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DESCRIPTION

In this section we provide background to the introduc-
tory discussion of the manuscript.
Causal separation implies a tensor product struc-

ture: Black holes are defined by their causal structure
(their event horizons). The event horizon specifies what
is inaccessible from observation by an external observer.
In any quantum description of external observables what
is inaccessible must be traced out — one necessarily has
a tensor product structure between the exterior and the
remainder of Hilbert space (the interior) Hext ⊗Hint.

This observation is hardly new. It occurs automati-
cally in field theoretic descriptions. Indeed, such a tensor
product structure was explicitly utilized by Hawking [S1].
Further, it is exactly what is seen in Rindler spacetime
where the uniformly accelerated observer has only access
to signals on their side of the Rindler event horizon —
tracing out the inaccessible degrees of freedom leaves a
thermal state for the accelerated observer.

This use of the tensor product, to delineate what is
outside and what is not (at the Hilbert space level), in no
way implies that the spatial location of the event horizon
cannot be fuzzy. These are quite separate matters.
The quantum mechanics of Hawking radiation:
Whatever detailed field theoretic quantum gravity the-
ory is ultimately developed, it is not unreasonable to ex-
pect that such a theory should allow for a description of
black hole evaporation in terms of a microscopic (quan-
tum mechanical) mechanism. As early as 1976, Hawking
proposed pair creation as this mechanism: Here, pair cre-
ation is conceived to occur outside the event horizon, with
one of the pair falling into the black hole (past the event
horizon) and the other flying off as Hawking radiation.
The big advantage of this mechanism is that it preserves
the classical causal structure of the black hole even at
the quantum level — Hawking’s version of a quantum
black hole is of a perfectly ‘semi-permeable membrane’
— anything can enter, nothing can leave; mass ‘escapes’
because negative energy is absorbed.

It was only very recently realized, however, that such
a view is completely at odds with the possibility of com-
plete unitary (quantum) evaporation of the black hole
[S2]. Under Hawking’s mechanism each pair created will
be pair-wise entangled (entanglement between spin de-
grees of freedom; entanglement between spatial degrees
of freedom; indeed entanglement across all degrees of
freedom for the created pair). For each Hawking pair
creation event when one partner of the entangled pair

passes the boundary corresponding to the event horizon
(as seen say by an infalling observer) the rank of entan-
glement across that event horizon will increase. Indeed,
the structure of the tensor product provides a natural
framework for quantifying entanglement across the event
horizon.
However, if the rank of entanglement across the event

horizon is increasing with each pair creation event then
the Hilbert space dimensionality of the black hole interior
cannot vanish [S2]. (We should note that the Hamilto-
nian constraint of describing an initially compact object
with a finite mass implies that the black hole Hilbert
space of any dynamical degrees of freedom must be effec-
tively finite dimensional.) This did not pose any obvious
problem for the static black hole spacetimes originally
considered by Hawking. Rather, the difficulty is most
glaring when considering non-static black holes that can
shrink and can eventually vanish. Indeed, were Hawk-
ing’s heuristic pair creation mechanism correct the com-
plete unitary evaporation of a black hole would be utterly
impossible [S2]. Here, we dub this catastrophic inconsis-
tency as ‘entanglement overload’.
For black holes to be able to eventually vanish, the

original Hawking picture of a perfectly semi-permeable
membrane must fail at the quantum level. In other
words, entanglement overload very strongly points to the
necessary breakdown of the classical causal structure of
a black hole. This statement already points to the likely
solution.
Evaporation as tunneling: The most straightforward
way to evade entanglement overload is for Hilbert space
within the black hole to ‘leak away’ — quantum mechan-
ically we would call such a mechanism tunneling [S3].
Indeed, for over a decade now, such tunneling, out and
across the event horizon, has been used as a powerful way
of computing black hole evaporation rates including the
effects of backreaction.
We suggest that the evaporation across event horizons

operates by Hilbert space subsystems from the black hole
interior moving to the exterior. The equation

|i〉int → (U |i〉)BR, (1)

[Eq. (3) of the manuscript] provides the simplest mech-
anism for this to occur: Subsystems are dynamically se-
lected (by some unitary U) and reassigned as radiation
in an enlarged exterior Hilbert space.
Spacetime free conjecture: This brings us to the key
conjecture of the manuscript: that Eq. (1) above (all
equation numbers herein refer to Supplementary Ma-
terial equations unless explicitly referring back to the
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manuscript) accurately describes the evaporation across
black hole event horizons.

