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I. STRUCTURE AND INTERPRETATION OF

DECOUPLING THEOREMS

Decoupling theorems effectively describe the per-
formance of random quantum error correction codes
(QECC), whereby the quantum state to be protected
|ψ〉input is embedded into a larger ‘code’ Hilbert space
by |ψ〉 → |ψ〉 ⊗ |φ0〉 followed by its encoding by a Haar-
random unitary U acting on the code space. Thus

QECC : |ψ〉input → |Ψ〉code = (U |ψ〉)code, (7)

where |Ψ〉code is the larger dimension code state and in
the last expression we have suppressed the ancillary sub-
system in standard state |φ0〉.
A subtlety we should mention is that the proof of the

quantum decoupling theorem relies on the input state,
which we wish to later locate, being entangled with a
reference subsystem (ref). Thus, for example, Eq. (7)
becomes

11⊗QECC :
∑

i

|i〉ref ⊗ |i〉input →
∑

i

|i〉ref ⊗ (U |i〉)code

(8)
where we have suppressed normalization for convenience.
This is a powerful step because it effectively allows us
to utilize entanglement monogamy to precisely pin down
where our encoded subsystem may be located.

With access to a sufficiently large piece of the code
subspace, decoupling theorems tell us how well we can,
in principle, reconstruct the original state (with its full
entanglement to the reference in tact). In particular,
for a k-qubit input state encoded into an n-qubit code
state, there exists a threshold of 1

2 (n + k) qubits above
which access to more than this number of qubits of the
code state allows near ideal reconstruction of the original
state. More precisely, access to any 1

2 (n + k) + c qubits
from the code state allows reconstruction [1] of the origi-
nal state with a mean fidelity of reconstruction (averaged
over random encodings) bounded below by 1−2−c. Since
the ‘excess’ unaccessed qubits of the code are not needed
for the reconstruction, they have effectively decoupled
from the original state and so the reconstruction proto-
col is unaffected by any errors that occur on these excess
qubits. Thus the decoupling theorem quantifies the per-
formance of random quantum error correcting codes.

Importantly, the proofs of (quantum) decoupling the-
orems are non-constructive. They only demonstrate the
existence of a reconstructing unitary with the claimed
performance, but do not say how it may be made.

II. DECOUPLING IN A CLASSICAL SETTING

Here we paraphrase the discussion in Ref. 1 for a simple
version of a decoupling result in a classical setting. Con-
sider a k-bit plaintext message randomly encoded into an
n-bit ciphertext string. The codebook for this code will
consist of 2k n-bit random codewords and their associ-
ated k-bit messages. Obviously, anyone with access to
the codebook and any specific encoded message will be
able to exactly decode it. However, knowing the code-
book allows one to do almost as well with just a few more
than k bits of the encoded message (indeed any k plus a
few bits) of the encoded message.

As noted in Ref. 1, given access to only k + c bits
of (and their location in) the encoded message, one can
eliminate many of the potential entries in the codebook,
thus narrowing down the possible message. To estimate
the probability for this procedure to identify any par-
ticular message from k + c bits we may treat matches
as uniformly random (for our randomly generated code-
book). The probability of a random match between k+c
bits from a specific encoded message and the identically
located k+c bits from any specific codeword in the code-
book will then be 2−(k+c). Given therefore that there are
2k possible messages to distinguish between, the proba-
bility of failure to identify the correct message will be
2k2−(k+c) = 2−c. Finally, the probability with which ac-
cess to any k + c bits of the encoded message (and the
codebook) allows one to have successfully reconstructed
the original plaintext message (what one might call the
fidelity of reconstruction) is just 1− 2−c.

We might note some significant differences between
this classical decoupling and quantum decoupling results.
First, for the case where k ≪ n, classical decoupling al-
lows many reconstructions of the original message from
completely distinct subsets of bits from the encoded mes-
sage — the classical information can be cloned in this
manner. By contrast, for the analogous quantum en-
coding [as in Eq. (8)] access to 1

2 (n + k) + c qubits of
the encoded state are needed to achieve a reconstruc-
tion fidelity of 1 − 2−c. So quantum cloning is strictly
prohibited. Nonetheless, any 1

2 (n+ k) + c qubits are ad-
equate for this purpose. Second, in the classical setting
the reconstruction protocol is trivial given access to the
codebook, whereas the analogous reconstruction proto-
col in the quantum case is only shown to exist (the proof
is non-constructive) but may require full knowledge of
the encoding random unitary U , which would be an ex-
treme burden in any even moderately high-dimensional
scenario.



