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Abstract
Gisin and Popescu (Gisin N and Popescu S 1999 Phys. Rev. Lett. 83 432)
have shown that more information about their direction can be obtained from
a pair of anti-parallel spins compared to a pair of parallel spins, where the
first member of the pair (which we call the pointer member) can point equally
along any direction in the Bloch sphere. They argued that this was due to the
difference in dimensionality spanned by these two alphabets of states. Here
we consider similar alphabets, but with the first spin restricted to a fixed small
circle of the Bloch sphere. In this case, the dimensionality spanned by the
anti-parallel versus parallel alphabet is now equal. However, the anti-parallel
alphabet is found to still contain more information in general. We generalize
this to having N parallel spins and M anti-parallel spins. When the pointer
member is restricted to a small circle these alphabets again span spaces of
equal dimension, yet in general, more directional information can be found
for sets with smaller |N − M| for any fixed total number of spins. We find
that the optimal POVMs for extracting directional information in these cases
can always be expressed in terms of the Fourier basis. Our results show that
dimensionality alone cannot explain the greater information content in anti-
parallel combinations of spins compared to parallel combinations. In addition,
we describe an LOCC protocol which extracts optimal directional information
when the pointer member is restricted to a small circle and a pair of parallel
spins are supplied.

PACS numbers: 03.65.Ta, 03.67.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the quantum world there are many phenomena whose explanation is beyond the intuitions
suggested by the classical world. For example impossibility of cloning [18] or deleting [15]
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an arbitrary quantum state, existence of non-orthogonal quantum states [16], impossibility
of spin flipping [10], etc. Let us focus on this last concept. The spin degree of freedom
of a spin 1/2 system is described by a vector (or a mixture of projections on vectors) of a
two-dimensional Hilbert space H. The quantum mechanical operation which, when applied
to a qubit |ψ〉 ∈ H, produces the qubit |ψ⊥〉 ∈ H, orthogonal to |ψ〉, is called spin flipping.
This operation exists if and only if the Bloch vector of |ψ〉 lies on a given great circle [8].
The classical analogue of spin flipping is the operation which, when applied to a vector (for
example, in Eucledian space), produces its negative. This operation always exists.

It is provable that we can extract more information about the direction of the Bloch vector
of |ψ〉 (for short, the direction of |ψ〉) if, instead of just |ψ〉, we are supplied with |ψ〉 ⊗ |ψ〉
or |ψ〉⊗ |ψ⊥〉, in words, a pair of parallel or anti-parallel qubits. In a classical scenario, there
is no difference between the parallel and the anti-parallel case, since the classical analogue
of spin flipping always exists. Gisin and Popescu [10] have shown that, when concerning
the direction of |ψ〉, anti-parallel qubits provide more information than parallel qubits. Note
that if spin flipping were possible for each vector of H, there would be no difference between
these two cases. Gisin and Popescu pointed out that parallel qubits span a three-dimensional
subspace of H ⊗ H, while anti-parallel qubits span H ⊗ H entirely. Intuitively, vectors in an
enlarged space are better distinguished than in the original space; the better we can distinguish
the parallel (or the anti-parallel) qubits, the more information we can extract about the direction
of |ψ〉. So, according to Gisin and Popescu, anti-parallel qubits contain more information
about the direction of |ψ〉 compared to parallel qubits, since the former span a space of higher
dimension.

The following question arises naturally: does this difference in extracting information
about the direction of a qubit occur only for parallel and anti-parallel qubits? Can this be
generalized to other cases? Let us illustrate the situation for general operations rather than
just spin flipping. Consider an operation (not necessarily quantum mechanical) A on the pure
state |ψ〉 of a spin 1/2 system, such that |〈ψ |A|ψ〉| is independent of |ψ〉. It can be shown
that no non-trivial quantum mechanical operation satisfies this last requirement. In particular,
spin flipping A should be of the form A|ψ〉 = |ψ⊥〉, where 〈ψ⊥|ψ〉 = 0. One can raise
now another question: which of the following two sets {|ψ〉 ⊗ A|ψ〉 : |ψ〉 is any normalized
qubit} and {|ψ〉 ⊗ B|ψ〉 : |ψ〉 is any normalized qubit}, where A and B are two operations
such that both |〈ψ |A|ψ〉| and |〈ψ |B|ψ〉| are independent of |ψ〉, contains more information
about the direction of the qubit? The problem can be posed in the following more general
form. Let fi : H −→ H⊗n, for i = 1, 2, . . . , be one-to-one maps which take |ψ〉 into some
state of H⊗n. Which fi gives the largest amount of information about the direction of |ψ〉,
when |ψ〉 is sampled according to some a priori probability distribution on H? The maps
fi’s are said to provide an encoding of vectors in H. Note that spin flipping provides an
encoding.

Bagan et al [2] have discussed this problem considering only those maps for which fi(|ψ〉)
is an eigenstate of a total spin observable along some direction (specified by the direction of
|ψ〉), when |ψ〉 is sampled from the uniform distribution on H. According to their analysis,
spin flipping does not play any special role; all that matters (in order to extract information) is
the dimension of the subspace spanned by the states fi(|ψ〉).

In the present paper, we consider this dimensional argument in the context of estimating
the direction of a pure qubit when the state fi(|ψ〉) is of the form |ψ〉⊗n ⊗ |ψ ′〉⊗m. Here
the qubits |ψ〉 and |ψ ′〉 are in one-to-one correspondence. Moreover we assume that the
Bloch vectors of |ψ〉 and |ψ ′〉 lie on two fixed different circles (possibly small). What is
the motivation behind the choice of this encoding? First of all, small circles are a plausible
first step generalization of great circles even though spin flipping does not exist for states
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from small circles. However, |ψ〉 ⊗ |ψ〉 and |ψ〉 ⊗ |ψ⊥〉, where the Bloch vector of |ψ〉
lies on a given small circle, span three-dimensional subspaces. Thus, in our framework, the
dimensional arguments of Gisin–Popescu and Bagan et al do not give any clue regarding best
extraction directional information of the qubit. We find that, even in this case, anti-parallel
qubits contain more information compared to parallel ones. More generally we see that the
information contained in N qubits about the direction of |ψ〉, when |ψ〉 is encoded in the state
|ψ〉⊗n ⊗ |ψ⊥〉⊗(N−n) and taken with equal probability from a given small circle, decreases
with the increment of the difference |N − 2n|.

We next consider the problem of estimating the direction of |ψ〉 with an encoding of the
form |ψ〉⊗|ψ ′〉, where the Bloch vectors of |ψ〉 and |ψ ′〉 lie respectively on two parallel circles
S and S ′, and |ψ ′〉 is in one-to-one correspondence with |ψ〉. Note that encoding parallel and
anti-parallel qubits are special cases of this type of encoding. Given two circles S and S ′, we
have an expression for F(S, S ′), the maximum amount of information about the direction of
|ψ〉. Given a circle S, one can calculate the maximum and minimum value of F(S, S ′) over all
possible choices of S ′. Let us denote by F max(S) and F min(S) the maximum and the minimum
value of F(S, S ′), respectively. We show that F max(S) � F(S, S⊥) � F(S, S) � F min(S)

for all S, where S⊥ is the circle diametrically opposite to S. Also in this case the dimensional
argument does not work. Another scenario in which the dimensional argument fails is
the case of estimating the direction of a qubit sampled from a uniform distribution on set
of two diametrically opposite circles. Here parallel and anti-parallel qubits provide same
information about the direction of the qubit, even though they span spaces of different
dimension.

Estimating a qubit from a circle is essentially estimating the phase of the qubit (see
section 4 below and, e.g. [5]). Bearing this in mind, one can argue that the measurement basis
used in the optimal estimation strategy should be the Fourier basis. This is also reflected by
our results. In fact, we find that the measurement basis for the optimal strategy in the case
of a qubit |ψ〉 uniformly distributed on a small circle, supplied the state |ψ〉⊗n ⊗ |ψ⊥〉⊗(N−n)

(where N is fixed), is the (N + 1)-dimensional Fourier basis for every n ∈ {1, 2, . . . , N − 1}.
This is also true if the supplied state is |ψ〉⊗n ⊗ |ψ ′〉, where |ψ〉 and |ψ ′〉 are respectively
from two different parallel circles and in one-to-one correspondence. This is expected as in
the case of phase estimation. Moreover, we see that the measurement basis for the optimal
strategy in the case of a qubit |ψ〉, uniformly distributed on a set of two diametrically opposite
circles, supplied the state |ψ〉 ⊗ |ψ〉, is again the Fourier basis (in three dimensions). It is
remarkable that this scenario does not correspond to phase estimation. Finally, we observe
that, if the supplied state is |ψ〉 ⊗ |ψ⊥〉 then the measurement basis of the optimal strategy
is not the Fourier basis, but is in some way ”similar” to the Haar basis (see, e.g. [6] for this
notion).

