
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 8441–8454 doi:10.1088/1751-8113/40/29/017

Exact quantum algorithm to distinguish Boolean
functions of different weights

Samuel L Braunstein1, Byung-Soo Choi1,2, Subhroshekhar Ghosh3 and
Subhamoy Maitra4

1 Computer Science, University of York, York YO10 5DD, UK
2 School of Information and Communication, Sungkyunkwan University, Republic of Korea
3 Indian Statistical Institute, Kolkata 700 108, India
4 Applied Statistics Unit, Indian Statistical Institute, Kolkata 700 108, India

E-mail: schmuel@cs.york.ac.uk, bschoi3@gmail.com, subhroshekhar@gmail.com and
subho@isical.ac.in

Received 24 November 2006, in final form 26 May 2007
Published 3 July 2007
Online at stacks.iop.org/JPhysA/40/8441

Abstract
In this work, we exploit the Grover operator for the weight analysis of a
Boolean function, specifically to solve the weight-decision problem. The
weight w is the fraction of all possible inputs for which the output is 1.
The goal of the weight-decision problem is to find the exact weight w from
the given two weights w1 and w2 satisfying a general weight condition as
w1 + w2 = 1 and 0 < w1 < w2 < 1. First, we propose a limited weight-
decision algorithm where the function has another constraint: a weight is in{
w1 = sin2

(
k

2k+1
π
2

)
, w2 = cos2

(
k

2k+1
π
2

)}
for integer k. Second, by changing

the phases in the last two Grover iterations, we propose a general weight-
decision algorithm which is free from the above constraint. Finally, we show
that when our algorithm requires O(k) queries to find w with a unit success
probability, any classical algorithm requires at least �(k2) queries for a unit
success probability. In addition, we show that our algorithm requires fewer
queries to solve this problem compared with the quantum counting algorithm.

PACS number: 03.67.Lx

1. Introduction

In 1985, Deutsch designed a quantum algorithm to determine exactly whether a given Boolean
function on one bit is constant or balanced using only one evaluation [1]. Deutsch and Jozsa
generalized this algorithm to Boolean functions on n bits, showing an exponential speedup for a
quantum machine compared to classical ones [2]. The most important contribution in this field
was achieved when Shor discovered polynomial-time quantum algorithms for factoring and

1751-8113/07/298441+14$30.00 © 2007 IOP Publishing Ltd Printed in the UK 8441

http://dx.doi.org/10.1088/1751-8113/40/29/017
mailto:schmuel@cs.york.ac.uk
mailto:bschoi3@gmail.com
mailto:subhroshekhar@gmail.com
mailto:subho@isical.ac.in
http://stacks.iop.org/JPhysA/40/8441

8442 S L Braunstein et al

computing discrete logarithms, which are exponentially faster than classical algorithms [3].
Because the quantum factoring algorithm shows an exponential speedup, many researchers
started to look for other applications. Perhaps the next most significant breakthrough occurred
when Grover discovered a quantum database search algorithm which is quadratically faster
than classical algorithms [4, 5]. Because the database search is one of the most widely used
algorithms in computer applications, the impact was huge, and more researchers have sought
other applications.

In this paper we use the Grover operator to efficiently and exactly analyse the weight of
a Boolean function. A weight is defined to be the ratio of the number of solutions over all
possible inputs of a Boolean function. The weight analysis of Boolean functions is widely
used for cryptanalysis [6], coding theory [7], fault-tolerant circuit design [8] and built-in
self-testing of circuits [9]. For some restricted classes of Boolean functions, a polynomial-
time weight-finding algorithm has been developed, while a general weight-finding algorithm
requires an exponential query complexity O(2n) where n is the number of variables [10]. For
example, a Deutsch–Jozsa-based algorithm was analysed for cryptanalysis purposes to show
an exponential speedup compared to classical approaches [11]. Hence quantum algorithms
for the weight analysis of a Boolean function will likely find real-world applications.

Here we shall focus on a special type of weight analysis problem to find an exact weight
w from the given set of two weights {w1, w2|w1 +w2 = 1, 0 < w1 < w2 < 1}, which is called
a weight-decision problem. In other words, we assume that it is already known that a Boolean
function f has a weight of either w1 or w2 where w1 + w2 = 1. Our algorithm must determine
which of these two possible values is the exact weight of the given Boolean function. Note
that in this work we only consider the case w1 + w2 = 1 because it is a comparatively easy
problem, and we hope it will provide hints for the more general case. Meanwhile our approach
is a suitable one when w1 and w2 are close to 0.5. When w1 is close to 0 and w2 is close to
1, even a few classical queries are sufficient to decide the exact weight with high probability.
However, when w1 and w2 are close to 0.5, the success probability is very low in a classical
approach. This case motivates our work. Meanwhile, it should also be emphasized that a
sure-success algorithm is mandatory for some applications such as critical decision systems.
Hence, we consider only the sure-success algorithm in our work.

Note that the difference between the Grover search and our approach should be emphasized
since our approach is heavily based on the Grover search. Given an oracle f (x) with one
solution f (xsol) = 1, the Grover search determines xsol, where x is an n-bit input. In other
words, we can view the Grover search as an attempt to determine which of 2n possible oracles
has been handed to us. However, regardless of which oracle is present, the initial state of the
Grover search can always be written as |ψ〉 =

√
1
N

|s〉 +
√

N−1
N

|ns〉, where |s〉 and |ns〉 are
normalized solution and non-solution basis states, respectively. The Grover search is simply
a rotation of this initial state which is identical for all possible oracles, onto the final state |s〉,
which differs for different oracles. On the other hand, the initial state of our algorithm (in the
2-state representation) depends on the actual weight of the oracle. The initial state may be
written as |ψ〉 = √

w1|s〉 +
√

w2|ns〉 or |ψ〉 = √
w2|s〉 +

√
w1|ns〉 with the weight condition

w1 + w2 = 1. Then using k operations, we attempt to rotate this initial state onto opposite
poles of the Bloch sphere in a manner dependent on the actual weight of the oracle.