2

III. PENALTY FOR DISENTANGLEMENT

ACROSS A HYPOTHETICAL BOUNDARY

Here we investigate the energy penalty one must pay
for creating a disentangled (i.e., separable) state across
a hypothetical boundary. We are not here going to con-
sider the effects of real boundary conditions on the state
of a quantum system, merely the effect of a constraint on
the state space so as to exclude entangled states across
a non-physical (fictive) boundary. Indeed, the equiva-
lence principle has been argued [2] to imply that freely
falling observers see nothing physical as they pass the
event horizon.
Consider M coupled Harmonic oscillators with Hamil-

tonian

H =
1

2

M
∑

i=1

p2i +
1

2

M
∑

i,j=1

Kij xixj , (9)

where [xi, pj ] = i δij and K is a real symmetric (non-
negative definite) matrix. The ground state wavefunction
as a function of ~x ≡ (x1, . . . , xM )T is

Ψ(~x) =
(det

√
K)1/4

πM/4
exp(−~x ·

√
K · ~x), (10)

with ground state energy 1
2 tr (

√
K).

Let us introduce a hypothetical boundary at index
b < M . We assign all oscillators with indices i ≤ b as
‘inside’ this fictive boundary and all other oscillators as
‘outside’. It is natural to partition the coupling matrix
K into blocks as

K =

(

Kin Q
QT Kout

)

. (11)

where Kin is a b × b symmetric matrix and Kout is an
(M − b)× (M − b) symmetric matrix. The Hamiltonian
of Eq. (9) may be rewritten as

H =
1

2

(

~p 2
in + ~xin ·Kin · ~xin + ~p 2

out + ~xout ·Kout · ~xout
)

+ ~xin ·Q · ~xout, (12)

where ~x = ~xin ⊕ ~xout decomposes ~x into a b-dimensional
vector ~xin and an (M − b)-dimensional vector ~xout. This
effectively decomposes the fullM -oscillator Hilbert space
Htotal into a tensor product Htotal = Hin ⊗Hout.

Theorem: The general separable state acrossHin⊗Hout

with lowest energy for Hamiltonian (12) has energy above
the ground state of

Epenalty ≡ 1

2

[

tr (
√

Kin) + tr (
√

Kout)− tr (
√
K)

]

. (13)

We call this the minimal ‘energy penalty’ for ensuring
the separability of a state across a hypothetical boundary.

Proof: A general separable state is just the convex sum
over states of the form ρin ⊗ ρout, where without loss
of generality we may treat ρin and ρout as pure states.
A lower bound to the energy expectation of a general
separable state is therefore given by the lower bound for
the energy expectation over a single such tensor product
of pure states.
Consider now a general product of pure states. We may

always write its wavefunction as a displaced product

Ψprod(~xin, ~xout) ≡ (14)

Din(~x
0
in + i~p 0

in)Ψin(~xin)Dout(~x
0
out + i~p 0

out)Ψout(~xout),

where Ψzero ≡ ΨinΨout is taken to have zero mean posi-
tions and momenta. The expectation 〈H〉prod of Hamil-
tonian (12) with respect to the general state of Eq. (14)
may now be rewritten as an expectation over this ‘zero
mean’ state Ψzero as

1

2

[

〈

~p 2
in + ~xin ·Kin · ~xin + ~p 2

out + ~xout ·Kout · ~xout
〉

zero

+ ~p 0 2
in + ~x 0

in ·Kin · ~x 0
in + ~p 0 2

out + ~x 0
out ·Kout · ~x 0

out

+2 ~x 0
in ·Q · ~x 0

out

]

. (15)

Since K is non-negative definite, for any vector ~x 0 =
~x 0
in ⊕ ~x 0

out we have ~x 0 ·K · ~x 0 ≥ 0. Thus

〈H〉prod ≥ (16)

1

2

〈

~p 2
in + ~xin ·Kin · ~xin + ~p 2

out + ~xout ·Kout · ~xout
〉

zero
.

Note that the right-hand-side is just the expectation of
the sum of a pair of independent oscillators with indi-
vidual ground state energies 1

2 tr (
√
Kin) and

1
2 tr (

√
Kout)

respectively. Thus,

〈H〉prod ≥ 1

2

[

tr (
√

Kin) + tr (
√

Kout)
]

. (17)

Further, since these independent product ground states
have zero means, this lower bound is achieved.

In order to see how this separability penalty appears
in a field theoretic setting consider a free scalar field with
Hamiltonian

H =
1

2

∫

d3x
[

π2 + (~∇ϕ)2
]

, (18)

where π = ∂tϕ is the conjugate momentum for the quan-
tum field ϕ and these satisfy the equal-time canonical
commutation relations

[

ϕ(t, ~x), π(t, ~x′)
]

= i δ(~x− ~x′). (19)

Following Srednicki [3], we introduce a lattice of dis-
crete points with equal spacing a in the radial direction.
Furthermore, the field is placed in a spherical box of ra-
dius A = (N + 1)a and the field is taken to vanish at
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the (real) boundary at A. The field and its conjugate
momentum can be decomposed into partial waves ϕj,lm

and πj,lm satisfying the equal time commutation relation

[ϕj,lm, πj′,l′m′ ] = i δjj′δll′δmm′ , (20)

where ja gives the discrete radial coordinate and {l,m}
label the partial waves’ angular momentum. The dis-
cretized Hamiltonian then becomes H =