Our manuscript primarily investigates the conse-
quences of Eq. (1) applied specifically to event horizons
of black holes. Now the consensus appears to be that the
physics of event horizons (cosmological, black hole, or
those due to acceleration) is universal. In fact, it is pre-
cisely because of this generality that one should not ex-
pect Eq. (1) to bear the signatures of the detailed physics
of black holes. Rather we then go on to impose the details
of that physics onto this equation.
Testing this conjecture: The manuscript is devoted to
exploring the implications of Eq. (1) for the evaporation
rates of black holes, thus providing a test of its predic-
tive power. To achieve this, the key pieces of physics
about black holes we rely on are the no-hair theorem
and the existence of Penrose processes. We assume that
any quantum representation of a black hole must have a
direct correspondence to its classical counterpart where
these properties hold true. Therefore, when we wish to
apply the very general Hilbert space description of quan-
tum tunneling across event horizons in Eq. (1) we need
to impose conditions consistent with these classical prop-
erties of a black hole.

It is our contention that the key technical content of
the manuscript [involving its Theorems 1 through 4 and
leading to its Eq(14)] provides strong evidence in support
of the conjecture that Eq. (1) describes the evaporation
across black hole event horizons. Importantly, the gener-
ality of this equation suggests that evidence which sup-
ports the validity of Eq. (1) for black holes likely implies
its more universal validity as a description of evaporation
across arbitrary event horizons.

TECHNICAL PROOFS AND MINOR NOTES

Proof of Theorem 1: We observe that it is triv-
ial to verify that any function Γ(ε|M) of the form
ef(M−ε)−f(M)+h(ε) satisfies Γ(ε1|M) Γ(ε2|M − ε1) =
Γ(ε2|M) Γ(ε1|M − ε2). To prove this is the general solu-
tion set γ(ε,M) = ln Γ(ε|M). Then γ satisfies an addi-
tive equation

γ(ε1 ,M−ε2)+γ(ε2 ,M) = γ(ε2 ,M−ε1)+γ(ε1 ,M). (2)

Taking the partial derivative of this equation with-
respect-to ε2 and then setting ε1 = ε and ε2 = 0 yields

γ2(ε,M) = γ1(0,M)− γ1(0,M − ε), (3)

where γ1(ε,M) ≡ ∂γ(ε,M)/∂ε and γ2(ε,M) ≡
∂γ(ε,M)/∂M . A general solution to this equation is
given by

γ(ε,M) =

∫

∞

M−ε

γ1(0,M
′) dM ′−

∫

∞

M

γ1(0,M
′) dM ′+h(ε),

(4)

where h(ε) is an arbitrary function. Now setting

f(M) =

∫ ∞

M

γ1(0,M
′) dM ′, (5)

we have γ(ε,M) = f(M − ε) − f(M) + h(ε).

Proof of Theorem 2: The case of energy and charge
which are scalar observables is obvious. We have to con-
sider angular momentum only. As is well-known angu-
lar momentum operators generate the Lie algebra su(2).
The finite-dimensional representations of this algebra are
completely reducible, that is, the state space can be de-
composed into a direct sum of irreducible representations.
Moreover, since the black hole is to be in a definite angu-
lar momentum state each of the summands must have the
same J2 eigenvalue. It therefore suffices to focus on any
one irreducible summand. We will freely use the standard
properties of irreducible representations. Since the post-
evaporation state of a black hole must be a spin-coherent
state and the only orthogonal set of spin-coherent states
are of the form {R(θ, φ) |j, j〉 , R(θ, φ) |j,−j〉} the general
state of the evaporated particle and black hole is given
by

Φ = α′ ⊗R(θ, φ) |j, j〉+ β′ ⊗ R(θ, φ) |j,−j〉 (6)

= R(θ, φ)⊗ R(θ, φ)(α⊗ |j, j〉+ β ⊗ |j,−j〉),

where R(θ, φ)α = α′ and R(θ, φ)β = β′ denote (unnor-
malized) states of the evaporated particle. Let the opera-
tor representing J2 on the product space be denoted J2

tot.
Then the condition that Φ be an eigenstate of J2 ⊗ 11,
11 ⊗ J2 and J2

tot implies it must be an eigenstate of the
operator

J̃ ≡ J2
tot − J2 ⊗ 11− 11⊗ J2

= J+ ⊗ J− + J− ⊗ J+ + 2Jz ⊗ Jz. (7)

As J̃ is invariant under R(θ, φ)⊗R(θ, φ) this implies that

J+α⊗ J− |j, j〉+ J−β ⊗ J+ |j,−j〉
+2j(Jzα⊗ |j, j〉 − Jzβ ⊗ |j,−j〉)