Specifically, we make the following contributions.

• Limited weight-decision algorithm. We show that using k iterations of the Grover operator
would allow us to decide exactly w from

{
w1 = sin2

(
k

2k+1
π
2

)
, w2 = cos2

(
k

2k+1
π
2

)}
for

integer k. Note that since it has another constraint on the given weights, we call it a
limited weight-decision algorithm.

Exact quantum algorithm to distinguish Boolean functions of different weights 8443

• General weight-decision algorithm. We propose a general weight-decision algorithm,
without the above limiting constraint, by exploiting a sure-success database search method.
The general weight-decision algorithm uses k−2 Grover iterations followed by two further
phase-modified Grover operators.

• Performance analysis. We show that if our quantum algorithm requires O(k) Grover
iterations, where k is an integer value, then any classical algorithm requires �(k2) queries.
Note that O(m) and �(m) mean that the algorithm requires asymptotically at most and at
least m queries, respectively. Hence our quantum algorithm achieves at least a quadratic
speedup.
Meanwhile one could solve this weight-decision problem using the quantum counting
algorithm, allowing a direct estimate of the weight of the function involved. However,
our approach does not rely on the quantum Fourier transform and requires fewer queries.

This paper is organized as follows. Section 2 defines two weight-decision problems and
analyses the Grover operator in the Hilbert space and on the Bloch sphere. Section 3 shows
what weights can be decided exactly after k Grover iterations and the consequent limitation
on the weights. Section 4 shows how to decide exactly the weight w by modifying the
phases of the last two Grover iterations when the set of two weights has only the general
weight condition. Performance comparisons between our algorithm and the classical, and the
quantum counting approach are discussed in section 5. Section 6 concludes the paper with a
brief summary and mentions several open problems.

2. Preliminaries

2.1. Definitions

Definition 1 (Weight w of a Boolean function f). The weight w of a Boolean function f is
defined as the ratio of the number of inputs for which outputs are 1 over the number of all
possible inputs of f .

Definition 2 (General weight condition). The weight of a Boolean function f is one of two
weights in {w1, w2|w1 + w2 = 1, 0 < w1 < w2 < 1}.
Definition 3 (General weight-decision problem). Given a Boolean function f with the general
weight condition, decide exactly w of f .

Definition 4 (Limited weight-decision problem). Given a Boolean function f with the
general weight condition and also the condition that the weights can be written as{
w1 = sin2

(
k

2k+1
π
2

)
, w2 = cos2

(
k

2k+1
π
2

)}
for some integer k, decide exactly w of f .

2.2. Analysis of the Grover operator

2.2.1. The Grover operator. Consider a Boolean function f with a weight w = sin2 βw

2 . The
uniform superposition of all states is used as the initial state for the algorithm and may be
expressed as

|ψw,0〉 = sin
βw

2
|s〉 + cos

βw

2
|ns〉, (1)

where |s〉 and |ns〉 denote the uniform superpositions of solution (i.e., where f (x) = 1) and
non-solution (i.e., where f (x) = 0) basis states, respectively. Now the generalized Grover
operator consists of two inversion operators as

G = −I|ψw,0〉(θ)I|s〉(φ), (2)

8444 S L Braunstein et al

0 sin()
2

cos()
2

solution

non solution

βψ

β

=

+ −

non solution−

solution

β
/ 2β

β
β

ββ •

(,)π π
1ψ

(,)π π
2ψ

(,)π π
3ψ

4ψ
(,)π π

(,)θ φ• •

0ψ

(a)

0

0

1

solution =
+

0

0

1

non solution− =
−0

sin()

0

cos()

β
ψ

β
=

−

1ψ

2ψ

3ψ

4ψ

(,)π π

(,)π π

(,)π π

(,)π π

(,)θ φ• •

X

Z

β2β

2β

2β

2β
2β •

(b)

Figure 1. Grover’s database search (θ = φ = π). Evolution of the quantum states through (a) the
Hilbert space and (b) the Bloch sphere.

where the inversion operator is defined

I|ψ〉(θ) ≡ I − (1 − eiθ)|ψ〉〈ψ |. (3)

In the standard Grover search algorithm, θ = φ = π . Hence the standard form is

G = −I|ψw,0〉(π)I|s〉(π)

= (2|ψw,0〉〈ψw,0| − I)(I − 2|s〉〈s|), (4)

where −I|ψw,0〉(π) inverts all states about the average, and I|s〉(π) flips the sign of all solution
states. In short, we might summarize the Grover operator as consisting of two inversions—one
about the initial uniform-superposition state and the other about the solution states.

After applying the standard Grover operator k times, the initial state becomes

|ψw,k〉 = sin(2k + 1)
βw

2
|s〉 + cos(2k + 1)

βw

2
|ns〉. (5)

If we now measure this state in the computational basis, we can find one of the solutions with
a success probability of sin2(2k + 1)

βw

2 . Figure 1(a) shows the evolution of the states in the
Hilbert space under the Grover operation.

