec-
tron optics. These lenses, which can be convergent or divergent,
are not expected to compete with conventional magnetic lenses in
most applications (such as microscopy), but may ®nd a niche in
electron-beam lithography.

In order to focus an incident electron plane wave (wavelength l),
it must undergo a phase retardation f(r) which varies with the
radius from the optic axis, r, as follows:

f�r� � k0� f 2 � f 2
� r2

�
1=2
� �1�

where k0 � 2p=l and f is the focal length of the lens8.
f(r) can be modi®ed to have a modulo 2p phase structure, and

the phase distribution of a zone, fF(r), becomes:

fF�r� � f�r� � 2mp; rm , r , rm�1 �2�

where rm is the inner radius of the mth zone. Equation (2) can, of
course, be modi®ed to include any additional phase to correct

Figure 1 Phase-shift function, fF(r), of the ideal Fresnel lens (line) and the radial

positions of the holes and their expected phase shifts for the actual lens (dots)

with a nominal focal length of f � 1mm. Because the dwell time of the beam for

each hole is controlled, the expected phase values were calculated from the

linear relationship between the dwell time and the desired phase here. For the

higher-order zones, an aliasing effect between the hole position and fF(r) can be

seen. The minimum zone width is limited by the size of a single hole (,2nm).

Figure 2 Two Fresnel lenses with different focal lengths. Bright ®eld (BF) and high

angle annular dark ®eld (ADF) images of nominal focal length of a, f � 1mm and

b, f � 0:25mm lenses. The diameters of each lens are a, 700 nm and b, 236 nm.

Before observation, the lenses were fabricated in VG HB501 STEM with a probe

current of ,200 pA at 100 keV. An a-AlF3 ®lm, 68nm thick, was overwritten 30 times

with the lens pattern. The total fabrication time for the lenses was 60 s and 6 s fora

and b, respectively. A single zone has the same width as the hole spacing from

the 10th (rm � 316nm) and 3rd (rm � 112nm) zone outwards for a and b, respec-

tively. The outer zones beyond half of the radius demonstrate this aliasing effect.