This paper is organized as follows. In section 2 we formulate the problem of state
estimation discussed in the paper. In section 3 we sketch the related previous works. In
section 4 we tackle the problem of estimating the direction of the Bloch vector of a qubit
|ψ〉 sampled from a uniform distribution on a given small circle, when states of the form
|ψ〉⊗n ⊗ |ψ⊥〉⊗m are supplied. In section 5 we consider the case in which the supplied
states are of the form |ψ〉 ⊗ |ψ ′〉, where |ψ〉 and |ψ ′〉 are respectively from two parallel
circles and in one-to-one correspondence with each other. In section 6 we consider the case
of a qubit |ψ〉 sampled from a uniform distribution on two diametrically opposite circles
and the supplied states are either |ψ〉 ⊗ |ψ〉 or |ψ〉 ⊗ |ψ⊥〉. In section 7 we describe an
LOCC protocol for optimally estimating the direction of a qubit |ψ (θ, φ)〉 (θ is fixed),
when a pair of parallel qubits is supplied. Section 8 is devoted to discussion and open
problems.
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2. The problem of state estimation

2.1. Formulation

Let us consider a quantum mechanical system with associated Hilbert space H ∼= C
d . Let

A be a set of indices (not necessarily countable) and let S = {|ψα〉 : α ∈ A} ⊆ H be
a set of normalized pure states. This is equivalent to say that each |ψα〉 ∈ S is of the
form |ψα〉 = ∑d

i=1 ψαi
|ψi〉, where {|ψ1〉, |ψ2〉, . . . , |ψd〉} is an orthonormal basis of H

and ψα1 , ψα2 , . . . , ψαd
are complex numbers such that

∑d
i=1 |ψαi

|2 = 1. Suppose that we
want to gather information about an unknown state |ψx〉 ∈ S. Once we have chosen,
and fixed, an orthonormal basis of H, say {|ψ1〉, |ψ2〉, . . . , |ψd〉}, information about the
coefficients ψx1 , ψx2 , . . . , ψxd

is obtained by performing measurements on the state |ψx〉. The
mathematical description of a general measurement on a quantum state is the Positive Operator
Valued Measurement (POVM) formalism. This is described as follows. Let � be a set of
indices (not necessarily finite). A POVM M = {Êr : r ∈ �} on H is a set of positive
operators Êr : H −→ H such that

∑
r∈� Êr = ÎH, where ÎH is the identity operator in H.

The probability that the rth measurement outcome occurs is given by 〈ψx |Êr |ψx〉 and the

state immediately after the measurement is
(〈ψx |Ê†

r Êr |ψx〉
)− 1

2 Êr |ψx〉 (where |ψx〉 is the state
before the measurement). For all practical purposes � is taken to be finite. In such a case,
since the Hilbert space H is finite dimensional, it follows by a theorem of Davies [1] that the
elements of M can be chosen to be of rank 1. In this paper, we consider POVMs with rank-1
elements only. As a matter of fact full information about ψx1 , ψx2 , . . . , ψxd

is obtained only
by performing measurements on an infinite number of copies of |ψx〉. Since it is physically
impossible to be supplied with an infinite number of copies of a quantum state, we assume
that we are supplied with n copies of |ψx〉 only. Now, let A′ be a set of indices (not necessarily
countable) and let Sn = {|�α′ 〉 : α′ ∈ A′} ⊆ H⊗n be a set of normalized pure states in H⊗n.
We assume that there is a bijective function f : A −→ A′. A state estimation strategy (M, T )

is composed of the following:

• A POVM on H⊗n,M = {Êr : r ∈ �};
• A set of density matrices T = {ρr : r ∈ �} ⊆ S.

If the rth outcome of a measurement performed by applying M to a given |�α′ 〉 ∈ Sn

occurs, the system is then prepared in the state ρr . This is said to be the estimated state from
the rth measurement outcome. For any |�α′ 〉 ∈ Sn, the average estimated state of the system
is given by

ρ(�α′ ) :=
∑
r∈�

〈�α′ |Êr |�α′ 〉ρr .

Thus, the fidelity for (M, T ) to estimate the state |ψf −1(α′)〉 is 〈ψf −1(α′)|ρ(�α′ )|ψf −1(α′)〉, and
the average fidelity for (M, T ) to estimate states in S is given by

F(M, T ) :=
∫

α′∈A′
〈ψf −1(α′)|ρ(�α′ )|ψf −1(α′)〉 d(α′), (1)

where d(α′) is a generalized measure over A′. Then, using the above expression for ρ(�α′ ), we
have

F(M, T ) =
∫

α′∈A′

∑
r∈�

〈�α′ |Êr |�α′ 〉〈ψf −1(α′)|ρr |ψf −1(α′)〉 d(α′). (2)

In this last equation, we can replace 〈ψf −1(α′)|ρr |ψf −1(α′)〉 with a [0, 1]-valued parameter
depending on M, r and α′. Such a parameter, denoted by s(M, r, α′), is called the score. We
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write F(M, s) if we want to stress that the average fidelity depends also on a specified score
s(M, r, α′). Note that T depends on the choice of s. Let

F max
s := sup

M
F(M, s).

Our task is to evaluate F max
s and to determine which state estimation strategies achieve this

quantity. We simply write F
max

if the score is taken to be 〈ψf −1(α′)|ρr |ψf −1(α′)〉.

2.2. How to evaluate F max
s

Let us denote by L(A) the linear span of a set of vectors A. Let {|�i〉 : i = 1, . . . , N} be an
orthonormal basis of L(Sn). We can attain higher values of F(M, s) if we restrict each POVM
element Êr to have support in L(Sn) instead of H⊗n (recall that the support of an operator
is the linear span of its range). In fact, since |�α′ 〉 ∈ L(Sn), one can get higher value of
〈�α′ |Êr |�α′ 〉 if every Êr has support in L(Sn). However, note that if the elements of a POVM
have support in a subspace of H⊗n containing L(Sn), then the POVM may still give rise to
F max

s (an example is given in section 3.3 below). In order to compute F(M, s), we take the
POVM M = {Êr : r ∈ �} such that, for every r ∈ �, we have Êr = CrP

[∑N
i=1 λir |�i〉

]
,

with the following constraints:

(A) Cr > 0 for every r ∈ �;
(B)

∑N
i=1 |λir |2 = 1, for every r ∈ �.

Then each Êr has support in L(Sn). These operators form a POVM on L(Sn) if and only
if∑
r∈�

CrP

[
N∑

i=1

λir |�i〉
]

= IL(Sn) =
N∑

i=1

P [|�i〉], that is, if and only if,

(C)
∑

r∈� Crλirλ
∗
jr = δij for every i, j = 1, . . . , N .

Now, the given state of Sn can be written as |�α′ 〉 = ∑N
i=1 μi(α

′)|�i〉, where

(D)
∑N

i=1 |μi(α
′)|2 = 1.

Note that, although the set {(μ1(α
′), μ2(α

′), . . . , μN(α′)) : α′ ∈ A′} is known, the
individual N-tuple (μ1(α

′), μ2(α
′), . . . , μN(α′)) is not, since the supplied state |�α′ 〉 is

unknown. Thus

〈�α′ |Êr |�α′ 〉 = Cr

∣∣∣∣∣∣
N∑

j=1

λ∗
jrμi(α

′)

∣∣∣∣∣∣
2

, for every r ∈ �.

It follows that, with the score 〈ψf −1(α′)|ρr |ψf −1(α′)〉, the average fidelity is

F(M, T ) =
∫

α′∈A′

⎛⎜⎝∑
r∈�

Cr

∣∣∣∣∣∣
N∑

j=1

λ∗
jrμi(α

′)

∣∣∣∣∣∣
2

〈ψf −1(α′)|ρr |ψf −1(α′)〉

⎞⎟⎠ d(α′)

or, equivalently,

F(M, T ) =
∑
r∈�

N∑
j,k=1

Crλ
∗
jrλkr

(∫
α′∈A′

μj(α
′)(μk(α

′))∗〈ψf −1(α′)|ρr |ψf −1(α′)〉 d(α′)
)

. (3)

Our task is to maximize F(M, T ) under the constraints (A), (B), (C) and (D). A general
approach makes use of Lagrange multipliers. Unless otherwise stated, we take the estimated
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state ρr to be a pure state |ϕr〉〈ϕr |. Let {|χj 〉 : j = 1, . . . ,M} be an orthonormal basis of L(S).
With respect to this basis, we can express the estimated state |ϕr〉 as |ϕr〉 = ∑M

i=j χjr |χj 〉,
with

∑M
j=1 |χjr |2 = 1 for every r ∈ �. The variables considered are Cr, λir , χjr , where

r ∈ �, i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}. In this paper, instead of make use of Lagrange
multipliers, we adopt an algebraic approach.

3. Estimation of Bloch vectors: previous works

We consider here the simplest case of state estimation, that is the problem of estimating the
direction of a pure qubit. In this section we sketch some of the related previous works.

3.1. The Bloch sphere representation

Any state of a quantum system described by a two-dimensional Hilbert space H ∼= C
2 is called

qubit. Spin states of an electron and polarization states of a photon are examples of qubits.
Any pure qubit is a vector of H. There is an one-to-one correspondence between normalized
pure qubits and unit vectors of the Euclidean space R

3. This correspondence (which also
valid for normalized mixed qubits) is called the Bloch sphere representation of qubits. In
this representation, any pure qubit |ψ(θ, φ)〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉, corresponds to a Bloch

vector n̂ = (sin θ cos φ, sin θ sin φ, cos θ), where θ ∈ [0, π ] and φ ∈ [0, 2π). More generally,
|ψ(θ, φ)〉〈ψ(θ, φ)| = 1

2 (I + n̂ · σ̂ ), where I is the 2 × 2 identity matrix and σ̂ is the vector
with x-, y- and z-component as the Pauli spin matrices σx, σy and σz, respectively. We write
|ψ(θ, φ)〉 = |̂n〉. Here, |0〉 and |1〉 are the eigenstates of σz corresponding to the eigenvalues
1 and −1, respectively. The state |ψ(π − θ, π + φ)〉 = sin θ

2 |0〉 − eiφ cos θ
2 |1〉, corresponding

to the Bloch vector −n̂, is orthogonal to |ψ(θ, φ)〉.

3.2. Peres–Wootters

Let S = {|ψ1〉, |ψ2〉, |ψ3〉}, where |ψ1〉 = |0〉, |ψ2〉 = 1
2 |0〉 +

√
3

2 |1〉 and |ψ3〉 = 1
2 |0〉 −

√
3

2 |1〉.
Let S2 = {|ψ1〉⊗2, |ψ2〉⊗2, |ψ3〉⊗2} and s(M, r, j) = |〈ϕr |ψj 〉|2. The state |ϕr〉 is the
estimated qubit corresponding to the rth measurement outcome of the general POVM
M = {Êr = Cr · P [λ1r |00〉 + λ2r |01〉 + λ3r |10〉 + λ4r |11〉] : r ∈ �} satisfying the constraints
(A), (B), (C) and (D). Peres and Wootters [17] gave numerical evidence that measurements
with entangled bases λ1r |00〉 + λ2r |01〉 + λ3r |10〉 + λ4r |11〉 can give rise to higher average
fidelity compared to the case when the measurement bases are not entangled.