2.2.2. The Bloch sphere. Because the action of the Grover search algorithm takes place
within a 2D Hilbert space, we may represent all actions on the surface of the 3D Bloch sphere.
The two inversion operators in the 2D Hilbert space can be regarded as a pair of rotation
operators on the 3D Block sphere [13] as

G = −ei(θ
2 + φ

2)R|ψw,0〉(−θ)R|s〉(−φ), (6)

Exact quantum algorithm to distinguish Boolean functions of different weights 8445

and the initial state becomes a vector
 sin βw

0
− cos βw


 . (7)

Figure 1(b) shows the evolution of the quantum states on the Bloch sphere. Note that all
figures hereafter are viewed from the +Y -axis of the Bloch sphere for easier comprehension.
The vector of the state |ψw,k〉 is


 sin[(2k + 1)βw]

0
− cos[(2k + 1)βw]


 . (8)

Algorithm 1 Limited weight-decision algorithm
Apply k Grover operators to |ψw,0〉.
Measure |ψw,k〉 in the computational basis.
Let the measured result be x̂.

If k is even and f (x̂) = 1, w = w2 else w = w1.

If k is odd and f (x̂) = 1, w = w1 else w = w2.

Because the Bloch sphere representation provides a simple geometric picture, we shall
use it to illustrate all the algorithms we devise here.

3. Limited weight-decision algorithm

In this section, we study which weights can be decided exactly after k Grover iterations.
Consider a situation where the weight is w1 = sin2

(
k

2k+1
π
2

)
, so βw1 should be k

2k+1π . Note
that if the weight is w2 = cos2

(
k

2k+1
π
2

)
, we may reformulate it as

cos2

(
k

2k + 1

π

2

)
= cos2

(
2k + 1 − k − 1

2k + 1

π

2

)

= sin2

(
k + 1

2k + 1

π

2

)
, (9)

to conclude that βw2 should be k+1
2k+1π .

After applying k Grover operators, the final states for the two cases w = w1 and w = w2

are

|ψw1,k〉 =

 sin(kπ)

0
− cos(kπ)


 =


 0

0
− cos(kπ)


 =


 0

0
(−1)k+1


 (10)

and

|ψw2,k〉 =

 sin[(k + 1)π]

0
− cos[(k + 1)π]


 =


 0

0
− cos[(k + 1)π]


 =


 0

0
(−1)k


 , (11)

respectively.

8446 S L Braunstein et al

Note that if k is even, |ψw1,k〉 = (0, 0,−1)T which denotes the normalized non-solution
state; similarly, |ψw2,k〉 = (0, 0, +1)T which denotes the normalized solution state. As a result,
if k is even and the measured value x̂ is one of the solutions, then we can conclude that w = w2

otherwise w = w1. On the other hand if k is odd, the two final states are exchanged. Hence if
the measured value x̂ is one of the solutions, we can conclude that w = w1 otherwise w = w2.
Algorithm 1 summarizes this procedure. Note that the case for k = 1 was described in [12].

Note that this algorithm can find the exact weight only when w1 + w2 = 1 and
w1 = sin2

(
k

2k+1
π
2

)
and w2 = cos2

(
k

2k+1
π
2

)
. Unfortunately the limited weight-decision

algorithm has two problems as follows.

• Irrational weights. If w = sin2
(

k
2k+1

π
2

)
, where k is an integer, w cannot be rational, and

therefore cannot correspond to a real oracle except for the trivial cases k = 0, 1.

• Not sure success. As a consequence of k = 0, 1 providing the only exact solutions, if we
apply the algorithm anyway with the integer number of steps k chosen so that sin2

(
k

2k+1
π
2

)
and cos2

(
k

2k+1
π
2

)
most closely approximate w1 and w2, we will end up with an algorithm

which does not perform with sure success (i.e., with unit probability). Though the error
probability may be small in many cases, this may still be unsatisfactory. For example,
if the difference between the given two weights is very small, the error in the limited
weight-decision algorithm will not be negligible. Even worse, if the limited weight-
decision algorithm is used repeatedly as a subroutine in a larger quantum program, the
error tolerance of the whole procedure will continually diminish.

Notwithstanding these problems, we considered the limited weight-decision algorithm
here to motivate the general weight-decision algorithm, for which we will be able to relax the
restriction that the weights have the form

{
sin2

(
k

2k+1
π
2

)
, cos2

(
k

2k+1
π
2

)}
.

4. General weight-decision algorithm

4.1. Motivation

In order to resolve the problems discussed above with the limited weight-decision algorithm,
we consider a general weight-decision algorithm with the looser general weight condition.
This generalization is potentially worthwhile both theoretically and practically. To achieve
this goal we exploit the sure-success approach for the Grover search. Note that since there
are many different sure-success approaches, it is likely that there are many different ways
to incorporate sure success into our algorithm. However, in this work we focused on
what we feel is the simplest approach. Thus, we first review the sure-success database
search.

4.2. Sure-success database search

To achieve a sure-success database search many approaches have been developed [13–26].
Typically, a sure-success database search is based on a method changing the two phases, θ

and φ of I|ψw,0〉(θ) and I|s〉(φ). In this work, we exploit the approach developed by Brassard
et al [24]. This procedure is based on the following approach. First, one calculates the
required minimum number k of the Grover iterations. Then, from the 1st to the (k − 1)th
operation, the standard Grover operator is applied. However, for the last (kth) operation, a
generalized Grover operator is applied by choosing two phases, θ, φ �= π , for I|ψw,0〉(θ) and
I|s〉(φ), respectively.

