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Generalized phase-integrals for linear homogeneous ODEs
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Abstract. Using a surprising result for the Wronskian of solutions with a common factor we
show thatall of the linearly independent solutions of linear-homogeneous ODEs have a simple
form in a generalized phase-integral representation. This allows the generalization of WKB-like
expansions to higher-order differential equations in a way that extends the usual phase-integral
methods. This work clarifies the internal structure of phase-integral representations as being
discrete transforms over the quasiphases of the linearly independent ODE solutions and hence
clarifies the structure of solutions to linear ODEs.

Consider the stationary Schrödinger equation

y ′′(x)+ R(x)y(x) = 0. (1)

The WKB approximation for largeR(x) may be carried out in the following formal manner
[1]: Introduce a small parameterε into equation (1)

y ′′(x)+ R(x)
ε2

y(x) = 0. (2)

Next, take the ansatz solution to this new equation to have the pure exponential form

y(x) = exp

[
± i

∫ x

dx
κ(x)

ε

]
. (3)

Finally, expandingκ(x) in powers ofε

κ(x) = κ0(x)+ εκ1(x)+ ε2κ2(x)+ · · · (4)

and substituting this into (2) yields the familiar result to first order

y±(x) ∼ 1

R(x)1/4
exp

[
± i

∫ x

dx

√
R(x)

ε

]
. (5)

One serious drawback with this procedure is that this simple WKB form is not preserved
at higher orders inε. Fortunately, the remedy of this problem is well known by means of
an alternate expansion in terms of the phase-integral representation [2].

This remedy relies on the following result. The second-order stationary Schrödinger
equation (1) has a pair of independent solutions that mayalways be written in the form

y±(x) ∝ 1√
q(x)

exp

[
± i

∫ x

dx q(x)

]
. (6)

This is the so-called phase-integral representation [2] and allows us to write both linearly
independent solutions in terms of a singlekernel function q(x). Further, it neatly
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decomposes the phase and amplitude of the solutions of the above Schrödinger equation.
This form appears to have been originally noted by Lord Rayleigh [3] for the special case of
propagating solutions (i.e.R(x) is real and positive) and then recognized by several workers
to be valid in general for second-order linear-homogeneous ODEs [4].

This result implies that theexact solutions of the stationary Schrödinger equation (1)
take the form of its lowest-order WKB approximations. We can now automatically see how
to obtain the improved WKB expansion (termed the phase-integral expansion). Take the
new ansatz for the solution to equation (2) to be

y(x) = 1√
q(x)

exp

[
± i

∫ x

dx
q(x)

ε

]
. (7)

Expandq(x) in powers ofε

q(x) =
∞∑
j=0

εjqj (x) (8)

then toany orderεm the asymptotic solution is

y±(x) ∼ 1√∑m
j=0 ε

jqj (x)
exp

[
± i

∫ x

dx

∑m
j=0 ε

jqj (x)

ε

]
. (9)

This expansion has two important features†. First, the WKB-like form is preserved to all
orders and so the form of the exact solution is preserved to all orders in this expansion.
Second, the two approximate solutionsy±(x) of equation (9) are linearly independent to any
order of expansion—a feature only duplicated at first order in the standard WKB expansion
procedure.

In this paper we will show how to generalize the phase-integral representation describing
all n-independent solutions of an arbitrarynth-order homogeneous ODE

an(x)y
(n) + an−1(x)y

(n−1) + · · · + a1(x)y
′ + a0(x)y = 0. (10)

The key theorem required to do this involves an apparently unknown though simple result
for Wronskians of solutions with common factors. Further, we clarify the internal structure
of the phase integral as being based on a discrete transform of the quasiphases of linear
ODE solutions. This structure may be obtained in numerous ways depending upon which
discrete transform is used, thus the phase integrals themselves have a certain freedom which
may lead to further simplifications, although this possibility has been insufficiently explored
to date. We demonstrate this non-uniqueness explicitly for ODEs of ordern > 4, but may
also hold for third-order ODEs. It isnot the purpose of this paper to give a detailed account
of how to perform asymptotic expansions using this method. This is partly because this
would involve a large degree of overlap with lengthy and sufficiently detailed accounts for
the phase-integral methods for second-order ODEs [2]. Similarly, no discussion will be
made here of the handling of connection formulae for higher-order ODEs as the theory for
this has already been developed elsewhere‡. To re-iterate this paper is primarily interested
in showing the phase-integral structure of higher-order ODEs. Even so we consider two
illustrative examples of application of the discrete Fourier phase-integral expansion to a pair
of third-order ODEs.