3.3. Massar–Popescu

Massar and Popescu [14] considered S = {|ψ(θ, φ)〉 : θ ∈ [0, π ], φ ∈ [0, 2π)}, Sn =
{|ψ(θ, φ)〉⊗n : θ ∈ [0, π ], φ ∈ [0, 2π)} and s(M, r, (θ, φ)) = |〈ϕr |ψ(θ, φ)〉|2 = 1+̂n · n̂r

2 ,
where |ϕr〉 = cos θr

2 |0〉 + eiφr sin θr

2 |1〉 = |̂nr〉. The state |ϕr〉 is the estimated qubit
corresponding to the rth measurement outcome of the POVM M = {Êr : r ∈ �}:

• If n = 1 then � = {1, 2}, Ê1 = |0〉〈0|, Ê1 = |1〉〈1|, |ϕ1〉 = |0〉 and |ϕ2〉 = |1〉. For
n = 1, F max = 2

3 .

• If n = 2 then � = {1, 2, 3, 4} and Êj = P
[

1
2 |ψ−〉 +

√
3

2 |̂nj 〉⊗2
]

for j = 1, . . . , 4, where

n̂1 = (0, 0, 1), n̂2 = (√
8

3 , 0,− 1
3

)
, n̂3 = (−√

2
3 ,

√
2
3 ,− 1

3

)
and n̂4 = (−√

2
3 ,−

√
2
3 ,− 1

3

)
;

|ψ−〉 = 1√
2
(|01〉 − |10〉) and |ϕj 〉 = |̂nj 〉 for j = 1, . . . , 4. For n = 2, F max = 3

4 .
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• If n > 2 then F max = n+1
n+2 , which was obtained by making use of an infinite POVM (i.e.,

for which � is an infinite set) known as covariant measurement (see, e.g. [11]).

3.4. Derka–Buzek–Ekert

For the general case considered by Massar and Popescu, Derka et al [7] have given
a finite POVM such that F max = n+1

n+2 for any n. In addition, they also considered

S = {∣∣ψ(
π
2 , φ

)〉
: φ ∈ [0, 2π)

}
, with Sn = {∣∣ψ(

π
2 , φ

)〉⊗n
: φ ∈ [0, 2π)

}
,� = {0, . . . , n} and

Êr = P
[

1√
n+1

∑n
j=0 e

2π ij
n+1

∣∣S(n)
j

〉]
, where∣∣S(n)

j

〉 = 1√(
n

j

) ∑
xi=0,1
1�i�n

|{xi :xi=0}|=j

|x1x2 · · · xn〉. (4)

The state
∣∣S(n)

j

〉
is the symmetrized n-qubit superposition of j 0’s and (n − j) 1’s, |ϕr〉 =∣∣ψ(

π
2 , 2πr

n+1

)〉
and

F max = 1

2
+

1

2n+1

n−1∑
i=0

√(
n

i

)(
n

i + 1

)
.

3.5. Latorre–Pascual–Tarrach

Latorre et al [12] considered the case of estimation of qubits for which S = {|ψ(θ, φ)〉 : θ ∈
[0, π ], φ ∈ [0, 2π)}, Sn = {|ψ(θ, φ)〉⊗n : θ ∈ [0, π ], φ ∈ [0, 2π)} and s(M, r, (θ, φ)) =
1+̂n · n̂r

2 . The value F max = n+1
n+2 corresponds to the estimation strategy which uses a POVM

with elements Êr = CrP [|ψ(θr, φr)〉⊗n], and |ϕr〉 = |ψ(θr, φr)〉. The table below contains
the parameters of the strategy for 2 � n � 5. For n > 5, the minimal finite POVM could be
established.

n r Cr φr/π cos θr F max

2
1

2 − 4
3/4

0
2(r − 2)/3

1
−1/3

3/4

3
1
2

3 − 6
2/3

0
0

(r − 3)/2

1
−1

0
4/5

4

1
2

3 − 6
7 − 10

5/12
5/12
25/48
25/48

0
0

(r − 3)/2(
r − 13

2

)/
2

1
−1

1/
√

5

−1/
√

5

5/6

5

1
2

3 − 7
8 − 12

1/2

0
0

2(r − 3)/5
2
(
r − 15

2

)/
5

1
−1

1/
√

5

−1/
√

5

5/7

3.6. Gisin–Popescu–Massar

Gisin and Popescu [10] considered the problem of estimating the direction a qubit |ψ(θ, φ)〉
from the entire Bloch sphere, when an anti-parallel state |ψ(θ, φ)〉 ⊗ |ψ(π − θ, π + φ)〉



1816 S L Braunstein et al

is supplied with equal probability over the set (θ, φ). Then, let S = {|ψ(θ, φ)〉 : θ ∈
[0, π ], φ ∈ [0, 2π)} and S2 = {|ψ(θ, φ)〉⊗ |ψ(π − θ, π +φ)〉 : θ ∈ [0, π ], φ ∈ [0, 2π)}. The
state |ϕr〉 = |̂nr〉 is the estimated qubit corresponding to the rth measurement outcome
of the POVM M = {Êr : r ∈ �}: Êr = P

[
α|̂nr ,−n̂r〉 − β

∑n
k=1
k =r

|̂nk,−n̂k〉
]
, for

r ∈ {1, 2, 3, 4} = �, where α = 13
6
√

6−2
√

2
and β = 5−2

√
3

6
√

6−2
√

2
. The average fidelity for this

strategy was shown to be F(M, T ) = 5
√

3+33

3(3
√

3−1)
2 . Massar [13] established that this strategy

is optimal. Moreover, Massar proved that in order to estimate the direction of a vector that
lies on the plane perpendicular to the direction of the Bloch vector of the qubit |ψ(θ, φ)〉 (so
s(M, T , r, (θ, φ)) = 1 − (̂n · n̂r )

2), parallel and anti-parallel states give the optimal fidelities
F max

s = 0.8 and F
max
s = 0.733, respectively. Thus, parallel qubits give then better fidelity for

the chosen score.

3.7. LOCC measurements

Let us suppose that we are restricted to perform measurements on individual qubits and then
use the measurements results for one qubit to perform measurements on another qubit and
so on and so forth (this procedure is known as LOCC measurement). For every encoding,
the supplied multiqubit state would then contain the same amount of information about the
direction of the qubit as far as encoding is done in terms of product states. One can ask: what
kind of measurement provides more information about the direction of the qubit (LOCC or
an entangled one)? Gill and Massar [9] have shown that, as n → ∞, the difference between
optimal fidelities for LOCC and entangled measurements (on n copies of the qubit) goes to
zero. This is true not only for encodings of the form |ψ〉⊗n, but also for any other kind of
product state encoding. For similar results see also Bagan et al [3].

4. Estimation of parallel and anti-parallel qubits

We consider here the problem of estimating the direction of pure qubit taken from a circle
(for given θ ), when n copies of the qubit are supplied with equal probability. The qubit which
we are going to estimate belongs then to the set Sθ = {|ψ(θ, φ)〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉 :

φ ∈ [0, 2π)}. The set of supplied states is S(θ)
n = {|ψ(θ, φ)〉⊗n : φ ∈ [0, 2π)}, where

|ϕr〉 = cos θ
2 |0〉 + eiφr sin θ

2 |1〉 = |̂nr〉. Figure 2 illustrates this setting.
The score is s(M, r, (θ, φ)) = |〈ϕr |ψ(θ, φ)〉|2 = 1+̂n · n̂r

2 . The elements of S(θ)
n can be

written as

|ψ(θ, φ)〉⊗n =
n∑

j=0

√(
n

j

)(
cos

θ

2

)j (
sin

θ

2

)n−j

ei(n−j)φ
∣∣S(n)

j

〉 = |�n,0(θ, φ)〉,

where
∣∣S(n)

j

〉
is expressed in (4). More generally, for any fixed θ ∈ [0, π ], for estimating the

direction of |ψ(θ, φ)〉 ∈ Sθ , we can consider the scenario in which the state is supplied with
equal probability from the set

S(θ)
n,m = {|ψ(θ, φ)〉⊗n ⊗ |ψ(π − θ, π + φ)〉⊗m : φ ∈ [0, 2π)}. (5)

We use the notation

|�n,m(θ, φ)〉 = |ψ(θ, φ)〉⊗n ⊗ |ψ(π − θ, π + φ)〉⊗m.