Exact quantum algorithm to distinguish Boolean functions of different weights 8447

Algorithm 2 General weight-decision algorithm

1. |ψw,0〉 = |0〉⊗n|1〉, i = 0,

If w1 � sin2 π
5 , k is 2,

otherwise k satisfies sin2
(

k−1
2k−1

π
2

)
< w1 � sin2

(
k

2k+1
π
2

)
.

k−1
2k−1π < βw1 � k

2k+1π.

βw1 + βw2 = π.

2. While(i < (k − 2)) do
{|ψw,i+1〉 = −I|ψw,0〉(π)I|s〉(π)|ψw,i〉, i = i + 1}

3. |ψw,k−1〉 = −I|ψw,0〉(−θ1)I|s〉(π)|ψw,k−2〉
4. |ψw,k〉 = −I|ψw,0〉(−θ2)I|s〉(π)|ψw,k−1〉
5. Measure |ψw,k〉 in the computational basis.

Let the result be x̂.

6-1. If k is odd and if f (x̂) = 1 then w = w1 else w = w2.

6-2. If k is even and if f (x̂) = 1 then w = w2 else w = w1.

4.3. Modified approach for a general weight-decision algorithm

At the first sight it looks like that Brassard et al approach can be directly applied to the general
weight-decision problem. However, the current application is somewhat different from the
usual database search scenario as follows. The Brassard et al method changes only the last
operation because its goal is to rotate the state |ψw,k−1〉 onto the solution state. However, in
the weight-decision scenario, we need to satisfy a more stringent condition: the initial state
corresponding to different weights, i.e.,

∣∣ψw1,0
〉

and
∣∣ψw2,0

〉
, should be correctly rotated to

the solution (non-solution) state and the non-solution (solution) state, exclusively. From this
condition, we can obtain a relation between

{∣∣ψw1,0
〉
,
∣∣ψw2,0

〉}
and {|s〉, |ns〉}. To satisfy this

condition, we propose an approach which changes the last two Grover operations as follows.
From the 1st to the (k − 2)th Grover operation, we use the standard Grover operator with (π ,
π) phase angles for the I|ψw,0〉(θ) and I|s〉(φ) operations. However, for the (k − 1)th and the
kth operations, we use slightly modified Grover operators with the phases (−θ1, π) and (−θ2,
π), respectively. Algorithm 2 summarizes the proposed procedure.

4.3.1. Modification of the phases for the last two Grover operations. We now concentrate
on the evolution of the quantum states during the last two steps of our algorithm. Figure 2
shows how we can rotate two initial states,

∣∣ψw1,0
〉

and
∣∣ψw2,0

〉
, to the states |ns〉 and |s〉,

respectively. In the figure, two initial states for two different weights are shown differently,
but they are actually the same initial state in the algorithm. Likewise, two sets of solutions
and non-solutions for different weights are shown as the same state in the figure, but the actual
set of solution and non-solutions are different. Note that figure 2 shows a case when only
two operations are sufficient to decide w exactly. In the figure, the circle and the diamond
denote the two states |ψw1,i〉 and |ψw2,i〉, respectively. If the circle/diamond is filled, the state
points towards the positive Y-axis, otherwise the negative Y-axis. Our purpose is to find phase
conditions, which can rotate two initial states to the opposite (and hence orthogonal) poles of
the Bloch sphere exclusively, yet using the same phase conditions. For example, if w = w1(w2)

and the method rotates
∣∣ψw1,0

〉(∣∣ψw2,0
〉)

to |ns〉, the same method should rotate
∣∣ψw2,0

〉(∣∣ψw1,0
〉)

to |s〉. In the initial step, the two initial states
∣∣ψw1,0

〉
and

∣∣ψw2,0
〉

are
(

sin βw1 , 0,− cos βw1

)T

and
(

sin
(
π − βw1

)
, 0,− cos

(
π − βw1

))T = (
sin βw1 , 0, cos βw1

)T
, respectively. In the first

step, the two initial states are rotated to |A1〉 and |B1〉 states, respectively, by the common
rotation operator R|s〉(π). In the second step, these states are rotated to the states |A2〉 and

8448 S L Braunstein et al

+X

1,0wψ

2 ,0wψ

Line A1

Line B1Line A2

Line B2

20,0, 22
0,124 () () () ()

ww
wSSB R R R R

ψψ
θ π θ π ψ=

1 0,1 () wSA R π ψ=

2 0,1 () wSB R π ψ=

1,01
2 1 ,0() ()

w
wSA R R

ψ
θ π ψ=

2,02
2 1 ,0() ()

w
wSB R R

ψ
θ π ψ=

1,01
0,13 () () ()

w
wSSA R R R

ψ
π θ π ψ=

2,02
0,13 () () ()

w
wSSB R R R

ψ
π θ π ψ=

Line f

Line 1-f

-X

10,0, 11
0,124 () () () ()

ww
wSSA R R R R

ψψ
θ π θ π ψ=

Z S+ =

Z NS− =

1wβ

Figure 2. Last two Grover operations for the general algorithm: The circle and diamond denote
the states |ψw1,k〉 and |ψw2,k〉 respectively.

|B2〉, respectively, by the common rotation operator R|ψw,0〉(θ1). Here, |A1〉 should be rotated
to |A2〉, which corresponds to the crossing point between the line A1 and the line f . The line
f is a path, where the point |A1〉 can be rotated by the rotation operator R|ψw,0〉(θ1). Using the
same rule, the same rotation operator rotates |B1〉 to |B2〉, where |B2〉 occurs at the crossing
point between the line B1 and the line 1 − f . For the third step, the operator R|s〉(π) is used.
In the final step, the two states are rotated to the opposite poles using the same rotation angle
θ2. Finally, if we measure the final state and the measured value x̂ is one of the solutions
(non-solutions), we can decide exactly that w = w2 (w1). In our approach, the key point is
to find two crossing points, denoted by the states |A2〉 and |B2〉, with the required number of
operations.