∑

l,mHlm, with
[3]

Hlm =
1

2a

N
∑

j=1

[

π2
j,lm + (j +

1

2
)2
(ϕj,lm

j
− ϕj+1,lm

j + 1

)2

+
l(l + 1)

j2
ϕ2
j,lm

]

. (21)

Numerical calculations of Epenalty from Eq. (13) for
this discretized Hamiltonian yield

Epenalty ≃ 0.05
(N + 1)2

a
= 0.05

A2

a3
, (22)

where the hypothetical boundary index is chosen as
b = N/2 (across a range of even N from 50 to 100).
This penalty diverges as the cube of the ultraviolet reg-
ulator 1/a. Thus we expect pure quantum states where
entanglement has essentially vanished across a hypothet-
ical boundary to have very large energies.

IV. UNIFORM ENTANGLEMENT

Because one of the key claims in the paper is about
loss of trans-event horizon entanglement, we shall repeat
the key calculation here for a black hole with trans-event
horizon entanglement, but where, for simplicity, that en-
tanglement is taken to be uniform. This allows us to
repeat the analysis solely using results already available
in the literature.
Consider black hole evaporation with uniform trans-

event horizon entanglement as

1√
E

E
∑

j=1

|j〉int ⊗ |j〉ext →
1√
E

E
∑

j=1

(U |j〉)BR ⊗ |j〉ext. (23)

Here log2E is the entropy of entanglement between the
external (ext) neighborhood and the interior of the black
hole. Except for the interpretation of the source of entan-
glement, this model has been recently analyzed by Ref. 1.
We may therefore quote their key result in our terms: For
any positive c, once 1

2SBH+ 1
2 log2E+c qubits have radi-

ated away [this is just the 1
2 (n+k)+ c qubits required as

discussed in the first section of this Supplementary Mate-
rial], the trans-event horizon entanglement between the
external neighborhood and the interior subsystems will
have virtually vanished, with it appearing instead (with

a fidelity of at least 1−2−c) as entanglement between the
external neighborhood and the outgoing radiation. Here
(as in our manuscript) c is a free parameter, but will be
dwarfed by any of the entropies involved.

Repeating the argument from our manuscript, this loss
must be delayed until the black hole has evaporated to
roughly the Planck scale. (Indeed, section III of this Sup-
plementary Material provides energy estimates for the
departure from vacuum across the event horizon when
trans-event horizon entanglement is lost.) Such a delay
implies that roughly SBH qubits must have already been
radiated before such loss occurs, in which case

log2E ≈ SBH. (24)

In section V below, we shall see that when the uni-
form entanglement of the above analysis is replaced with
general trans-event horizon entanglement, the measure
of entanglement log2E is replaced by the Rényi entropy
H(1/2)(ρext). This replacement is unchanged in the pres-
ence of in-fallen matter (also section VI).

V. FORMALISM FOR GENERAL

ENTANGLEMENT

Note that all Rényi entropies are bounded above by
the logarithm of the Hilbert space dimension, so 0 ≤
H(q)(ρext) ≤ n ≡ SBH for the state we study. Of partic-
ular interest to us here will be two Rényi entropies for
q = 1

2 , 2, so

H(1/2)(ρext) = log2
[

(tr
√
ρext )

2
]

H(2)(ρext) = − log2 (tr ρ
2
ext ). (25)

(In the limit of q → 1 the Rényi entropy reduces to the
more familiar von Neumann entropy.)

Our key result is based on our generalization (theorem
below) of the decoupling theorem of Ref. 4. Consider
now the tripartite state

ρXY Z = ρXY1Y2Z , (26)

where the joint subsystems Y = Y1Y2 will be decomposed
as either the radiation subsystem and interior black hole
subsystem RB or vice-versa BR. This allows us to define

σU
XY2Z ≡ trY1

(

UY ρXY Z U †
Y

)

. (27)

In keeping with the naming convention of Ref. 4, we call
the result below the Mother-in-law decoupling theorem.
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Generalized decoupling theorem:

(
∫

U∈U(Y )

dU
∥

∥σU
XY2Z − σU

X ⊗ σU
Y2Z

∥

∥

1

)2

≤ tr ρ2νX tr ρ2µZ

{

[

tr ρ2XZ(ρ
−2ν
X ⊗ ρ−2µ

Z )

− 2 tr ρXZ(ρ
1−2ν
X ⊗ ρ1−2µ

Z )

+ tr ρ2−2ν
X tr ρ2−2µ

Z

]

+
Y2
Y1

[

tr ρ2XY Z(ρ
−2ν
X ⊗ ρ−2µ

Z )

+ tr ρ2−2ν
X tr ρ2Y Z ρ−2µ

Z

]