Again, we take here |ϕr〉 = |ψ(θ, φr)〉. Any state of S(θ)
n,m can be then written as

|�n,m(θ, φ)〉 =
n+m∑
p=0

ei(n+m−p)φNp(θ)|ξp(θ)〉,
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where

|ξp(θ)〉= 1

Np(θ)

n+m∑
(k,l)∈Tp

√(
n

k

)(
m

l

)(
cos

θ

2

)2(m−l+k)(
sin

θ

2

)2(n+l−k)

(−1)m−l
∣∣S(n)

k

〉 ⊗ ∣∣S(m)
l

〉
,

Np(θ) =
⎛⎝ n+m∑

(k,l)∈Tp

(
n

k

)(
m

l

)(
cos

θ

2

)2(m−l+k) (
sin

θ

2

)2(n+l−k)

⎞⎠
1
2

and

Tp = {(k, l) ∈ {0, . . . , n} × {0, . . . , m} : k + l = p}.
Following the description given in section 3, the elements of the most general POVM, which
may appear in an estimation strategy are of the form

Êr = C(θ)
r P

⎡⎣n+m∑
p=0

λrp(θ)|ξp(θ)〉
⎤⎦ , for every r ∈ �,
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where C(θ)
r > 0,

∑n+m
p=0 |λrp(θ)|2 = 1 for every r ∈ �, and∑

r∈�

C(θ)
r λrp(θ)(λrq(θ))∗ = δpq, for all p, q ∈ {0, 1, . . . , n + m}. (6)

The average fidelity corresponding to this estimation strategy will be denoted by Fn,m(θ).
Using the POVM described in the previous section, we obtain

Fn,m(θ) = 1 + cos2 θ

2
+

sin2 θ

2

n+m∑
p=0

Np−1(θ)Np(θ)
∑
r∈�

C(θ)
r Re(λr(p−1)(θ)(λrp(θ))∗ e−iφr )

and we observe that

Fn,m(θ) � 1 + cos2 θ

2
+

sin2 θ

2

n+m∑
p=0

Np−1(θ)Np(θ)
∑
r∈�

C(θ)
r |λr(p−1)(θ) × λrp(θ)|. (7)

Then by the Schwartz inequality,

Fn,m(θ) � 1 + cos2 θ

2
+

sin2 θ

2

n+m∑
p=1

Np−1(θ)Np(θ)

×
[∑

r∈�

C(θ)
r |λr(p−1)(θ)|2

] 1
2
[∑

r∈�

C(θ)
r |λrp(θ)|2

] 1
2

= 1 + cos2 θ

2
+

sin2 θ

2

n+m∑
p=1

Np−1(θ)Np(θ), (8)

which follows from (6). We then see that

F max
n,m(θ) � 1 + cos2 θ

2
+

sin2 θ

2

n+m∑
p=1

Np−1(θ)Np(θ),

which is an upper bound on F max
n,m(θ) independent of any measurement strategy. We describe

now an estimation strategy which attains this quantity. Equality in (8) holds if and only if

C(θ)
r |λr(p−1)(θ)|2 = KpC(θ)

r |λrp(θ)|2, for every r ∈ �,

where Kp is constant for p = 0, 1, . . . , n + m. It follows from condition (6) that Kp = 1 for
every p = 0, 1, . . . , n + m. This implies that

λrp(θ) = eiεrp

√
n + m + 1

, where εrp ∈ R for every p = 0, 1, . . . , n + m and r ∈ �. (9)

Using (9), we see that equality in (7) holds if and only if εrp = 2nrpπ + εr(p+1) + φr , for each
r ∈ � and each p = 0, 1, . . . , n + m, where nrp ∈ Z. Then

εrp = 2Lrpπ + εr(n+m) + (n + m − p)φr, where

Lrp ∈ Z for every r ∈ � and p = 0, 1, . . . , n + m. (10)

Using (9) and (10) into (6), we can write∑
r∈�

C(θ)
r ei(q−p)φr = (m + n + 1)δpq, for every p, q = 0, 1, . . . , n + m. (11)

Thus, we see that one possible situation where condition (11) is satisfied is given by
� = {0, 1, . . . , n + m}, C(θ)

r = 1 for all r ∈ �, and φr = 2πr
n+m+1 for all r ∈ �. Taking

these parameters in the estimation strategy, we define a POVM M = {Êr : r ∈ �} such that

Êr = C(θ)
r P

⎡⎣n+m∑
p=0

λrp(θ)|ξp(θ)〉
⎤⎦= P

⎡⎣ 1√
m + m + 1

n+m∑
p=0

exp

[
2π i(n − m − p)r

n + m + 1

]
|ξp(θ)〉

⎤⎦.
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Then

Fn,m(θ) = 1 + cos2 θ

2
+

sin2 θ

2

n+m∑
p=1

Np−1(θ)Np(θ) = F max
n,m(θ).

Note that the basis of the POVM is the Fourier basis of dimension n + m + 1.

4.1. The dimensional argument

Gisin and Popescu [10] have shown that the anti-parallel qubits |�1,1(θ, φ)〉 contain more
information on an average compared to parallel qubits |�2,0(θ, φ)〉, regarding the direction
of the qubit |ψ(θ, φ)〉, when (θ, φ) is uniformly distributed over [0, π ] × [0, 2π). This
is counterintuitive according to the reasoning in classical physics. In fact, in order to
get information about the direction of a classical vector v, either we can consider the
parallel vectors {v, v} or the anti-parallel vectors {v,−v} (when we are restricted to only
to these two types of vectors). The parallel and the anti-parallel vectors do not make
any difference in this regard. This is simply because v and −v contains the same
information about the direction of v. However, a notable property of parallel and anti-
parallel qubits is the following: dimL({|�1,1(θ, φ)〉 : θ ∈ [0, π ], φ ∈ [0, 2π)}) = 4 and
dimL({|�2,0(θ, φ)〉 : θ ∈ [0, π ], φ ∈ [0, 2π)}) = 3. Gisin and Popescu proposed the
difference in dimension as the reason behind the difference in optimal fidelities. We call this
reasoning as dimensional argument. They support the dimensional argument as follows. Even
though

|〈�1,1(θ, φ)|�1,1(θ
′, φ′)〉| = |〈�2,0(θ, φ)|�2,0(θ

′, φ′)〉|, where

θ, θ ′ ∈ [0, π ] and φ, φ′ ∈ [0, 2π),

anti-parallel states are, as a whole, farther apart than parallel states, because of the difference
on the dimensions of the linear spans. Note that

|〈�1,1(θ, φ)|�1,1(θ
′, φ′)〉|2 = |〈ψ(θ, φ)|ψ(θ ′, φ′)〉|2 · |〈ψ(π − θ, π + φ)|ψ(π − θ ′, π + φ′)〉|2

=
(

1 + n̂ · n̂′

2

)
·
(

1 + (−n̂) · (−n̂′)
2

)
=
(

1 + n̂ · n̂′

2

)2

= |〈�2,0(θ, φ)|�2,0(θ
′, φ′)〉|2,

where |ψ(θ, φ)〉 = |̂n〉 and |ψ(θ ′, φ′)〉 = |̂n′〉. Figure 3 clarifies the meaning of farther apart.
The three unit vectors n̂1, n̂2 and n̂3 lie on the equatorial plane and are linearly dependent.
The angle between each pair of them is α = 2

3π . We consider now three linearly independent
vectors m̂1, m̂2 and m̂3, whose heads are on a small circle such that the great circle joining
north pole and the head of n̂i crosses the equator in the head of m̂i . This means that the angle
between m̂i and m̂j is smaller than the angle α between n̂i and n̂j . In order to make the angle
between m̂i and m̂j to be equal to α we need to rotate them in such a way that the distance
between their heads increases.

The mathematical formulation distilled from the above argument can be described as
follows:

Problem. Let H be a d-dimensional Hilbert space. Let � be a set of indices (not
necessarily finite). Let E|�〉 = {(|�i〉, pi : |�i〉 ∈ H, 0 � pi � 1 for every i ∈ �

and
∑

i∈� pi = 1} and E|ϒ〉 = {(|ϒi〉, pi) : |ϒi〉 ∈ H, 0 � pi � 1 for every i ∈ �

and
∑

i∈� pi = 1}. Suppose that |〈�i |�j 〉| = |〈ϒi |ϒj 〉| for every i, j ∈ �, and that
dimL({|�i〉 : i ∈ �}) > dimL({|ϒi〉 : i ∈ �}). Then F max for estimating i, for states given
from E|�〉 should be grater than that for states given from E|ϒ〉.



1820 S L Braunstein et al

Z

X

Y

ˆ 3m ˆ 2m
ˆ 1m

ˆ 3n ˆ 2n

ˆ 1n
α

α
α

Z

X

Y

ˆ 3m ˆ 2m
ˆ 1m

ˆ 3n ˆ 2n

ˆ 1n
α

α
α

Figure 3.

The problem can be restated in a more concrete form as follows. Let s : �×� −→ [0, 1]
be the score when a POVM M = {Er : r ∈ �} is applied on the unknown state |�i〉, given
from the set E|�〉, with probability pi , and the rth outcome has occurred. Note that the set of
values of the score s are different for different forms of � (i.e., for different choices of the
POVM M). Then the average fidelity is

F(M, E|�〉, s) =
∑
r∈�

∑
i∈�

pi〈�i |Er |�i〉s(i, r).

Similarly, for E|ϒ〉, we have F(M, E|ϒ〉, s) = ∑
r∈�

∑
i∈� pi〈ϒi |Er |ϒi〉s(i, r). Let

F max(E|�〉, s) be the maximum of F(M, E|�〉, s) over all possible choices of the POVM
M (F max(E|ϒ〉, s) is defined similarly). Suppose that the following conditions are satisfied
simultaneously:

• |〈�i |�j 〉| = |〈ϒi |ϒj 〉|, for every i, j ∈ �;
• dimL({|�i〉 : i ∈ �}) > dimL({|ϒi〉 : i ∈ �});
• L({|�i〉 : i ∈ �}) ⊃ L({|ϒi〉 : i ∈ �}).

Then we need to prove that F max(E|�〉, s) > F max(E|ϒ〉, s). A solution to this problem is
still missing. So we do not know whether the statement of the above problem can be taken as
general principle.

4.1.1. Entropic argument. Consider the average density matrices

ρ2,0 = 1

4π

∫ π

θ=0

∫ 2π

φ=0
P [|�2,0(θ, φ)〉] sin θ dθ dφ

and

ρ1,1 = 1

4π

∫ π

θ=0

∫ 2π

φ=0
P [|�1,1(θ, φ)〉] sin θ dθ dφ,

associated with the ensembles for parallel and anti-parallel states

S
(θ)
2,0 = {|�2,0(θ, φ)〉 : θ ∈ [0, π ], φ ∈ [0, 2π)}

and

S
(θ)
1,1 = {|�1,1(θ, φ)〉 : θ ∈ [0, π ], φ ∈ [0, 2π)}.