4.3.2. Correctness. In the proposed method, we have to change two phases only for the
last two operations, not for any other operations because until the (k − 2)th operation, there
is no crossing point such as |A2〉 and |B2〉 in figure 2. Therefore, in order to prove the
correctness of our approach, we need to show that until the (k − 2)th operation, there is no
such crossing point, but that at the (k − 1)th operation, there are two such crossing points. To
provide a straightforward explanation, we consider the case only when k is odd, w = w1 and
k−1

2k−1π < βw1 � k
2k+1π . The other case may be proven in a similar manner.

(i) No crossing point until the (k − 2)th operation. Figure 3(a) shows the state |ψw1,k−2〉
after k − 2 operations of R|ψw1,0〉(π)R|s〉(π) have been applied. Note that when k is odd,
the state |ψw1,k−2〉 should be located in the upper-right part, i.e., in the (−X, +Z) area.
Meanwhile, the line A1, which is perpendicular to the axis of

∣∣ψw2,0
〉
and meets the south

pole, is given by Z = −X tan βw1 − 1. The value of x at the crossing point between the
line A1 and the circle is xline = − sin 2βw1 , and the value of x for the state |ψk−2〉, namely
xk−2, is sin(2(k − 2) + 1)βw1 . Therefore, to show that there is no crossing point until the
(k − 2)th operation, we need to prove that xline is always larger than xk−2. The following
fact, the proof of which is given in appendix A.1, shows the correctness of this argument.

Exact quantum algorithm to distinguish Boolean functions of different weights 8449

1
tan 1wZ X β= − −

1wβ
1

1

1

0

sin

0 ,

cos

w

w

w

β
ψ

β
=

−

1

1

1

, 2

sin((2(2) 1))

0

cos((2(2) 1))

w

w k

w

k

k

β
ψ

β
−

− +

=
− − +

1

1

1

,1

sin((2*1 1))

0

cos((2*1 1))
w

w

w

β
ψ

β

+

=
− +

1

1

1

,2

sin((2*2 1))

0

cos((2*2 1))
w

w

w

β
ψ

β

+

=
− +

1

1

sin 2

0

cos 2

w

w

β

β

−

−

2 ,0wψ

(a)

1

1

1

, 1

sin((2(1) 1))

0

cos((2(1) 1))

w

w k

w

k

k

β
ψ

β
−

− +

=
− − +

1
tan 1wZ X β= − +

1wβ

A
B

1

1

1

,1

sin((2*1 1))

0

cos((2*1 1))

w

w

w

β
ψ

β

+

=
− +

1

1

1

,2

sin((2*2 1))

0

cos((2*2 1))

w

w

w

β
ψ

β

+

=
− +

1

1

sin 2

0

cos 2

w

w

β

β

1

1

1

,0

sin

0

cos

w

w

w

β
ψ

β
=

−

2 ,0wψ

(b)

Figure 3. Correctness of the modification of the last two Grover operations. (a) No crossing until
the (k − 2)th operation. (b) First crossing at the (k − 1)th operation.

Fact 1. − sin 2βw1 > sin(2(k − 2) + 1)βw1 , where k−1
2k−1π < βw1 � k

2k+1π .

(ii) First Crossing Point at the (k − 1)th Operation. Figure 3(b) shows why the first crossing
point between the two lines A1 and f occurs in the (k − 1)th operation. To prove this, we
need to show that the value of x, xline, of the crossing point between the line A1 and the
circle is always greater than or equal to the value of x of the state

∣∣ψw1,k−1
〉
, namely xk−1.

Note that the value of xline is sin 2βw1 , and the value of xk−1 is sin(2(k − 1) + 1)βw1 . The
following fact, proven in appendix A.2, shows the correctness of this argument.

Fact 2. sin 2βw1 � sin(2(k − 1) + 1)βw1 , where k−1
2k−1π < βw1 � k

2k+1π .

4.3.3. Phase conditions. Figures 4(a) and (b) show the evolution of quantum states for the
last two operations when k is even and odd, respectively. Note that we consider Boolean

8450 S L Braunstein et al

1

1

1

,0

sin

0

cos

w

w

w

ψ

β

β

=

−

X

Z

1wβ

1

1

1

, 2

sin(2 3)

0

cos(2 3)

w

w k

w

k

k

β
ψ

β
−

−

=
− −

1

1

1

, 2()

sin(2 3)

0

cos(2 3)

Z w k

w

w

R

k

k

π ψ

β

β

−

− −

=
− −

1
tan 1wZ X β= − −

1

1

1

cos(2 2)
tan

cos
w

w
w

k
Z X

β
β

β
−

= −

1
tan 1wZ X β= −

1

1,01

1 1

1

1 1

1

, 1

1 , 2() ()

cos(2 2) cos

2sin

cos(2 2) cos

2cos

w

w k

Z w k

w w

w

w w

w

A

R R

k

y

k

ψ

ψ

θ π ψ

β β
β

β β
β

−

−

=

=

− −

=
− − −

A
B

1 1

1

1 1

1

()

cos(2 2) cos

2sin

cos(2 2) cos

2cos

Z

w w

w

w w

w

B R A

k

y

k

π
β β
β

β β
β

=

− − +

= −
− − −

non solution−

2 ,0wψ

(a)

1

1

1

, 2

sin(2 3)