† The phase-integral expansion method has been extensively developed and further improvements, though not
directly relevant to this paper, are discussed in [2].
‡ TheF -matrix approach to the connection problem for higher-order ODEs is formulated in [6].
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Our approach is based on equating two different forms for the Wronskian of then

linearly independent solutionsy ≡ (y1, . . . , yn). The Wronskian has the form

W(y) ≡

∣∣∣∣∣∣∣∣
y1 y2 · · · yn
y ′1 y ′2 · · · y ′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y(n−1)

n

∣∣∣∣∣∣∣∣ (11)

which for the ODE (10) is well known to be

W(y) ∝ exp

[
−
∫ x

dx
an−1(x)

an(x)

]
. (12)

The constant of proportionality may be absorbed into the arbitrary endpoint of the integral.
For the second form of the Wronskian, let us assume that there is some common factor

N (x) to then solutions

yj (x) = N (x)ỹj (x). (13)

We note the following result.

Theorem.Any common factor amongst then solutions of a linear ODE contributes to the
Wronskian only as a trivial prefactor, i.e.

W(y) = W(N ỹ) = N nW(ỹ). (14)

Proof. Writing the Wronskian of the full solutionsyj (x) in terms of the ‘reduced’ solutions
ỹj (x) we see that

W(y) =

∣∣∣∣∣∣∣∣
N ỹ1 N ỹ2 · · · N ỹn
(N ỹ1)

′ (N ỹ2)
′ · · · (N ỹn)′

...
...

. . .
...

(N ỹ1)
(n−1) (N ỹ2)

(n−1) · · · (N ỹn)(n−1)

∣∣∣∣∣∣∣∣
= (terms inN n)+ (terms inN n−1N ′)+ · · ·

=

∣∣∣∣∣∣∣∣
N ỹ1 N ỹ2 · · · N ỹn
N ỹ ′1 N ỹ ′2 · · · N ỹ ′n
...

...
. . .

...

N ỹ(n−1)
1 N ỹ(n−1)

2 · · · N ỹ(n−1)
n

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
N ỹ1 N ỹ2 · · · N ỹn
N ′ỹ1 N ′ỹ2 · · · N ′ỹn
...

...
. . .

...

N ỹ(n−1)
1 N ỹ(n−1)

2 · · · N ỹ(n−1)
n

∣∣∣∣∣∣∣∣+ · · ·
= N nW(ỹ)+ 0+ 0+ · · · (15)

yielding the desired result. Derivatives onN (x) always lead to matrices with linearly
dependent rows having zero determinant and hence give no contribution to the overall
Wronskian. Note the surprising result thatN (x) need not be a constant, but its derivatives
make no contribution to the Wronskian. �

To apply this theorem we shall look for a decomposition of then solutionsyj (x) into
n dual functionsqk(x) with the property that the original solutions take the form

yj = f (qn)ỹj (q1, . . . , qn−1). (16)
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That is, we seek an intelligent decomposition across all solutions with one of the dual
functionsqn appearing only in the normalization and the remainingn − 1 such functions
outside this factor. It seems natural to seek dual functions which will mimic and generalize
the role of the kernel function for a second-order ODE. If this can be achieved then we may
use equation (12) to eliminate the normalization in terms of the remainingn− 1 functions.