}

(28)

≤ Y2
Y1

tr ρ2νX tr ρ2µZ

[

tr ρ2XY Z(ρ
−2ν
X ⊗ ρ−2µ

Z )

+ tr ρ2−2ν
X tr ρ2Y Z ρ−2µ

Z

]

(29)

≤ 2
Y2
Y1

2HX
+H

Z , (30)

where HA ≡ H(1/2)(ρA), 0 ≤ 2ν, 2µ ≤ 1, and the
trace norm is defined by ‖X‖1 ≡ tr |X|. Recall from
our manuscript, that we reuse subsystem labels for
Hilbert space dimensionalities, thus here Y2/Y1 denotes
the ratio of their Hilbert space dimensions. Note that
here, to go from Eq. (28) to Eq. (29), we would require
ρXZ = ρX ⊗ ρZ ; and to go from Eq. (29) to Eq. (30),
we would require ρXY Z is pure and we take 2ν = 2µ = 1

2 .

Proof: Using the Cauchy-Schwarz inequality we may
write

∥

∥σU
XY2Z − σU

X ⊗ σU
Y2Z

∥

∥

1
(31)

≤
∥

∥ρνX ⊗ 11Y2
⊗ ρµZ

∥

∥

2

×
∥

∥ρ−ν
X ⊗ ρ−µ

Z (σU
XY2Z − σU

X ⊗ σU
Y2Z)

∥

∥

2
,

where without loss of generality we may assume that ρνX
and ρµZ are invertible; then using the methods already
outlined in Ref. 4 the results are easily obtained.
We note that the statement of the result reduces to the
conventional decoupling theorem for the choice ν = 0 and
subsystem Z is one-dimensional.
Of particular interest here is the case where 2ν = 1

2
and ρext,Y is pure, which gives

∫

U∈U(Y )

dU
∥

∥σU
ext,Y2

− σU
ext ⊗ σU

Y2

∥

∥

1
≤

(

2
Y2
Y1

2Hext

)
1

2

,

(32)
with Hext ≡ H(1/2)(ρext).
Now 1− F (ρ, σ) ≤ 1

2‖ρ− σ‖1, where the fidelity is de-
fined by F (ρ, σ) ≡ ‖√ρ√σ‖1. As a consequence, the fi-
delity with which the initial trans-event horizon entangle-
ment is encoded within the combined ext, Y1 subsystem
is bounded below by 1−

√

2HextY2/Y1. Now allowing this

in turn to be bounded from below by 1− 2−c and choos-
ing Y1 = R and Y2 = B and recalling that BR = 2SBH

gives the result quoted in our manuscript [Eq. (3) there].
Interestingly, the opposite choice Y1 = B and Y2 = R

tells us that, for any positive c, for fewer than 1
2 [SBH −

H(1/2)(ρext)] − c qubits radiated away, the initial trans-
event horizon entanglement remains encoded between the
external neighborhood and the interior subsystems with
fidelity of at least 1 − 2−c. This effectively gives the
number of qubits that must be radiated before trans-
event horizon entanglement begins to be reduced from
its initial value. Of particular interest is the case when
H(1/2)(ρext) ≈ SBH for which we would conclude that the
trans-event horizon entanglement begins to be depleted
by radiation almost immediately.

VI. ENTANGLEMENT LOSS IN THE PRESENCE

OF IN-FALLEN MATTER

The unitary evaporation of an entangled black hole
in the presence of in-fallen matter was argued in our
manuscript to be described by

1√
K

K
∑

i=1

|i〉ref ⊗
∑

j

√
pj (|i〉 ⊗ |j〉 ⊕ 0)int ⊗ |j〉ext(33)

→ 1√
K

K
∑

i=1

|i〉ref ⊗
∑

j

√
pj [U(|i〉 ⊗ |j〉 ⊕ 0)]BR ⊗ |j〉ext,

where log2K ≡ Smatter is the number of qubits of quan-
tum information in the in-fallen matter.
It is now straightforward to apply the generalized de-

coupling theorem above to show that, for an arbitrary
positive number c, when the number of qubits radiated
reaches

log2R = SBH − 1

2
χ(1/2) + c, (34)

then the trans-event horizon entanglement has effectively
vanished and instead has been transferred to entangle-
ment between the external neighborhood and the out-
going radiation, with a fidelity of at least 1 − 2−c. Re-
call from our manuscript that the number of unentangled
qubits initially within the black hole is roughly quantified
by

χ(q) ≡ SBH − Smatter −H(q)(ρext) ≥ 0, (35)

with q of order unity.
Repeating the argument from our manuscript, unless

this occurs when log2R ≈ SBH then a noticeable viola-
tion of the equivalence principle will occur. This implies
that

χ(1/2) ≪ SBH, (36)
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or equivalently, that

SBH ≈ H(1/2)(ρext) + Smatter ≈ H(1/2)(ρext), (37)

since from ’t Hooft’s bound, the entropic content of mat-
ter is only a vanishingly small fraction of the thermody-
namic entropy of the black hole, i.e., Smatter ≪ SBH.