Estimation of pure qubits on circles 1821

Let S(ρ) the von Neumann entropy of a density matrix ρ. This is defined as S(ρ) =
−∑

i λi log2 λi , where λi is the ith eigenvalue of ρ. The von Neumann entropy is a measure of
the information content of a density matrix. One can check that S(ρ1,1) > S(ρ2,0); therefore
anti-parallel states can be better distinguished, and hence, they posses more information about
the qubit. It should be noted that, even if the qubits |ψ(θ, φ)〉 belong to the circle Sθ , the von
Neumann entropy S(ρ1,1(θ)) of the average density matrix of the supplied anti-parallel qubits
is greater than or equal to the von Neumann entropy S(ρ2,0(θ)) of the average density matrix
of the supplied parallel qubits (see figure 5, right). This argument does not hold in general.
We provide a counterexample. Consider the following two ensembles:

E1 =
{

|0〉, 1

2
+

√
2 + 1/2

4
; |1〉, 1

2
−

√
2 + 1/2

4

}
and E2 =

{
|0〉, 1

2
; 1√

2
(|0〉 + |1〉) ,

1

2

}
.

Then

S

(
1

2
P [|0〉] +

1

2
P

[
1√
2

(|0〉 + |1〉)
])

= H

(
1

2
+

√
2

4

)
> S

((
1

2
+

√
2 + 1/2

4

)
P [|0〉]

+

(
1

2
−

√
2 + 1/2

4

)
P [|1〉]

)
= H

(
1

2
−

√
2 + 1/2

4

)
,

where

H(x) = −x log2 x − (1 − x) log2 (1 − x) for 0 � x � 1.

This shows that, even though the states in the ensemble E1 are better distinguished than the
states in E2 (as the states in E1 are orthogonal to each other and the states in E2 are not),
the information content of the density matrix corresponding to E1 is less than that the one
corresponding to E2.

4.2. Inadequacy of the dimensional argument

First of all, observe that, for any fixed θ ∈ (0, π), we have seen that so far as (n + m) is fixed,
the L(S(θ)

n,m) is (n + m + 1)-dimensional subspace of the 2n+m-dimensional Hilbert space of the
system. Of course the subspace L(S(θ)

n,m) is different for different values of n and m. Thus,
if F max

n,m(θ) = F max
n′,m′(θ), for n + m = n′ + m′, the dimensionality argument cannot be used

to explain this difference. We provide here three cases: (1) Let n + m = 2. Then (n,m) is
either (2, 0), (1, 1) or (0, 2). (2) Let n + m = 3. Then (n,m) is either (3, 0), (2, 1), (1, 2)

or (0, 3). (3) Let n + m = 4. Then (4, 0), (3, 1), (2, 2), (1, 3) or (0, 4). Note that
Fn,m(θ) = Fm,n(θ), since by swapping we can obtain the state |ψ(θ, φ)〉⊗n ⊗ |ψ⊥(θ, φ)〉⊗m

from |ψ⊥(θ, φ)〉⊗n ⊗ |ψ(θ, φ)〉⊗m. These cases are illustrated by figure 4 ((1) left and (2)
right) and figure 5 ((3) left). In none of these three figures the minimum of F max

n,0 (θ) is attained
at θ = π/2. This is attained at two points symmetrically about π/2. This phenomenon
is somehow unexpected. As the circle Sθ is going far and far from the poles towards the
equator, we lose more and more information about the direction of |ψ〉 (in Sθ ). It is then
expected that the optimal fidelity for states in Sθ (when the supplied state is of the form
|ψ(θ, φ〉⊗n ⊗|ψ(π −θ, π +φ)〉⊗m) would start to decrease from θ = 0, attaining its minimum
at θ = π/2, and again start to increase, attaining its maximum at θ = π .

5. Estimation of qubits from two circles

Consider the problem of estimating the direction of the Bloch vector n̂ =
(sin θ cos φ, sin θ sin φ, sin θ) of a qubit |ψ(θ, φ)〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉, contained within
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the circle Sθ = {|ψ(θ, φ)〉 : φ ∈ [0, 2π)}, where θ ∈ [0, π ] is arbitrary but fixed. We have seen
that in the case of estimating the direction of the Bloch vector of the qubit |ψ(θ, φ)〉 ∈ Sθ , the
anti-parallel qubits |�1,1〉 = |ψ(θ, φ)〉⊗ |ψ(π − θ, π + φ)〉 give better information compared
to the parallel qubits |�2,0〉 = |ψ(θ, φ)〉 ⊗ |ψ(θ, φ)〉 (where φ is uniformly distributed over
[0.2π)). A generalization of these two kinds of encodings of the initial two qubits is of the
following form. The supplied two-qubit state is of the form

|�(θ, θ0, φ)〉 = |ψ(θ, φ)〉 ⊗ |ψ(θ + θ0, φ)〉, (12)

where θ0 is an arbitrary but fixed element from the set [−θ, π − θ ], and φ is uniformly
distributed over [0, 2π) (see figure 6).

One can check that

|�(θ, θ0, φ)〉 = cos
θ

2
cos

θ + θ0

2
|00〉 + e2iφsin

θ

2
sin

θ + θ0

2
|11〉 + eiφN(θ, θ0)|χ(θ, θ0)〉, (13)
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where

|χ (θ, θ0)〉 = 1

N (θ, θ0)

(
cos

θ

2
sin

θ + θ0

2
|01〉 + sin

θ

2
cos

θ + θ0

2
|10〉

)
,

N (θ, θ0) =
√

cos2
θ

2
sin2

θ + θ0

2
+ sin2

θ

2
cos2

θ + θ0

2
.

(14)

Thus, varying φ over [0, 2π), we see that for fixed θ and θ0, the set (which we denote as
S1,1 (θ, θ0)) of all states |� (θ, θ0, φ)〉, given in (13), spans a three-dimensional subspace
(with an orthonormal basis {|00〉, |11〉, |χ (θ, θ0)〉}) of the total four-dimensional two-qubit
Hilbert space.

For estimation, let us choose a POVM M = {Er : r ∈ �} on the linear span
L
(
S1,1 (θ, θ0)

)
of S1,1 (θ, θ0), where

Er = CrP [α1r |00〉 + α2r |11〉 + α3r |χ (θ, θ0)〉] , (15)

with

Cr > 0,
3∑

j=1

|αjr |2 = 1 for all r ∈ �,

∑
r∈�

Crαjrα
∗
kr = δjk for all j, k = 1, 2, 3.

(16)

The score is

s(M, r, (θ, φ)) = |〈ψ(θ, φ)|ψ(θ, φr)〉|2.
So, the average state estimation fidelity is given by

F 1,1(θ, θ0) = 1

2π

∑
r∈�

∫ 2π

φ=0
〈�(θ, θ0, φ)|Er |�(θ, θ0, φ)〉|〈ψ(θ, φ)|ψ(θ, φr)〉|2 dφ

= 1 − sin2θ

2
+

sin2θ

2
N(θ, θ0)

{
cos

θ

2
cos

θ + θ0

2

∑
r∈�

CrRe{α1rα
∗
3r eiφr }

+ sin
θ

2
sin

θ + θ0

2

∑
r∈�

Cr Re{α2rα
∗
3r e−iφr }

}
. (17)
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Thus we see that

F 1,1 (θ, θ0) � 1 − sin2θ

2
+

sin2θ cos θ0
2

2
N (θ, θ0) , (18)

a quantity independent of the choice of the POVM. Note that as here −π
2 � − θ

2 � θ0
2 �

π−θ
2 � π

2 , therefore cos θ0
2 � 0.

The following is a choice for which equality holds good in (18):

� = {1, 2, 3}, Cr = 1 for all r ∈ �,

αjr = 1√
3

exp

[
2π i(j − 1)(r − 1)

3

]
for all r ∈ � and for all j = 1, 2, 3,

(19)

while

φ1 = 0, φ2 = 4π

3
, φ3 = 2π

3
. (20)

Thus we see that the optimal average fidelity, in this case, is given by

F
max
1,1 (θ, θ0) = 1 − sin2θ

2
+

sin2θcos θ0
2

2
N (θ, θ0) , (21)

where N (θ, θ0) is given in (14). We would like to know now for which value(s) of
θ0 ∈ [−θ, π − θ ], F

max
1,1 (θ, θ0) is maximum, given any arbitrary but fixed θ ∈ [0, π ]. Note

that (according to our notations, used in earlier sections)

F
max
2,0 (θ) = F

max
1,1 (θ, 0) and F

max
1,1 (θ) = F

max
1,1 (θ, π − 2θ).

Also note that the maximum value of F
max
1,1 (θ, θ0) is equal to 1 for both θ = 0 as well as

θ = π (irrespective of values of θ0). Basically, when θ = 0, the state estimation (which we
considered here) reduces to estimating the direction of the qubit |0〉, given the supply of the
two-qubit states |0〉 ⊗ |ψ (θ0, φ)〉 for the uniform distribution of φ over [0, 2π). Hence the
optimal fidelity must be 1. Same is the case when θ = π . On the other hand, for given any
θ ∈ [0, π ], F

max
1,1 (θ, θ0) will reach its minimum when θ0 = −θ and θ0 = π − θ . This is

because when θ0 = −θ (or θ0 = π − θ ), the set of supplied two-qubit states is of the form
{|ψ(θ, φ)〉 ⊗ |0〉 : φ ∈ [0, 2π)} (or {|ψ(θ, φ)〉 ⊗ |1〉 : φ ∈ [0, 2π)}). And this gives rise to the
same optimal average fidelity F

max
1,1 (θ,−θ) (= F

max
1,1 (θ, π − θ)) as in the case of estimating

the direction of the qubits |ψ(θ, φ)〉 (for fixed θ ), when the supplied set of states is the circle
Sθ = {|ψ(θ, φ)〉 : φ ∈ [0, 2π)} itself. So, in our notation, we have

F
max
1,0 (θ) = F

max
1,1 (θ, θ0 = −θ) = F

max
1,1 (θ, θ)0 = π − θ)

= min
{
F

max
1,1 (θ, θ0) : θ0 ∈ [−θ, π − θ ]

}
. (22)

Again

F
max
1,1

(
θ = π

2
, θ0

)
= 1

2
+

cos θ0
2

2
√

2
,

which will take its maximum value 1
2 + 1

2
√

2
for θ0 = 0. Thus for estimating the direction of

pure qubit, uniformly distributed on a given great circle, if two pure qubits are supplied, it is
always better to supply two parallel qubits (or, equivalently two anti-parallel qubits), rather
than supplying one pure qubit from the great circle and another corresponding qubit from a
small circle whose plane is parallel to that of the great circle.