= x(α⊗ |j, j〉 + β ⊗ |j,−j〉) (8)

where x is a real number.
First, suppose that j > 1. Then the vectors |j, j〉,

|j,−j〉, J− |j, j〉 and J+ |j, j〉 are mutually orthogonal
and the above equation can be satisfied if and only if
either β = 0 and J+α = 0 or α = 0 and J−β = 0.
We conclude that in this case the only allowed forms
of Φ are (up to a global rotation) |jp, jp〉 ⊗ |j, j〉 and
|jp,−jp〉 ⊗ |j,−j〉 where |jp, jp〉 (|jp,−jp〉) is the highest
(lowest) eigenvector in the particle’s angular momentum
space. Clearly these states are always J2 eigenstates for
any value of J . We call such states for Φ standard. To
conserve Jtot,n̂ the state of the mother black hole must
be R(θ, φ) |j + jp,±(j + jp)〉 respectively.
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Next suppose j = 1. It follows from Eq. (8) that be-
sides the standard states the state (up to a global rota-
tion)

1√
2
(|jp,−1〉 ⊗ |1, 1〉 − |jp, 1〉 ⊗ |1,−1〉), (9)

is also an eigenstate of J2
tot with total angular momen-

tum of the mother black hole j′ = jp. As this is a Jtot,ẑ
eigenstate with zero eigenvalue no orientation can con-
serve Jtot,n̂ of the original black hole. We therefore rule
this class of states out.

Next suppose j = 1
2
. In addition to the standard states

there are other possibilities. The product space decom-
poses into two irreducible representations corresponding
to total angular momentum j′ = jp ± 1

2 . They are gen-
erated respectively by highest weight vectors (up to a
global rotation)

|jp, jp〉 ⊗ | 12 , 12 〉 , (10)

for x = jp corresponding to j′ = jp +
1
2
and

1
√

2jp + 1

(
√

2jp |jp, jp〉 ⊗ | 12 ,−1
2〉 − |jp, jp − 1〉 ⊗ | 12 , 12〉

)

,

(11)
for x = −1 − jp corresponding to j′ = jp − 1

2 . Start-
ing with either of these we can generate the other Jẑ
eigenvectors (in this globally rotated basis) by succes-
sive applications of the J− operator. However, consid-
ering conservation of Jtot,n̂ disallows any of these extra
eigenvectors. Therefore, when quantized along the n̂ axis
the mother black hole had the state |jp + 1

2 , jp +
1
2 〉 and

|jp − 1
2 , jp − 1

2〉 respectively (with the exception of the
case jp = 1

2 for the latter mother black hole state with
j′ = 0 where the orientation of the quantization axis is
arbitrary).

This leaves only j = 0 which is trivial. It is now easy
to check that in every case allowed by global conservation
laws the statement of the theorem holds true.

Proof of Theorem 3: Let γ(~x, ~X) = lnΓ(~x| ~X). Then
γ satisfies

γ(~x, ~X) + γ(~x′, ~X − ~x) = γ(~x′, ~X) + γ(~x, ~X − ~x′) (12)

Taking the partial derivative with-respect-to x′
i and then

setting x′
i = 0 yields

∂γ(~x, ~X)

∂Xi
=

∂γ

∂xi

∣

∣

∣

(~0, ~X)
− ∂γ

∂xi

∣

∣

∣

(~0, ~X−~x)
. (13)

As in Theorem 1, the solution to the above partial dif-
ferential equation for i = n can be inferred from Eq. (3)
above by treating all variables except the last “conju-
gate” pair (xn, Xn) as constants, so

γ(~x, ~X) = fn( ~X − ~x) − fn( ~X) + hn(~x, X̂) (14)

where X̂ = {X1, . . . , Xn−1} without dependence on Xn;
the function hn(~x, X̂) is otherwise arbitrary. Now, sub-
stituting this into the functional equation (12) for γ and
noting that

fn( ~X − ~x) − fn( ~X) (15)

is a already a solution of it, we see that hn satisfies the
equations

∂hn(~x, X̂)

∂Xi
=

∂hn

∂xi

∣

∣

∣

(~0,X̂)
− ∂hn

∂xi

∣

∣

∣

(~0,X̂−x̂)
(16)

Now consider the function ∂hn(~x, X̂)/∂xn we have

∂

∂Xi

(∂hn(~x, X̂)

∂xn

)

=
∂

∂xn

(∂hn(~x, X̂)

∂Xi

)

=
∂

∂xn

(∂hn

∂xi

∣

∣

∣

(~0,X̂)
− ∂hn

∂xi

∣

∣

∣

(~0,X̂−x̂)

)

≡ 0, (17)

since x̂ has no dependence on xn. Hence the function
∂hn(~x, X̂)/∂xn can have no dependence on anyXi. Con-
sequently the function hn(~x, X̂) must have the form

hn(~x, X̂) = un(~x) + γn−1(x̂, X̂). (18)

The function γn−1 satisfies the functional equation (12)
with n − 1 pairs of conjugate variables. Hence