VII. WHERE’S THE PLANCK SCALE?

In the first part of the manuscript, we show that a
black hole’s thermodynamic entropy must be very well
approximated by its entropy of entanglement across the
event horizon. The proof relied on preservation of the
equivalence principle prior to the black hole having evap-
orated to the Planck scale. However, what defines the
beginning of the Planck scale for black holes?
A universal feature of black holes is their thermody-

namic entropy or (essentially up to a constant prefactor)
their surface area. We shall therefore use the entropy (in
bits) as a measure of size of a black hole. As we wish
to avoid making claims about the physics of Planck scale
black holes, we shall suppose there is some size, above
which Planck scale effects are negligible (in particular,
above which the predictions of the equivalence principle
are left in tact). Stated conversely, we shall suppose that
entry into the Planck scale regime, where effects on the
equivalence principle begin to become non-negligible, oc-
curs at some generic size (or equivalently entropy). In
particular, we take this entry into the Planck scale for
black holes of entropy smaller than

SPlanckian
BH . 2p. (38)

It will turn out that virtually any choice for p makes no
difference to our analysis since the entry-point entropy so
defined will be dwarfed by those of that of typical large
black holes (e.g., a stellar mass black hole has thermody-

namic entropy of 1010
77
).

To see how the argument runs, we must determine the
thermodynamic entropy of a black hole evaporating ac-
cording to Eq. (33). We shall suppose the von Neumann
entropy computed from Eq. (33) is a good estimate for
the thermodynamic entropy. Evolution corresponds to
the radiation subsystem R becoming an ever larger por-
tion of the initial black hole Hilbert space and the re-
maining black hole interior subsystem B becoming an
ever shrinking portion, subject to the constraint that

2SBH = BR, (39)

where one should recall that we reuse subsystem labels as
their corresponding Hilbert space dimensionalities. Dur-
ing evaporation, a simple upper bound to the von Neu-
mann entropy of the black hole interior S(B) is given by
the logarithm of its dimensionality. Hence

S(B) ≤ SBH − log2R. (40)

For a lower bound we can use the negative logarithm
of the so-called purity

S(B) ≥ − log2〈〈tr (ρUB)2〉〉U , (41)

where ρUB is the reduced substate on the black hole inte-
rior of Eq. (33), and 〈〈· · · 〉〉U denotes averaging over the
random unitary U with the Haar measure. Using stan-
dard methods [4], the purity can be easily estimated in
the latter stages of evaporation to be

〈〈tr (ρUB)2〉〉U ≃ B(R2 − 1)

(BR)2 − 1
≃ R

2SBH

, (42)

and hence S(B) & SBH − log2R. These bounds imply
that during the latter stages of evaporation via Eq. (33),
a black hole’s von Neumann entropy will be

S(B) ≃ SBH − log2R. (43)

Combining Eqs. (38) and (43) we see that for a large
black hole to have evaporated to just above the Planck
scale (prior to any need to invoke Planck-scale physics),
it must have emitted virtually all its initial entropy as
Hawking radiation. In other words, as one approaches
the Planck scale, one has to very high precision that

log2R ≈ SBH. (44)

VIII. INFORMATION RETRIEVAL FROM

PURE-STATE BLACK HOLES

As noted in our manuscript, the description of an evap-
orating black hole via

|i〉int → (U |i〉)RB. (45)

is not new. This was originally formulated [5] assuming
that all the in-falling matter (and the black-hole itself)
was in a pure state |i〉. In other words, it is assumed that
initially there is no trans-event horizon entanglement. It
should be noted, that prior to Ref. 6 this evolution was
not connected to or claimed to be supported by any mi-
croscopic mechanism.
The original analysis suggested that a ‘discernible in-

formation’ (corresponding to the deficit of the entropy of
a subsystem from its maximal value) would yield a suit-
able metric for information content in the radiation [5].
In order to find the “typical” behavior of an evaporating
black hole it calculated the mean discernible information
averaged over random unitaries [5].
Starting with a pure-state interior, the mean dis-

cernible information of the radiation remains almost zero
until half the qubits of the initial black hole had been ra-
diated, after which it rises at the rate of roughly two bits
for every qubit radiated [5]. This behavior suggests that
first entanglement is created, followed by dense coding
[7] of classical information about the initial state.
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In order to get a much clearer picture of quantum in-
formation flow in Eq. (45) we can rely on the decou-
pling theorem. In particular, entangling the state of the
in-fallen matter with some distant reference (ref) subsys-
tem, allows one to track the flow of quantum information
[1, 8]. In this way Eq. (45) becomes