In the maximization procedure of F
max
1,1 (θ, θ0) over all values of θ0 ∈ [−θ, π − θ ], we

therefore can assume that θ is different from 0, π
2 and π . In figure 7, F

max
1,1 (θ, θ0) is plotted for

0 � θ � π and −θ � θ0 � π − θ .
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Figure 7. The plot of F max
1,1 (θ, θ0) for 0 � θ � π and −θ � θ0 � π −θ . The points of F max

1,1 (θ, 0)

are on the intersection of F
max
1,1 (θ, θ0) with the plane y = 0. The points of F max

1,1 (θ, π − 2θ) are on

the intersection of F max
1,1 (θ, θ0) with the plane 2x + y = π .

Our idea behind the choice of the set S1,1 (θ, θ0), from which a two-qubit state has to be
supplied for the estimation, is to check whether for any fixed θ ∈ (

[0, π ] − {
0, π

2 , π
})

, states

from S1,1 (θ, 0) give the minimum value of F
max
1,1 (θ, θ0) and states from S1,1 (θ, π − 2θ) give

the maximum value of F
max
1,1 (θ, θ0). But one can check that for all θ ∈ [0, π ],[

∂F
max
1,1 (θ, θ0)

∂θ0

]
θ0=0

= sin2θ

4
, (23)

and [
∂F

max
1,1 (θ, θ0)

∂θ0

]
θ0=π−2θ

= −1

2
cos2θsin2θ. (24)

The right-hand sides of both (23) and (24) are equal to zero if and only if θ = 0, π
2 , π . Thus

for given any θ ∈ (
[0, π ] − {

0, π
2 , π

})
, neither the minimum value of F

max
1,1 (θ, θ0) is attained

by the supply of parallel qubits
∣∣�2,0(θ, φ)

〉
, nor the maximum value of F

max
1,1 (θ, θ0) is attained

by the supply of anti-parallel qubits
∣∣�1,1(θ, φ)

〉
. This shows that in order to extract best

information about the direction of the Bloch vector n̂ = (sinθ cos φ, sin θ sin φ, sin θ) of a
qubit |ψ(θ, φ)〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉 (contained within the circle Sθ = {|ψ(θ, φ)〉 : φ ∈

[0, 2π)}), we need to encode the direction of the Bloch vector in a two-qubit pure state (i.e.,
the supplied state) in a form which in general is neither parallel nor anti-parallel.

6. Estimation of qubits from two diametrically opposite circles

We have seen that in the case of estimating the direction of the Bloch vector n̂ =
(sin θ cos φ, sin θ sin φ, cos θ) of the qubit |ψ(θ, φ)〉 ∈ Sθ = {|ψ(θ, φ)〉 : φ ∈ [0, 2π)}, the
anti-parallel qubits

∣∣�1,1
〉 = |ψ(θ, φ)〉 ⊗ |ψ(π − θ, π + φ)〉 give better information compared

to the parallel qubits
∣∣�2,0

〉 = |ψ(θ, φ)〉 ⊗ |ψ(θ, φ)〉 (where φ is uniformly distributed over
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Figure 8.

[0.2π)), even though both anti-parallel as well as parallel qubits, in this scenario, span three-
dimensional subspaces. By symmetry, it can be shown that in the case of estimating the
direction of the Bloch vector

m̂ (̂n) = (sin(π − θ) cos φ, sin(π − θ) sin φ, cos(π − θ)) = (sinθ cos φ, sin θ sin φ,−cosθ),

the anti-parallel qubits |�1,1〉 = |ψ(θ, φ)〉 ⊗ |ψ(π − θ, π + φ)〉 give better information
compared to the parallel qubits |�2,0〉 = |ψ(θ, φ)〉 ⊗ |ψ(θ, φ)〉 (where φ is uniformly
distributed over [0.2π)) (see figure 8). It should be noted here that the score of the game
in the former case is 1+̂n · n̂r

2 , while, for the latter case, it is equal to 1+m̂(̂n)·m̂(̂nr )

2 , where
n̂r = (sin θ cos φr, sin θ sin φr, cos θ). Hence, 1+̂n · n̂r

2 = 1+m̂(̂n)·m̂(̂nr )

2 . Consider now the
problem of estimating the direction of the Bloch vector n̂ = (sin θ cos φ, sin θ sin φ, cos θ)

associated with the qubit |ψ(θ, φ)〉 = cos θ
2 |0〉+eiφ sin θ

2 |1〉 ∈ {|ψ(θ, φ)〉 : φ ∈ [0, 2π)}, when
the supplied two qubits can be either of the form

∣∣�2,0(θ, φ)
〉 = |ψ(θ, φ)〉⊗|ψ(θ, φ)〉 or of the

form
∣∣�2,0(π − θ, φ)

〉 = |ψ(π − θ, φ)〉 ⊗ |ψ(π − θ, φ)〉, in the case of parallel qubits, while
the supplied two qubits can be either of the form

∣∣�1,1(θ, φ)
〉 = |ψ(θ, φ)〉⊗|ψ(π −θ, π +φ)〉

or of the form
∣∣�1,1(π − θ, φ)

〉 = |ψ(π − θ, φ)〉 ⊗ |ψ(θ, π + φ)〉, in the case of anti-parallel
qubits.

Note that the dimension of the linear spans of the sets of all parallel and anti-parallel
qubits, |ψ〉 ⊗ |ψ〉 and |ψ〉 ⊗ |ψ⊥〉, are respectively three and four, whenever the qubit |ψ〉 is
taken from the set of two diametrically opposite circles

Sθ,π−θ = {|ψ(θ, φ)〉 : φ ∈ [0, 2π)} ∪ {|ψ(π − θ, φ)〉 : φ ∈ [0, 2π)}, (25)

where θ ∈ [0, π ] − {
0, π

2 , π
}

is arbitrary but fixed. (The bases of the spans are in fact
{|00〉, |11〉, 1√

2
(|01〉 + |10〉)} and {|00〉, |11〉, |01〉, |10〉 + |10〉}, respectively.) So, according to

dimensional argument, anti-parallel qubits should give more information about the direction
of the Bloch vector of the qubit |ψ〉, compared to parallel qubits. The question is here to
choose an appropriate score. The general estimation strategy is then as follows. For any qubit
|ψ〉 = |ψ(θ ′, φ′)〉 (where θ ′ ∈ [0, π ] and φ′ ∈ [0, 2π)), we denote by |ψ⊥〉 the corresponding
orthogonal qubit |ψ(π − θ ′, π + φ′)〉. Let

S
‖
θ,π−θ = {|ψ〉 ⊗ |ψ〉 : |ψ〉 ∈ Sθ,π−θ } and S⊥

θ,π−θ = {|ψ〉 ⊗ |ψ⊥〉 : |ψ〉 ∈ Sθ,π−θ },
(26)
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where Sθ,π−θ is given in (25). If a state |�‖〉 ≡ |ψ〉 ⊗ |ψ〉 is supplied from S
‖
θ,π−θ ,

we perform a POVM M = {Ar = CrP [α1r |00〉 + α2r |11〉 + α3r |ψ+〉] : r ∈ �} on
this state (where |ψ+〉 = 1√

2
(|01〉 + |10〉)); if the rth outcome of the measurement

occurs (with probability 〈�‖|Ar |�‖〉), the estimated qubit is taken as the density matrix
ρr (and hence, the score is s(M, T = {ρr : r ∈ �}, |ψ〉) = 〈ψ | ρr |ψ〉). On the
other hand, if a state |�⊥〉 ≡ |ψ〉 ⊗ |ψ⊥〉 is supplied from S⊥

θ,π−θ , we perform a
POVMM = {Ar = CrP [α1r |00〉 + α2r |11〉 + α3r |01〉 + α4r |10〉] : r ∈ �} on this state (where
|ψ+〉 = 1√

2
(|01〉 + |10〉)); and if the rth outcome of the measurement occurs (with probability

〈�⊥|Ar |�⊥〉), the estimated qubit is taken as the density matrix ρr (and hence, the score is
s(M, T = {ρr : r ∈ �}, |ψ〉) = 〈ψ | ρr |ψ〉). Thus the average fidelity of estimation for
parallel and anti-parallel qubits are respectively given by

Fθ,π−θ;‖(M, T ) = 1

2
× 1

2π

∫ 2π

φ=0

{∑
r∈�

〈�2,0(θ, φ)|Ar |�2,0(θ, φ)〉〈ψ(θ, φ)|ρr |ψ(θ, φ)〉
}

dφ

+
1

2
× 1

2π

∫ 2π

φ=0

{∑
r∈�

〈�2,0(π − θ, φ′)|Ar |�2,0(π − θ, φ′)〉

× 〈ψ(π − θ, φ′)|ρr |ψ(π − θ, φ′)〉
}

dφ′, (27)

and

Fθ,π−θ;⊥(M, T ) = 1

2
× 1

2π

∫ 2π

φ=0

{∑
r∈�

〈�1,1(θ, φ)|Ar |�1,1(θ, φ)〉〈ψ(θ, φ)|ρr |ψ(θ, φ)〉
}

dφ

+
1

2
× 1

2π

∫ 2π

φ=0

{∑
r∈�

〈�1,1(π − θ, φ′)|Ar |�1,1(π − θ, φ′)〉

× 〈ψ(π − θ, φ′)|ρr |ψ(π − θ, φ′)〉
}

dφ′. (28)