0

cos(2 3)

w

w k

w

k

k

β
ψ

β
−

−

=
− −

solution

1

1

1

,0

sin

0

cos

w

w

w

ψ

β

β
=

−

X

Z

1wβ

1

1

1

, 2()

sin(2 3)

0

cos(2 3)

Z w k

w

w

R

k

k

π ψ

β

β

−

− −
=

− −

1
tan 1wZ X β= − +

1

1

1

cos(2 2)
tan

cos
w

w
w

k
Z X

β
β

β
−

= −

1
tan 1wZ X β= +

1

1,01

11

1

11

1

, 1

1 , 2() ()

cos cos(2 2)

2sin

cos cos(2 2)

2cos

w

w k

Z w k

ww

w

ww

w

A

R R

k

y

k

ψ

ψ

θ π ψ

β β
β

β β
β

−

−

=

=

+ −

=
− −

A B
11

1

11

1

()

cos cos(2 2)

2sin

cos cos(2 2)

2cos

Z

ww

w

ww

w

B R A

k

y

k

π
β β

β

β β
β

=

− − −

= −
− −

2 ,0wψ

(b)

Figure 4. Evolution of the states for the last two Grover operations. (a) Even k and (b) Odd k.

functions with only the smaller weight case w = w1 < w2 because the phase conditions are
the same for the larger weight w2. Finally, we find the following phase conditions for θ1 and
θ2 as shown in appendix B:

cos θ1 = (−1)k cos βw1 − cos 2βw1 cos(2k − 2)βw1

sin 2βw1 sin(2k − 2)βw1

(12)

cos θ2 = (−1)k sin 2βw1(y sin θ2 − (−1)k sin βw1)

cos βw1 cos 2βw1 − (−1)k cos(2k − 2)βw1

. (13)

Exact quantum algorithm to distinguish Boolean functions of different weights 8451

5. Performance comparison

5.1. Classical versus quantum

Let us first consider the complexity of our approach. If w1 and w2 are sin2
(

k
2k+1

π
2

)
and

cos2
(

k
2k+1

π
2

)
, respectively, our algorithm can decide an exact weight w with O(k) (in fact,

exactly k) Grover operations as shown in algorithm 1 or 2.
Now we consider the complexity of any classical approach. Since the function f is

available in the form of an oracle, a classical probabilistic algorithm would work as follows.
For k iterations it can present random inputs to the oracle and guess that the function is of
weight w1 (w2) if the output zero (one) appears more frequently. The approach simply decides
based on the majority of outcomes, and the analysis of the majority has been made in [27].
Based on this analysis, we know that the query complexity of such a classical probabilistic
algorithm is �(k2). Finally, then we can see that our approach achieves at least a quadratic
speedup.

5.2. Comparison with the quantum counting algorithm

To argue for the efficiency of our algorithm, let us refer to the existing work on quantum
counting that exploits the period information of the repeated Grover iterations [24, 28, 29].
From this period information, one can guess the number of solutions. Hence, like Shor’s
factoring algorithm, this task is achieved using the quantum Fourier transform.

Because we propose here an algorithm to decide exactly the weight among two given
weights, it is meaningful to compare the query complexity between our approach and a
method based on quantum counting with the same promise.

5.2.1. Quantum counting. The counting problem is the task of finding the number of
solutions of a given Boolean function. Now repeated Grover operations show (quasi) periodic
patterns with the iteration numbers. Hence we can count the number of solutions using
the quantum Fourier transform as shown in algorithm 3 [24, 28, 29]. In the algorithm,
Gf = Q(W, f,−1,−1) denotes the Grover operator with the notation of [4, 5], where W
denotes the Walsh–Hadamard transform on n qubits that maps |0〉 to 2−n/2 ∑2n−1

i=0 |i〉, f is
the given Boolean function, the first and second −1 denote θ = π and φ = π , respectively.
Meanwhile, an integer P determines the time taken by the algorithm, and consequently, the
precision of the estimation.

Algorithm 3 Quantum counting [24, 28, 29]

Let Cf : |x〉 ⊗ |�〉 �→ |x〉 ⊗ (Gf)x |�〉
Let fP : |k〉 �→ 1√

P

∑P−1
l=0 e2πıkl/P |l〉

1. |�0〉 = W ⊗ W|0〉|0〉
2. |�1〉 = Cf |�0〉
3. |�2〉 = |�1〉after the second register is measured (optional)
4. |�3〉 = fP ⊗ I|�2〉
5. x̂ = measured value of |�3〉

(if x̂ > P/2 then x̂ = (P − x̂))

6. output: N sin2(x̂π/P)(and x̂ if needed)

8452 S L Braunstein et al

5.2.2. Comparison of query complexity. Now let us analyse the quantum counting method
for the weight-decision problem. First, we must understand the relation between P and
x̂, and the given weight. If we are asked to check whether or not the given weight is
correct, we should know the exact value of P and the expected value of x̂. For example,
if the given weight is sin2(kπ/(4k + 2)), then we can confirm the given weight by using
P = (4k + 2) and by checking whether or not x̂ is k. Likewise, if the given weight is
cos2(kπ/(4k + 2)) = sin2((k + 1)π/(4k + 2)), then we can verify the given weight by using
P = (4k +2) and by checking whether or not x̂ is k +1. Therefore, for our problem such as the
limited weight-decision problem, the quantum counting method can be exploited by assuming
P = (4k + 2) and by checking x̂. More explicitly, after P queries, if x̂ is k, we can conclude
that the exact weight is w1 and if x̂ is k + 1, the exact weight is w2. In summary, when we try
to use quantum counting for the weight-decision problem, it takes around (4k + 2) queries, but
our method requires only k queries, and hence our method requires four times fewer queries
than the quantum counting method.