1√
K

K
∑

i=1

|i〉ref ⊗ |i〉int →
1√
K

K
∑

i=1

|i〉ref ⊗ (U |i〉)BR, (46)

recall that log2K ≡ Smatter is the number of qubits de-
scribing the quantum state of the matter used to form
the otherwise pure-state black hole. Using the decoupling
theorem [4] we may show that, for any positive number
c, prior to 1

2 (SBH − Smatter)− c qubits having been radi-
ated, the quantum information about the in-fallen matter
is encoded within the black hole interior with fidelity at
least 1− 2−c; whereas after a further Smatter +2c′ qubits
have been radiated, for arbitrary positive c′, the infor-
mation about the in-fallen matter is encoded within the
radiation with fidelity at least 1 − 2−c′ (see also Ref. 1
for this latter result). The quantum information about
the in-fallen matter naively appears to leave in a narrow
‘pulse’ at the radiation emission rate; this pulse occurs
just as half of the black hole’s qubits have radiated away.
Now consider what happens if additional matter is

dumped into the black hole after its creation. Follow-
ing Ref. 1, we model this process via cascaded random
unitaries on the black hole interior — one unitary before
each radiated qubit. (Naturally, any such analysis relies
on a very short global thermalization time for the black
hole. An assumption which was not needed for any of
the results quoted in our manuscript itself.) Within the
pure-state black hole of Eq. (46), it was argued [1] that
after half of the initial qubits had radiated away, any
information about matter subsequently falling into the
black hole would be “reflected” immediately at roughly
the radiation emission rate [1]. By contrast, in the early
stages of evaporation information about matter subse-
quently thrown in would only begin to emerge after half
of the initial qubits of the black hole had radiated away
[1]. These very different behaviors in the first and second
halves of its life suggest that such a black hole acts al-
most as two different species: as storage during the first
half of its radiated qubits and as a reflector during the
second half.
A subtle flaw to this argument of Ref. 1 is due to the

omission of the fact that a black hole’s entropy is non-
extensive, e.g., scaling as the square of the black hole’s
mass M2 for the Schwarzshild family of black holes: for
every k qubits dumped into such a black hole, the entropy
typically increases by O(kM) ≫ k. Likewise, the num-
ber of unentangled qubits within the (initially pure-state)
black hole will increase by O(kM). Therefore, within the
cascaded unitary pure-state black hole, the reflection de-
scribed in Ref. 1 would not begin immediately, but only

after a large delay in time of O(kM2). Notwithstanding
the delay, the pure-state black hole behaves effectively as
two distinct species as described above.
Because this behavior seems so bizarre it is worth go-

ing back over the key assumptions that went into it: i)
that the behavior of a specific unitary in Eq. (45) is well
described by Haar averages over all random unities; ii)
that the number of qubits comprising the initial black
hole Hilbert space is n ≃ SBH. (These two assumptions
are discussed in some detail in our manuscript.) Finally,
iii) that the black hole is initially in a pure state up to a
negligible amount of entanglement that may come from
the matter content. In fact, it is this last assumption
which is weakest and at odds with the well known quan-
tum physics of condensed matter systems and rigorous
results from axiomatic field theory as discussed in our
manuscript.

IX. INFORMATION RETRIEVAL FROM AN

ENTANGLED BLACK HOLE

Here we give explicit statements of results from decou-
pling summarized in our manuscript.
Applying the decoupling theorem [4] to the entangled-

state black hole of Eq. (33) allows us to show that, for any
positive number c, for all but the final Smatter+

1
2χ

(2)+ c
qubits radiated, the information about the in-fallen mat-
ter is encoded in the combined space of the external
neighborhood and black hole interior with fidelity at least
1− 2−c. Similarly, for any positive c′, for all but the ini-
tial Smatter +

1
2χ

(2) + c′ qubits radiated, this information
is encoded in the combined radiation and external neigh-
borhood subsystems with fidelity at least 1 − 2−c′ . In
addition, at all times this information is encoded with
unit fidelity within the joint radiation and interior sub-
systems.
In other words, between the initial and final roughly

Smatter+
1
2χ

(2) qubits radiated, the information about the
in-fallen matter is effectively deleted from each individ-
ual subsystem [8, 9], instead being encoded in any two
of the three of subsystems (consisting of the out-going
radiation, the external neighborhood, and the black hole
interior). During this time, the information about the
in-fallen matter is to an excellent approximation encoded
within the perfect correlations of a quantum one-time pad

[8, 10] of these three subsystems.
Furthermore, using our generalized decoupling theo-

rem we may show that, for any positive c′′, that prior
to the first 1

2χ
(1/2) − c′′ qubits radiated, the information

about the in-fallen matter is still encoded solely within
the black hole interior, with a fidelity of at least 1−2−c′′ .
Similarly, for any positive c′′′, within the final 1