Since our motivation is to estimate the direction of the Bloch vector of the qubit taken from
Sθ,π−θ , the estimated qubit ρr should be of the form

ρr = λr |ψ(θ, φr)〉〈ψ(θ, φr)| + (1 − λr)|ψ(π − θ, φ′
r )〉〈ψ(π − θ, φ′

r )|, (29)

where 0 � λr � 1, φr , φ
′
r ∈ [0, 2π). The parameters λr, φr , φ

′
r need to be chosen in

such a way that average state estimation fidelities would become maximum for the given
POVM M. For our purpose, we take λr = 1. The reason behind this choice is the
following: the optimal state estimation fidelity for estimating the direction of the Bloch vector
n̂ = (sin θ cos φ, sin θ sin φ, cos θ) of the qubit |ψ(θ, φ)〉 ∈ Sθ = {|ψ(θ, φ)〉 : φ ∈ [0, 2π)},
when the supplied state is |�2,0(θ, φ)〉, is the same as for estimating the direction of the Bloch
vector m̂(̂n) = (sin θ cos φ, sin θ sin φ,− cos θ), even when the supplied state is as above.
This is also true for anti-parallel states. It follows that the maximum values of

1

2π

∫ 2π

φ=0

∑
r∈�

〈�j,k(θ, φ)|Ar |�j,k(θ, φ)〉|〈ψ(θ, φ)|ψ(θ, φr)〉|2 dφ

and
1

2π

∫ 2π

φ=0

∑
r∈�

〈�j,k(θ, φ)|Ar |�j,k(θ, φ)〉|〈ψ(π − θ, φ′)|ψ(π − θ, φr)〉|2 dφ′,

where (j, k) ∈ {(2, 0), (1, 1)}, are equal.
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6.1. Parallel case

With the choice of the estimated state ρr = P [|ψ (θ, φr)〉], for the rth measurement outcome
of the POVM

M = {Er = CrP [α1r |00〉 + α2r |11〉 + α3r |ψ+〉] : r ∈ �},
the average fidelity when parallel qubits are supplied is

Fθ,π−θ;‖(M, T ) = 1

2

(
1 +

(2 − cos θ) sin3 θ

4
√

2

∑
r∈�

Cr |α1rα3r | cos(ε1r − ε3r + φr)

+
(2 + cos θ) sin3 θ

4
√

2

∑
r∈�

Cr |α2rα3r | cos(ε2r − ε3r − φr)

)
, (30)

where αjr = |αjr | eiεjr for j = 1, 2, 3 and r ∈ �. We have to maximize Fθ,π−θ;‖(M, T ) over
all possible choices of M and T , and subject to the constraints (A), (B), and (C), that is,

Cr > 0 for all r ∈ �,
3∑

j=1

|αjr |2 = 1 for all r ∈ �∑
r∈�

Crαjrα
∗
kr = δjk for all j, k = 1, 2, 3.

(31)

From (30) it follows that

Fθ,π−θ;‖(M, T ) � 1

2

⎡⎣1 +
(2 − cos θ) sin3 θ

4
√

2

(∑
r∈�

Cr |α1r |2
)1/2 (∑

r∈�

Cr |α3r |2
)1/2

+
(2 + cos θ) sin3 θ

4
√

2

(∑
r∈�

Cr |α2r |2
)1/2 (∑

r∈�

Cr |α3r |2
)1/2

⎤⎦
= 1

2

(
1 +

(2 − cos θ) sin3 θ

4
√

2
+

(2 + cos θ) sin3 θ

4
√

2

)
= 1

2

(
1 +

sin3 θ√
2

)
. (32)

Let us choose

� = {1, 2, 3},
Cr = 1 for all r ∈ �,

α11 = α12 = α21 = α31 = α13 = 1√
3
, α22 = α33 = e4π i/3

√
3

, α32 = α23 = e2π i/3

√
3

,

φ1 = 0, φ2 = 2π

3
, φ3 = 4π

3
.

(33)

For the choice (33), one can see that all the conditions in (31) are satisfied, then

Fθ,π−θ;‖(M, T ) = 1

2

(
1 +

sin3 θ√
2

)
= F

max
θ,π−θ;‖. (34)
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The elements of the POVM can be expressed in the following matrix in terms of the basis
{|00〉, |11〉, |ψ+〉}⎡⎢⎢⎢⎢⎢⎢⎢⎣

α11 = 1√
3

α21 = 1√
3

α31 = 1√
3

α12 = 1√
3

α22 = e4π i/3

√
3

α32 = e2π i/3

√
3

α13 = 1√
3

α23 = e2π i/3

√
3

α33 = e4π i/3

√
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This matrix is the discrete Fourier transform of dimension 3.

6.2. Anti-parallel case

With the choice of the estimated state ρr = P [|ψ (θ, φr)〉], for the rth measurement outcome
of the POVM

M = {Er = CrP [α1r |00〉 + α2r |11〉 + α3r |01〉 + α4r |10〉] : r ∈ �} ,

the average fidelity when anti-parallel qubits are supplied is

Fθ,π−θ;⊥(M, T ) = 1

2

[
1 − sin3 θ

4

∑
r∈�

Cr |α1rα3r | cos(ε1r − ε3r + φr)

+
sin3 θ

4

∑
r∈�

Cr |α1rα4r | cos(ε1r − ε4r + φr)

+
sin3 θ

4

∑
r∈�

Cr |α2rα3r | cos(ε2r − ε3r − φr)

− sin3 θ

4

∑
r∈�

Cr |α2rα4r | cos(ε2r − ε4r − φr)

]
, (35)

where αjr = |αjr | eiεjr for j = 1, 2, 3, 4 and r ∈ �. We have to maximize Fθ,π−θ;⊥(M, T )

over all possible choices of M and T , and subject to the constraints (A), (B), and (C), that is,

Cr > 0 for all r ∈ �,

4∑
j=1

|αjr |2 = 1 for all r ∈ �,

∑
r∈�

Crαjrα
∗
kr = δjk for all j, k = 1, 2, 3, 4.

(36)

From (35) it follows that

Fθ,π−θ;⊥(M, T ) = 1

2
+

sin3 θ

8

∑
r∈�

Cr Re[(α∗
3r − α∗

4r )(α2r e−iφr − α1r eiφr )]. (37)

Then

Fθ,π−θ;⊥(M, T ) � 1

2
+

sin3 θ

8

∑
r∈�

Cr |α∗
3r − α∗

4r | × |α2r e−iφr − α1r eiφr |

� 1

2
+

sin3 θ

8

[(∑
r∈�

Cr |α∗
3r − α∗

4r |2
)(∑

r∈�

Cr |α∗
2r − α∗

1r |2
)]1/2
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= 1

2
+

sin3 θ

8

[∑
r∈�

Cr |α3r |2 +
∑
r∈�

Cr |α4r |2 − 2 Re

(∑
r∈�

Crα3rα
∗
4r

)]1/2

×
[∑

r∈�

Cr |α1r |2 +
∑
r∈�

Cr |α2r |2 − 2 Re

(∑
r∈�

Crα2rα
∗
1r e−2iφr

)]1/2

= 1

2
+

sin3 θ

4

[
1 − Re

(∑
r∈�

Crα1rα
∗
2r e2iφr

)]1/2

� 1

2

(
1 +

sin3 θ√
2

)
. (38)

Let us choose
� = {1, 2, 3, 4},
Cr = 1 for all r ∈ �,

α1r = e−2iφr

2
, α2r = −1

2
for all r ∈ �,

α3r = −e−iφr

√
2

for r = 1, 2 and α3r = 0 for r = 3, 4,

α4r = 0 for r = 1, 2 and α4r = e−iφr √
2 for r = 3, 4,

φ1 = π

2
, φ2 = 3π

2
, φ3 = 0 and φ4 = π.

(39)

For the choice (39), one can see that all the conditions in (36) are satisfied, then

Fθ,π−θ;⊥(M, T ) = 1

2

(
1 +

sin3 θ√
2

)
= F

max
θ,π−θ;⊥ = F

max
θ,π−θ;‖. (40)

Expressed in terms of the basis {|00〉, |11〉, |01〉, |10〉}, the elements of the POVM give the
following matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11 = −1

2
α21 = −1

2
α31 = i

√
2

2
α41 = 0

α12 = −1

2
α22 = −1

2
α32 = − i

√
2

2
α42 = 0

α13 = 1

2
α23 = −1

2
α33 = 0 α43 = 1√

2

α14 = 1

2
α24 = −1

2
α34 = 0 α44 = − 1√

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (41)

If instead of this strategy we use a POVM whose elements (expressed in terms of the above
basis) give the Fourier transform of dimension 4, we can find that

Fθ,π−θ;⊥(M, T ) = 1

2

[
1 +

sin3 θ

16

(
2
√

2 sin
(π

4
− φ2

)
− 4 cos φ3 + 2 sin φ4

)]
,

which attains the maximum value 1
2 +

(
(3+

√
2) sin3 θ

8

)
, for φ2 = 7π

4 , φ3 = π, φ4 = π
2 and φ1

arbitrary. Observe that 1
2 +

(
(3+

√
2) sin3 θ

8

)
< 1

2

(
1 + sin3 θ√

2

)
, the value in (40). Finally, it is

important to remark that even if

dimL
(
S

‖
θ,π−θ

) = 3 < dimL
(
S⊥

θ,π−θ

) = 4,
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we have that F
max
θ,π−θ;⊥ = F

max
θ,π−θ;‖. So, once again, the dimensional argument fails. Observe

that the matrix (41) is similar to⎡⎢⎢⎢⎢⎢⎣
− 1

2
1
2

1√
2

0

− 1
2

1
2 − 1√

2
0

1
2

1
2 0 1√

2
1
2

1
2 0 − 1√

2

⎤⎥⎥⎥⎥⎥⎦ ,

the Haar transform of dimension 4 (see, e.g. [6]).