Consider a dual transformation based on the discrete Fourier transformation

qk(x) = 1

n

n∑
j=1

e−2π ijk/n∂x ln yj (x) (17)

which may be explicitly inverted to give

yj (x) ∝ exp

[ n∑
k=1

e2π ijk/n
∫ x

dx qk(x)

]
. (18)

Here the constant of integration is absorbed within the proportionality relation. Eliminating
the normalization in equation (18) yields the generalized form of the phase-integral
representation

yj (x) ∝ exp[
∑n−1

k=1 ρ
jk
n

∫ x dx qk(x)]
n
√
W(ỹ[q1, . . . , qn−1])

(19)

based on the discrete Fourier transform, whereρn is thenth primitive root of unity

ρn = exp(2π i/n) (20)

and where without loss of generality we have takenan−1(x) = 0.
What does this formula give? Forn = 2 we obtain the usual expression

yj (x) ∝ 1√
q1(x)

exp

[
(−1)j

∫ x

dx q1(x)

]
(21)

the ‘missing’ imaginary factor has been absorbed intoq1(x) ≡ iq(x). Thus, only a single
function needs to be determined to obtain the two linearly independent solutions.

For n = 3 we obtain the somewhat more complicated expression

yj (x) ∝ exp[ρj3
∫ x dx q1(x)+ ρ2j

3

∫ x dx q2(x)]
3
√
q1(x)3− q2(x)3+W(q1, q2)

. (22)

In this case we need to find two kernel functions to determine the three linearly independent
solutions.

For n > 4 the expressions become somewhat unwieldy. After making some efforts to
seek a simplified form we suspect that they may only be useful in the context of symbolic
manipulation. Although, in principle, only then − 1 kernel functions need be determined
to obtain then linearly independent solutions.

Are there other choices of transformation? If we consider the matrix representing the
linear transformation between the kernel functions and the logarithmic derivatives of the
full solutions we see that it must be invertible with one column all ones (or constant) and all
other columns must sum to zero. For example, suppose we restrict our attention to ODEs
of order 2n then we may use a Hadamard transformation

qk(x) = 1

2n

2n∑
j=1

(−1)(j ·k)2∂x ln yj (x) (23)

where the inner product is defined as

(j · k)2 ≡ j1k1+ j2k2+ · · · (24)
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i.e. the ordinary Euclidean vector inner product when the numbersj and k are written in
binary and then treated as vectors of bits.

We may extend this definition to cover alln by noting that the Fourier and Hadamard
transforms agree forn = 2 (a prime). A generalized Hadamard–Fourier transform may be
defined by the standard Hadamard transformation forn a power of 2 and by the standard
discrete Fourier transform forn prime. The remaining cases are constructed once we have
the prime decomposition ofn

n = pq1
1 p

q2
2 . . . p

q`
` (25)

ρm replaces−1 in the Hadamard transformation of equation (23) and we must use a suitably
redefined inner product.

We shall not pursue this generalization here, although it may lead to simplifications to
the form of the normalization forn > 4. Instead, we will show briefly how these methods
may be used to perform an intelligent asymptotic expansion of some higher-order ODEs. In
particular, we will restrict ourselves to considerations based on the discrete Fourier transform
and shall consider a pair of third-order ODEs.

Before we do this, however, let us review a WKB result for higher-order ODEs of the
form

y(n) + R(x)
εn

y = 0. (26)

Here only the coefficientsan(x) anda0(x) are non-zero. In this case the so-called physical
optics approximation [5] given by a WKB expansion to first order yields an expansion of
the form

ym(x) ∼ 1

R(x)(n−1)/2n
exp

[
ρmn

ε

∫ x

dx n
√
R(x)

]
(27)

wherem is any integer. Again, like the standard WKB result this form is not preserved to
any higher order. Further, this is only an asymptotic result and cannot be expected to yield
the exact solution of ODEs even of the restricted type shown in equation (26). By contrast,
our phase-integral formula simultaneously gives the exact form forall linearly independent
solutions ofarbitrary linear homogeneous ODEs, not merely those for which the old WKB
result equation (27) holds only asymptotically. The surprising thing is that our work here
shows that the exact form is not significantly more complicated than this limited first-order
WKB result, at least for ODEs of modest order. Having considered these distinctions let
us now pursue some examples of third-order ODEs of this simpler form in equation (26) to
illustrate the principle advantages our method has even with this restricted class.