As an aside we note that the quantum counting method is based on the quantum Fourier
transform, which might be difficult to implement depending on what kind of quantum computer
is being used.

In summary, compared with the quantum counting method, our method requires four
times fewer queries, and does not need the quantum Fourier transform.

6. Conclusion and open problems

We investigated an application of the Grover operator for the weight analysis problem of a
Boolean function, specifically the weight-decision problem, which aims to find a correct weight
from the two weights satisfying w1 + w2 = 1. First, we showed what weight can be decided
exactly after k Grover operators. Unfortunately, this algorithm, the limited weight-decision
algorithm, is not a sure-success one for the general weight-decision problem. To overcome
this problem, we modified the limited weight-decision algorithm by using a certain number of
standard Grover operators from the 1st to the (k − 2)th steps, followed by two phase-modified
Grover operators for the final two steps. We note that our proposed quantum algorithm, the
general weight-decision algorithm, achieves at least a quadratic speedup compared to the best
classical algorithm. As well, the proposed algorithm requires four times fewer queries than
the quantum counting algorithm.

In this work, we considered only a restricted type of weight-decision problem with a
condition w ∈ {w1, w2|0 < w1 < w2 < 1, w1 + w2 = 1} because it is significantly easier
compared to a more general condition. Hence we might hope to extend our approach to a
more general case such as when the sum of two weights is not unity. Unfortunately, at present,
we have no idea how to generalize our proposed algorithm for this more general case. When
w1+w2 = 1, there is a symmetry between the two quantum states associated with the larger and
the smaller weights. It is precisely for this reason that we need only solve phase conditions for
the final two modified Grover operations. However, for a more general case, there would be no
such symmetry, and hence finding of an exact algorithm would be more difficult. Meanwhile, as
an intermediate step towards this more general case, we could consider a slightly generalized
problem for deciding w ∈ {

w1, w2|0 < w1 < 1
2 , 1

2 < w2 < 1, 1
2 < w1 + w2 < 3

2

}
; for

example, w1 = 1
3 and w2 = 3

4 . Finally, more generally, we might hope to find an algorithm to
decide w ∈ {w1, w2|0 < w1 < w2 < 1, 0 < w1 + w2 < 2}; for example, w1 = 2

3 and w2 = 3
4 .

In any case, even without such an efficient algorithm one could always rely on the method of
quantum counting to determine the weights in these cases for a modest overhead.

Exact quantum algorithm to distinguish Boolean functions of different weights 8453

Acknowledgments

The authors would very much like to thank the anonymous reviewers for improving the
quality of the presentation. SLB currently holds a Royal Society–Wolfson Research Merit
Award. BSC was partially supported by IT Scholarship Program supervised by IITA
(Institute for Information Technology Advancement) and MIC (Ministry of Information and
Communication), and currently by the Post Brain Korea 21 (Ministry of Education and Human
Resources Development, Republic of Korea). This work is also partially supported by BK21
under Professor Jun Dong Cho, an advisor.

Appendix A. Proof of correctness

A.1. No crossing point until the (k − 2)th operation

Proof of fact 1 is as follows.

Proof. From the value of βw1 , we can get the value of − sin 2βw1 as − sin
(

π
2k−1

)
<

− sin 2βw1 � − sin
(

π
2k+1

)
. Meanwhile, (k − 2)π + π

2k−1 < (2k − 3)βw1 � (k − 2)π + 2π
2k+1 .

Further, because k is odd in this case we have sin
[
(k − 2)π + π

2k−1

]
> sin(2k − 3)βw1 �

sin
[
(k − 2)π + 2π

2k+1

]
. Finally, − sin

(
π

2k−1

)
> sin(2k − 3)βw1 � − sin

(
2π

2k+1

)
. Therefore,

− sin 2βw1 > sin(2k − 3)βw1 . �

A.2. First crossing point at the (k − 1)th operation

Proof of fact 2 is as follows.

Proof. From fact 1, we can bound the value of sin 2βw1 as sin
(

π
2k−1

)
> sin 2βw1 � sin

(
π

2k+1

)
.

Meanwhile, (k − 1)π < (2k − 1)βw1 � (k − 1)π + π
2k+1 . Further, because k is odd

in this case we have sin(k − 1)π < sin(2k − 1)βw1 � sin
[
(k − 1)π + π

2k+1

]
. Finally,

0 < sin(2k − 1)βw1 � sin
(

π
2k+1

)
. Therefore, sin 2βw1 � sin(2k − 1)βw1 . �

Appendix B. Phase conditions

At first, to rotate |ψw1,k−2〉 to the first crossing point |A〉, θ1 should satisfy

R|ψw1,0〉(θ1)


− sin(2k − 3)βw1

0
− cos(2k − 3)βw1


 =




cos(2k − 2)βw1 − (−1)k cos βw1

2 sin βw1

y

− cos(2k − 2)βw1 − (−1)k cos βw1

2 cos βw1


 . (B.1)

As a result, θ1 should satisfy

cos θ1 = (−1)k cos βw1 − cos 2βw1 cos(2k − 2)βw1

sin 2βw1 sin(2k − 2)βw1

. (B.2)

Further, the value of y for the state |A〉 is sin θ1 sin(2k − 2)βw1 . A similar approach allows us
to find the phase condition for θ2 as

8454 S L Braunstein et al

R|ψw1,0〉(θ2)