2χ
(1/2) −

c′′′ qubits radiated, the information about the in-fallen
matter is encoded within the out-going radiation, with a
fidelity of at least 1 − 2−c′′′ . Combining these with the
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above results we see that both the encoding and decoding
of the tripartite quantum one-time pad occur during the
radiation of roughly Smatter +

1
2 (χ

(2) − χ(1/2)) ≃ Smatter

qubits, i.e., the black hole’s quantum one-time pad en-
coding (and decoding) occurs at roughly the radiation
emission rate.
How does this entangled-state description of black hole

evaporation respond to matter subsequently swallowed
after its formation? Instead of the two distinct behaviors
of storage and reflection found in the pure-state black
hole, here, any additional qubits thrown in will imme-
diately begin to be encoded into the tripartite one-time
pad. The decoding into the radiation subsystem of the
information about all the in-fallen matter will only occur
at the very end of the evaporation. (The non-extensive
increase in black hole entropy is taken up as entangle-
ment with the external neighborhood so no further de-
lays occur.) Thus, instead of behaving almost as two
distinct species, a highly entangled-state black hole has
one principle behavior — forming a tripartite quantum
one-time pad between the black hole interior, the exter-
nal neighborhood and the radiation from the black hole,
with release of that information only at the end of the
evaporation.
Can we reconcile the information retrieval behavior of

the pure-state black hole with its entangled counterpart?
Naively, if the pure-state black hole analysis were run on
twice as many qubits, but stopped just after the informa-
tion about the in-fallen matter had escaped as a narrow
pulse then there would be broad agreement between the
two types of black hole. This doubling of the number
of qubits would make some crude sense if we supposed
that the pure-state black hole was not making a split
between interior and exterior at the event horizon, but
somewhat further out at some arbitrary boundary where
trans-boundary entanglement would not be participat-
ing in the evaporation. The dimensionality of the Hilbert
space within this extended boundary would then be dom-
inated by the product of the dimensionality of the origi-
nal black hole interior, and the nearby external neighbor-
hood entangled with them. This would be roughly twice
the number of qubits within the black hole interior itself.
Once the original number of qubits had evaporated away
(now half the total for our extended boundary pure-state
black hole) the black hole interior would be exhausted of
Hilbert space and evaporation would cease. This suggests
that despite the general incompatibility between the two
types of black hole, a pure-state analysis, if thoughtfully
set up, could capture important features of information
retrieval from an entangled-state black hole.

X. HEURISTIC FLOW VIA CORRELATIONS

The rigorous results from our manuscript may be
heuristically visualized by following how the correlations

with the distant reference system behave. For a pure
tripartite state XY Z, these correlations satisfy

C(X :Y ) + C(X :Z) = S(X), (47)

Here S(X) is the von Neumann entropy for subsystem
X and C(X : Y ) ≡ 1

2 [S(X) + S(Y ) − S(X,Y )], one-
half the quantum mutual information, is a measure of
correlations between subsystems X and Y . Relation (47)
is additive for a pure tripartite state, so the correlations
with subsystem X smoothly move from subsystems Y to
Z and vice-versa.
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FIG. 1: Correlations to the reference subsystem as a func-
tion of the number of qubits radiated (log2 R). Correlations
between the reference (ref) subsystem and: (a) black hole in-
terior, B; (b) radiation, R, and external (ext) neighborhood;
(c) black hole interior and external neighborhood; and (d)
radiation alone. Note that, as expected from Eq. (47), the
sum of C’s in subplots (a) and (b) is a constant, as is that
of subplots (c) and (d). In each subplot, the in-fallen matter
consists of Smatter = 10 qubits and the black hole initially
consists of log2 BR = 100 qubits with χ(q) = 0. (Entropies
are evaluated using base-two logarithms.)

For simplicity, here we restrict ourselves to the case
where

ρext =
1

M

M
∑

j=1

|j〉ext ext〈j|, (48)

and where we assume no excess unentangled qubits, i.e.,
χ(q) = 0. Thus, the initial number of qubits within the
black hole interior is given by log2N = log2(BR) =
Smatter + log2M , for Smatter qubits of in-fallen mat-
ter. We computed the above measure of correlations,
Eq. (47), from von Neumann entropies approximated us-
ing the average purity (see next section); numerical calcu-
lations showed this as a good approximation for systems
of even a few qubits. Fig. 1 shows a typical scenario: A
black hole is assumed to be created from in-fallen matter
comprising Smatter qubits of information and negligible
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excess unentangled qubits. Within the first Smatter qubits
radiated, information about the in-fallen matter (a) van-
ishes from the black hole interior at roughly the radiation
emission rate and (b) appears in the joint radiation and
external neighborhood subsystem. From then until just
before the final Smatter qubits are radiated, the in-fallen
matter’s information is encoded in a tripartite state, in-
volving the radiation, external neighborhood and interior
subsystems, subplots (b) and (c). In the final Smatter

qubits radiated the information about the in-fallen mat-
ter is released from its correlations and appears in the
radiation subsystem alone, subplot (d). This qualitative
picture is in excellent agreement with the results from
the decoupling theorem and its generalization.