Consider the differential equation

y ′′′ − (1+ x
2)3

ε3
y = 0. (28)

We wish to obtain an asymptotic expansion valid for smallε. To provide a solution we
replaceqj (x) in our solutions (22) withqj (x)/ε and develop the expansions

qj (x) =
∑
m=0

εmq
(m)
j (x). (29)

There is some freedom in the choice of the lowest-order termsq
(0)
j (x). Expanding to the
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Figure 1. Plot of the real part of the numerical solution to equation (28) (full curve) compared
with that of the asymptotic solution withj = 1, ε = 1

10 using equations (22) and (30) (broken
curve). The initial conditions used in the numerical solution were chosen to match those of the
asymptotic solution atx = 0.

lowest few terms and arbitrarily takingq(0)2 = 0 we find

q1(x) = (1+ x2)+ 8x
1− x2

(1+ x2)5
ε3+O(ε5)

q2(x) = 4

3

1− 2x2

(1+ x2)3
ε2+O(ε5).

(30)

The resulting asymptotic solution is compared with the numerically derived solution for
ε = 1

10, see figure 1. As may be seen from this plot the agreement is quite good. The zeroth-

order termq(0)1 of equation (30) corresponds to the WKB result of equation (27). However,
we have easily performed a higher-order expansion while still preserving the WKB-like
form of our phase-integral expansion of equation (22). What has not been investigated here
is how to fully use the freedom in choosing the seed termsq

(0)
1 andq(0)2 . Indeed, Fr̈oman

and Fr̈oman [2] show that deforming second-order ODEs yields enormous freedom in the
single kernel function of the standard phase-integral form; there such freedom has allowed,
for example, more faithful expansions of radial equations.

It may be noted that we chose a test problem with no caustics, i.e. no transitions between
classically allowed and forbidden regions. Such regions are typically handled with the aid
of connection formulae, the theory of which has already been developed for higher-order
ODEs [6].

As a second example consider the ODE

y ′′′ − 1

ε3(1+ x2)3
y = 0. (31)

Taking q(0)2 = 0 as a starting point to develop an asymptotic expansion we findq2(x) ≡ 0
identically and everyq(n)1 is a multiple of (1+ x2)−1. This leads us to make the ansatz
solution (where we allow the freedom ofq2 6= 0)

yj (x) ∝ (1+ x2) exp[(αρj3 + βρ2j
3 )Arctan(x)] (32)

j = 1, 2, 3. Direct substitution into equation (31) shows this to be the exact solution with

α =
[

1
2

(
1+

√
1+ 28ε6/33

)]1/3

β =
[

1
2

(
1−

√
1+ 28ε6/33

)]1/3
.

(33)
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Equation (31) is solved in Kamke [7] by a substitution which reduces it to an ODE with
constant coefficients. Nonetheless, we have found a neater form for the solution here and
were drawn to it while investigating its asymptotic expansion—which is accessible even
when the exact solution eludes us. Let us again contrast this to what is possible with
the standard WKB expansion for higher-order ODEs. The solution found here doesnot
satisfy the WKB form of equation (27). However, in general exact solutions can never
take that form, whereas we have shown that they may always be written in our generalized
phase-integral form.

We have shown that the linearly independent solutions to an arbitrary linear-
homogeneous ODE may be written in a simple form as a phase integral. This result
was based on a novel theorem for the Wronskian of solutions with a common factor. We
have elucidated on the internal structure of phase integrals and related them to discrete
transforms of the quasiphases of the ODE solutions. Because there is some freedom in the
choice of these discrete transforms there is potential freedom in the definition of higher-
order phase integrals. A preliminary investigation of this freedom was given and it was
conjectured that it might allow for simplifications to the treatment of higher-order ODEs.
Further, we gave two illustrative examples of application of these techniques for a pair
of third-order ODEs. Much work has already been done in showing how phase-integral
expansions may be used for second-order ODEs [2] and that work would apply directly to
the generalization described here for providing intelligent asymptotic expansions of higher-
order ODEs. Finally, as has been demonstrated, because the form of the exact solution is
utilized the asymptotic expansions may lead to useful guesses for the exact solutions of the
ODEs being studied.
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