γ(~x, ~X) = fn( ~X−~x)−fn( ~X)+un(~x)+γn−1(x̂, X̂). (19)

Using this argument recursively and absorbing the differ-
ent functions together, we conclude that

γ(~x, ~X) = f( ~X − ~x)− f( ~X) + h(~x). (20)

Note: From Theorem 4, permutation symmetry yields

Γ(~x| ~X) = ef(
~X−~x)−f( ~X)+h(~x). (21)

For infinitessimal ~x backreaction should be negligible and
we should recover the Hawking thermal spectrum, i.e.,

Γ(~x| ~X) ≃ e−
~∇f( ~X)·~x+h(~0) ≡ Ne−

~∇S( ~X)·~x, ∀ ~X. (22)

Here S( ~X) is the thermodynamic entropy of the black
hole, N is a normalization constant and without loss of
generality we have absorbed any linear part of h into f .
Solving ~∇f( ~X) = ~∇S( ~X) yields f( ~X) = S( ~X) since f(~0)
may be chosen arbitrarily. Note that the reasoning pro-
vided in the manuscript does not rely on this argument
nor on consistency with the Hawking thermal spectrum.

Proof of Theorem 4: Let ~X ∈ Σo − K, then by
definition there is some component Xi of ~X such that
∂I/∂Xi 6= 0 at ~X . Without loss of generality we may

take i = n. Then there is some neighborhood O of ~X
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such that ∂I/∂Xn 6= 0 at every point in O. Consider the
continuously differentiable map F : O → O

F ( ~X) = (X1, . . . , Xn−1, I( ~X)). (23)

The Jacobian of F is simply |∂I/∂Xn| and does not van-
ish anywhere in O. From the inverse function theorem
then there is a neighborhood Õ ⊂ O such that F is invert-
ible in Õ. Thus any ~X ∈ Õ can be written in the new co-
ordinate system as ~X = (X1, . . . , Xn−1, I( ~X)). Let θ be
the corresponding function that represents Θ in the new
coordinates. Then for ~X1, ~X2 ∈ Õ and ~X′

1,
~X′
2 ∈ Õ′ the

hypothesis in Eq. (10) [of the manuscript] is equivalent

to θ(X1,1, . . . , X1,n−1, I( ~X1), X
′
1,1, . . . , X

′
1,n−1, I( ~X′

1)) =

θ(X2,1, . . . , X2,n−1, I( ~X2), X
′
2,1, . . . , X

′
2,n−1, I( ~X′

2)) But
this is precisely the statement that θ is independent of
the first n − 1 coordinates in each argument. Hence
Θ( ~X, ~X′) = θ(I( ~X), I( ~X′)) in Õ×Õ′. This must be true
for every pair of points in Σo − K. Note that although
for another pair of points say ~Y , ~Y ′ ∈ Σo−K the new θY
may be a different function, θ and θY must match in any
common domain since Θ is globally defined. Hence there
is a continuously differentiable function θ such that the
assertion of the theorem holds for any pair of arguments
in Σo −K. Since the latter is a dense subset of Σ, θ can
be uniquely extended to the whole of Σ×Σ by continuity.

Note: The irreducible mass of a black hole with no-hair
triple ~X = (M,Q, J) in General Relativity is

I =
1

2

(

2M2 −Q2 + 2M
√

M2 −Q2 − a2
)1/2

, (24)

where a ≡ J/M . It is straightforward to check that this

function satisfies the condition in Theorem 4 that { ~X :

|~∇I( ~X)| = 0} is nowhere dense.

Note: It has been noted in the literature [S4, S5, S6]
that Eq. (1) [of the manuscript] for the Schwarzschild
case naively satisfies the relation [S7]

Γ(ε1|M)Γ(ε2|M − ε1) = Γ(ε1 + ε2|M). (25)

by symmetry of ε1 + ε2 it is trivial to use Theorem 1
from our manuscript to write down the general solution

to Eq. (25) as

Γ(ε|M) ≡ ef(M−ε)−f(M), (26)

for some function f .

Note: Consider one form of the well-knownCauchy func-
tional equation [S8]

G(a)G(b) = G(a+ b). (27)

Its unique solution is the exponential family of functions.
Naively, Eq. (25) is apparently a natural generalization

to the Cauchy equation (27) when incorporating conser-
vation laws. However, as already noted [S7] its interpre-
tation is problematic. By contrast, the functional equa-
tion

Γ(~x| ~X) Γ(~x′| ~X − ~x) = Γ(~x′| ~X) Γ(~x| ~X − ~x′), (28)

[Eq. (7) of the manuscript] provides a truly non-trivial
generalization to the Cauchy functional equation in the
presence of conservation laws. Its interpretation is clear
as a permutation symmetry (see manuscript) and further
it includes Eq. (25) as a special case.
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