7. LOCC protocol

We describe here an LOCC protocol for optimally estimating the direction of a qubit |ψ (θ, φ)〉
(θ is fixed), when the supplied states are parallel states |�2,0〉 = |ψ(θ, φ)〉 ⊗ |ψ(θ, φ)〉. For
LOCC protocols the optimality does not change whether the supplied two qubits are parallel
or anti-parallel (or anything else), as far they are product states. The steps of the protocol are
the following:

1. Perform the PV (projection valued) measurement
{
P
[

1√
2
(|0〉 + |1〉)], P [

1√
2
(|0〉 − |1〉)]}

on the first qubit.
2.1. If P

[
1√
2
(|0〉+|1〉)] is the outcome of the measurement in (1) (the probability of this event

being 1
2

(
1 + sin θ cos φ

)
), the PV measurement

{
P
[

1√
2
(|0〉 + i|1〉)], P [

1√
2
(|0〉 − i|1〉)]} is

performed on the second qubit.
2.1.1. If P

[
1√
2
(|0〉 + i|1〉)] is the outcome of the measurement in (2.1) (with probability

1
2

(
1 + sin θ sin φ

)
), the estimated state is taken as |ψ(θ, π

4 )〉.
2.1.2. If P

[
1√
2
(|0〉 − i|1〉)] is the outcome of the measurement in (2.1) (with probability

1
2

(
1 − sin θ sin φ

)
), the estimated state is taken as

∣∣ψ(
θ, 7π

4

)〉
.

2.2. If P
[

1√
2
(|0〉−|1〉)] is the outcome of the measurement in (1) (the probability of this event

being 1
2

(
1 − sin θ cos φ

)
), the PV measurement

{
P
[

1√
2
(|0〉 + i|1〉)], P [

1√
2
(|0〉 − i|1〉)]}

is performed on the second qubit.
2.2.1. If P

[
1√
2
(|0〉 + i|1〉)] is the outcome of the measurement in (2.2) (with probability

1
2

(
1 + sin θ sin φ

)
), the estimated state is taken as

∣∣ψ(
θ, 3π

4

)〉
.

2.2.2. If P
[

1√
2
(|0〉 − i|1〉)] is the outcome of the measurement in (2.2) (with probability

1
2

(
1 − sin θ sin φ

)
), the estimated state is taken as

∣∣ψ(
θ, 5π

4

)〉
.

The average fidelity is then given by

F 2,LOCC(θ) = 1

2π

∫ 2π

φ=0

{[
1

2
(1 + sin θ cos φ) × 1

2
(1 + sin θ sin φ) ×

∣∣∣〈ψ (
θ,

π

4

)∣∣∣ψ(θ, φ〉
∣∣∣2]

+

[
1

2
(1 + sin θ cos φ) × 1

2
(1 − sin θ sin φ) ×

∣∣∣∣〈ψ (
θ,

7π

4

)∣∣∣∣ψ(θ, φ〉
∣∣∣∣2
]

+

[
1

2
(1 − sin θ cos φ) × 1

2
(1 + sin θ sin φ) ×

∣∣∣∣〈ψ (
θ,

3π

4

)∣∣∣∣ψ(θ, φ〉
∣∣∣∣2
]

+

[
1

2
(1 − sin θ cos φ) × 1

2
(1 − sin θ sin φ) ×

∣∣∣∣〈ψ (
θ,

5π

4

)∣∣∣∣ψ(θ, φ〉
∣∣∣∣2
]}

dφ
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= 1

8π

∫ 2π

φ=0

{[
1 +

√
2 sin θ sin

(
φ +

π

4

)
+

sin2 θ sin 2φ

2

]
×
[

1 − sin2 θ sin2

(
φ

2
− π

8

)]
+

[
1−

√
2 sin θ sin

(
φ − π

4

)
− sin2 θ sin 2φ

2

]
×
[

1− sin2 θ sin2

(
φ

2
− 7π

8

)]
+

[
1 +

√
2 sin θ sin

(
φ − π

4

)
− sin2 θ sin 2φ

2

]
×
[

1− sin2 θ sin2

(
φ

2
− 3π

8

)]
+

[
1 −

√
2 sin θ sin

(
φ +

π

4

)
+

sin2 θ sin 2φ

2

]
×
[

1 − sin2 θ sin2

(
φ

2
− 5π

8

)]}
dφ

= 1 + cos2 θ

2
+

sin3 θ

2
√

2
.

The value obtained is then equal to F max
2,0 (θ) (where all types of measurements are allowed).

Thus

F max
2,LOCC(θ) = F max

2,0 (θ) = 1 + cos2 θ

2
+

sin3 θ

2
√

2
, for every θ ∈ [0, π ].

The optimal fidelity obtained by performing LOCC is then equal to the optimal fidelity obtained
by performing joint measurements on parallel qubits.

In the attempt to generalize the above analysis to N parallel qubits, there is some evidence
that von Neumann measurements on individual qubits may not achieve the optimal fidelity.
A POVM (on the Nth qubit) consisting of 2N−2 rank-1 elements may in fact give better
fidelity [19].

8. Discussion

Gisin and Popescu [10] have shown that more information about the direction of (the
Bloch vector of) a qubit |ψ(θ, φ)〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 can be obtained from
anti-parallel states |�1,1(θ, φ)〉 = |ψ(θ, φ)〉 ⊗ |ψ(π + θ, π − φ)〉, compared to parallel
states |�2,0(θ, φ)〉 = |ψ(θ, φ)〉 ⊗ |ψ(θ, φ)〉, where (θ, φ) is uniformly distributed over
[0, π ]×[0, 2π). They attributed the cause of this fact to the difference between the dimensions
of the subspaces spanned by parallel and anti-parallel states, respectively.

When θ = π/2, there is no difference in the amount of information as in that case (and
only in that case) exact spin flipping is possible. For any fixed θ , the dimension of the space
spanned by N and M qubits respectively identical and orthogonal to |ψ(θ, φ)〉 is (N + M + 1).
We found that, whenever we fix θ = 0, = π/2 or = π , anti-parallel states always give more
information about the direction of the qubit. We generalized this to the case of N and M
qubits respectively identical and orthogonal to |ψ(θ, φ)〉. Here the measurement basis for the
optimal estimation strategy always turns out to be the Fourier basis.

We considered the case of two diametrically opposite circles. We found that both
the sets {|�1,1(θ, φ)〉 : φ ∈ [0, 2π)} ∪ {|�1,1(π − θ, π + φ)〉 : φ ∈ [0, 2π)} and
{|�2,0(θ, φ)〉 : φ ∈ [0, 2π)} ∪ {|�2,0(π − θ, π + φ)〉 : φ ∈ [0, 2π)} give the same information
about the direction of |ψ(θ, φ)〉, even though the linear span of the first set is four and the
one of the second set is three. The scenario described is not exactly phase estimation, still the
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Fourier basis is again the optimal measurement basis for the case of parallel qubits. This does
not hold for anti-parallel qubits.

We have seen that encoding of the two qubits to parallel or anti-parallel states is nothing
special in regard to optimal extraction of information about the direction of the qubit |ψ(θ, φ)〉
from a fixed circle. In particular we have seen that the encoding of |ψ(θ, φ)〉 in the form
|ψ(θ, φ)〉 ⊗ |ψ(θ + θ0, φ)〉, where θ0 is fixed in [−θ, π − θ ], can provide more information
compared to the case of anti-parallel qubits, when θ0 = 0, = π/2 or = π .

When two parallel qubits are supplied from a circle, we have verified that a measurement
strategy using LOCC can give rise to optimal information. This is interesting from the
experimental point of view since it is practically difficult to perform measurements in an
entangled basis (see, e.g. [4]).

Massar [13] has shown that in the case of extracting information about the direction of
a qubit taken from a uniform distribution over the whole Bloch sphere, even parallel qubits
can give better information compared to anti-parallel qubits provided one chooses the proper
score. From the point of view of estimation of statistical parameters, this argument is of
course reasonable. This does not shed light on the reason whether there is some physical
connection between impossibility of spin flipping and outperformance of anti-parallel over
parallel qubits. Moreover it is not clear what kind of score is preferable, given some supplied
multiqubit states; even though the physically motivated score should be the one which directly
estimates the direction of the qubit. (We considered this score.)

We conclude with some open problems:

• Determine which one of the following two sets provides more information about the
direction of |ψ(θ, φ)〉: {|�n,N−n(θ, φ)〉 : φ ∈ [0, 2π)} ∪ {|�n,N−n(π − θ, π + φ)〉 : φ ∈
[0, 2π)} and {|�N,0(θ, φ)〉 : φ ∈ [0, 2π)} ∪ {|�N,0(π − θ, π + φ)〉 : φ ∈ [0, 2π)}.

• Given any θ ∈ [0, π ], determine for which values of θ0 ∈ [−θ, π − θ ], which
one of the following sets provides more information about the direction of |ψ(θ, φ)〉:
{|ψ(θ, φ)〉⊗n ⊗ |ψ(θ + θ0, φ)〉⊗(N−n) : φ ∈ [0, 2π)}.

• Given θ ∈ [0, π ], determine whether a strategy using LOCC is optimal for estimating
the direction of |ψ(θ, φ)〉, when the supplied state belongs to the set {|�N,0(θ, φ)〉 : φ ∈
[0, 2π)}. If this is true, what is then the corresponding LOCC?
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[2] Bagan E, Baig M, Brey A, Muñoz-Tapia R and Tarrach R 2000 Optimal strategies for sending information
through a quantum channell Phys. Rev. Lett. 24 5230
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