− cos(2k − 2)βw1 + (−1)k cos βw1

2 sin βw1

−y

− cos(2k − 2)βw1 − (−1)k cos βw1

2 cos βw1


 =


 0

0
−(−1)k


 . (B.3)

Finally, then we can see that θ2 satisfies the following equation

cos θ2 = (−1)k sin 2βw1

(
y sin θ2 − (−1)k sin βw1

)
cos βw1 cos 2βw1 − (−1)k cos(2k − 2)βw1

. (B.4)

References

[1] Deutsch D 1985 Proc. R. Soc. A 400 97–117
[2] Deutsch D and Jozsa R 1992 Proc. R. Soc. A 439 553–8
[3] Shor P W 1997 SIAM J. Comput. 26 1484–509
[4] Grover L K 1996 Proc. 28th Ann. ACM Symposium on the Theory of Computing (Philadelphia, PA) pp 212–9
[5] Grover L K 1997 Phys. Rev. Lett. 79 325–8
[6] Filiol E and Fontaine C 1998 Proceedings of Advances in Cryptology—EUROCRYPT ’98, International

Conference on the Theory and Application of Cryptographic Techniques (Lecture Notes in Computer Science
vol 1403) pp 475–88

[7] MacWilliams F J and Sloane N J A 1996 The Theory of Error-Correting Codes (Amsterdam: North-Holland)
[8] Chakrabarty K and Hayes J P 1996 J. Electron. Test., Theory Appl. 8 71–86
[9] Chakrabarty K and Hayes J P 1995 IEEE Trans. VLSI Syst. 3 72–83

[10] Filiol E 1999 Proceedings of IMA Conference on Cryptography and Coding (Lecture Notes in Computer Science
vol 1746) (Berlin: Springer) pp 70–80

[11] Maitra S and Mukhopadhyay P 2005 Int. J. Quantum Inf. 3 359–70
[12] Green F and Pruim R 2001 Inf. Process. Lett. 80 257–60
[13] Long G L, Tu C C, Li Y S, Zhang W L and Yan Y 2000 J. Phys. A: Math. Gen. 34 861–6
[14] Long G L 2001 Phys. Rev. A 64 022307
[15] Høyer P 2000 Phys. Rev. A 62 052304
[16] Li D and Li X 2001 Phys. Lett. A 287 304
[17] Galindo A and Martı́n-Delgado M A 2000 Phys. Rev. A 62 062303
[18] Li C-M, Hwang C-C, Hsieh J-Y and Wang K-S 2002 Phys. Rev. A 65 034305
[19] Sun Y, Long G-L and Li X 2002 Phys. Lett. A 294 143
[20] Hsieh J-Y and Li C-M 2002 Phys. Rev. A 65 052322
[21] Chi D P and Kim J 1999 Chaos Solitons Fractals 10 1689–93

Chi D P and Kim J 1999 Proceedings of Quantum Computing and Quantum Communications (First NASA
International Conference, selected papers, QCQC’98) (Lecture Notes in Computer Science vol 1509) (Berlin:
Springer) pp 148–51

[22] Long G L, Li Y S, Zhang W L and Niu L 1999 Phys. Lett. A 262 27
[23] Li C-M, Hwang C-C, Hsieh J-Y and Wang K-S 2002 Phys. Rev. A 65 034305
[24] Brassard G, Høyer P, Mosca M and Tapp A 2002 Quantum Computation and Information, Contemporary

Mathematics vol 305 ed S J Lomonaco Jr and H E Brandt (Providence, RI: AMS) pp 53–74
[25] Mosca M 2001 Theor. Comput. Sci. 264 139–53
[26] Nayak A and Wu F 1999 Proceedings of Symposium on Theory of Computing pp 384–93
[27] Alonso L, Reingold E M and Schott R 1993 Inf. Process. Lett. 47 253–5
[28] Boyer M, Brassard G, Høyer P and Tapp A 1998 Fortschr. Phys. 46 493–505
[29] Brassard G, Høyer P and Tapp A 1998 Proceedings of the 25th International Colloquium on Automata,

Languages and Programming (Lecture Notes In Computer Science vol 1443) pp 820–31

http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1109/92.365455
http://dx.doi.org/10.1142/S0219749905000980
http://dx.doi.org/10.1088/0305-4470/34/4/312
http://dx.doi.org/10.1103/PhysRevA.64.022307
http://dx.doi.org/10.1103/PhysRevA.62.052304
http://dx.doi.org/10.1016/S0375-9601(01)00498-4
http://dx.doi.org/10.1103/PhysRevA.62.062303
http://dx.doi.org/10.1103/PhysRevA.65.034305
http://dx.doi.org/10.1016/S0375-9601(02)00063-4
http://dx.doi.org/10.1103/PhysRevA.65.052322
http://dx.doi.org/10.1016/S0375-9601(99)00631-3
http://dx.doi.org/10.1103/PhysRevA.65.034305
http://dx.doi.org/10.1016/S0304-3975(00)00217-6
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P

	1. Introduction
	2. Preliminaries
	2.1. Definitions
	2.2. Analysis of the Grover operator

	3. Limited weight-decision algorithm
	4. General weight-decision algorithm
	4.1. Motivation
	4.2. Sure-success database search
	4.3. Modified approach for a general weight-decision algorithm

	5. Performance comparison
	5.1. Classical versus quantum
	5.2. Comparison with the quantum counting algorithm

	6. Conclusion and open problems
	Acknowledgments
	Appendix A. Proof of correctness
	No crossing
	First

	Appendix B. Phase conditions
	References