Evaluation of purities

In order to approximate the computation of the cor-
relation measure described above, we use a lower bound
for a subsystem with density matrix ρ

〈〈S(ρ)〉〉 ≥ −〈〈 log2 p(ρ)〉〉 ≥ − log2〈〈p(ρ)〉〉. (49)

Here S(ρ) = −tr ρ log2 ρ is the von Neumann entropy of
ρ, p(ρ) = tr ρ2 is its purity, and here 〈〈· · · 〉〉 denotes av-
eraging over random unitaries with the Haar measure.
The former inequality above is a consequence of the fact
that the Rényi entropy is a non-increasing function of
its argument [11], and the latter follows from the con-
cavity of the logarithm and Jensen’s inequality. We may
estimate the von Neumann entropies required then by
the rather crude approximation 〈〈S(ρ)〉〉 ≈ − log2〈〈 p(ρ)〉〉,
which turns out to be quite reasonable for spaces with
even a few qubits.

Although traditional methods [12] may be used to com-
pute these purities, a much simpler approach is to use the
approach from Ref. 4. In particular, for a typical purity
of interest we use the following decomposition

tr σU 2
R,ext = tr

(

σU
R,ext ⊗ σU

R′,ext′ SR,ext;R′,ext′
)

(50)

= tr
(

ρref,BR,ext ⊗ ρref′,B′R′,ext′

×U †
BR ⊗ U †

B′R′ SR;R′ UBR ⊗ UB′R′ Sext;ext′
)

where SA;A′ is the swap operator between subsystems
A and A′, similarly, SAB;A′B′ = SA;A′SB;B′ . Then the
average over the Haar measure is accomplished by an
application of Schur’s lemma [4]

〈〈

U †
A ⊗ U †

A′ SA2;A′

2
UA ⊗ UA′

〉〉

=
A2(A

2
1 − 1)

A2 − 1
11A;A′ +

A1(A
2
2 − 1)

A2 − 1
SA;A′ . (51)

This approach allows us to straight-forwardly compute

the required purities as

p(ref) =
1

K
, p(ext) =

1

N
, p(ref,ext) =

1

KN
,

p(R) =
1

(BR)2 − 1

(

R(B2 − 1) +
B(R2 − 1)

KN

)

, (52)

p(R, ext) =
1

(BR)2 − 1

(R(B2 − 1)

N
+
B(R2 − 1)

K

)

,

with p(B, ext) and p(B, ext) given by the above expres-
sions under the exchange R↔ B, similarly the exchange
K ↔ N gives us expressions for p(ref, R), etc.

XI. BLACK HOLES VERSUS LUMPS OF COAL

Bekenstein [13] tells of a thought experiment he at-
tributes to Sidney Coleman: A cold piece of coal (ini-
tially in its ground state) is illuminated by a laser beam.
The system is thus prepared in a pure state and radiates
thermally after the laser is switched off. Eventually the
lump of coal returns to its initial state, so presumably the
radiation subsystem has merely encoded any information
in the subtle correlations between the individual thermal
photons. Can this differ from the overall behavior of a
unitarily evaporating black hole?
Such a hot coal model of a black hole will correspond

very closely to the pure-state model of a black hole. As
such, information about the state of the laser beam that
has heated up the coal will become accessible from the
radiation field shortly after half of the total number of
thermal photons (each carrying roughly one bit’s worth
of information) have radiated away. This behavior, how-
ever, will be very different from the entangled black hole
analyzed in our manuscript. For such highly entangled
black holes there is another component of the system to
include in the dynamics: The entanglement across the
boundary corresponding to the event horizon. This en-
tanglement is not merely static as it would be across a
fixed boundary, but must itself escape from the black
hole in order for the boundary itself to shrink. As was
uncovered in our manuscript, entangled black holes en-
code the information about the in-fallen matter into a
quantum one-time pad. The information is in principle
accessible from any two of three subsystems (the interior
of the black hole, the modes just external to the black
hole but entangled with it across the event horizon and
the Hawking radiation itself) within a very short time
after the black hole begins to radiate. Once that encod-
ing into the quantum one-time pad has occurred, this
information becomes inaccessible from any one of these
subsystems alone (and in particular from the Hawking
radiation).
Only when the quantum one-time pad becomes de-

coded will the full information become accessible within
the Hawking radiation. For a highly entangled black hole,
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as shown in our manuscript, this occurs within the final
and vanishingly small fraction of the black hole’s lifetime.
Before this time, the Hawking radiation is completely un-
correlated from the information about the in-fallen mat-
ter. This behavior is therefore very different from that of
information return from a hot coal.

The authors gratefully acknowledge H.-J. Sommers’s
original calculation of Eq. (52) and several fruitful dis-
cussions with him, Netta Cohen and Manas Patra.
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