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Abstract
We outline a toolbox comprised of passive optical elements, single photon
detection and superpositions of coherent states (Schrödinger cat states).
Such a toolbox is a powerful collection of primitives for quantum
information processing tasks. We illustrate its use by outlining a proposal
for universal quantum computation. We utilize this toolbox for quantum
metrology applications, for instance weak force measurements and precise
phase estimation. We show in both these cases that a sensitivity at the
Heisenberg limit is achievable.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum optics has played a major role in the testing
of fundamental properties of quantum mechanics and
more recently in implementing simple quantum information
protocols [1, 2]. This has been made possible because photons
are easily produced and manipulated. This is especially true
as the electromagnetic environment at optical frequencies can
be regarded as a vacuum and is relatively decoherence free.

One of the earliest proposals for implementing a quantum
logic gate was made by Milburn [3] and was based on
encoding each qubit in two optical modes, each containing
exactly one photon. This was a very elegant proposal, but
unfortunately required massive and reversible nonlinearities.
Such reversible nonlinearities are well beyond those presently
available and hence it was thought quantum optics would
not provide a practical path to efficient and scalable quantum
computation. Knill et al [4] recently challenged this orthodoxy
when they showed that given appropriate single photon
sources and detectors, linear optics alone could create a non-

deterministic two qubit gates. Furthermore they showed that
near deterministic gates could be created from these non-
deterministic gates through a technique of teleporting gates [5].
This therefore provided a route for efficient and scalable
quantum computation with only single photon sources, photon
counting and linear optics.

This does however raise the question whether there are
other architectures based on different encoding schemes which
have similar characteristics. These other architectures may
have advantages in that their optical circuits are less complex.
We could trade off the complexity of the circuit in the KLM
scheme for more complicated initial resources, for instance
continuous variable multi-photon fields. The idea of encoding
quantum information on continuous variables of multi-photon
fields has emerged recently [6] and a number of schemes
have been proposed for realizing quantum computation in
this way [7–9]. A significant drawback of these proposals
is that hard nonlinear interactions are required in-line of the
computation and make such proposals difficult to implement in
practice. In contrast, a recent proposal [10, 11] details a scheme
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for quantum computation where the hard nonlinear interactions
are only required for the off-line preparation of resource
states. A required resource for this scheme is superpositions
of coherent states (Schrödinger cat states) which are currently
experimentally challenging to realize.

In this paper we outline a toolbox of techniques and states
necessary for universal quantum computation with coherent
states. This toolbox can also be used for quantum metrology
applications and we will examine two specific examples:
the detection of weak tidal forces due to gravitational
radiation [1, 12, 13] and improving the sensitivity of Ramsey
fringe interferometry [14, 15]. An alternative approach for
these metrology applications would be the use entangled states
(either through entangled qubits, or continuous variable twin
beams). These entangled states can be used for improved
quantum measurements [16–18] and interferometry [19].

The paper is structured as follows: section 2 describes
the components of the toolbox, while section 3 describes
how to achieve a universal set of gates sufficient for quantum
information processing. Finally section 4 illustrates two
quantum metrology examples.

2. The toolbox

The base components that our toolbox will contain will be
passive linear optical elements such as beam-splitters and
phase shifters. The beam-splitter interaction is given by

B(θ) = exp[iθ(ab† + a†b)]. (1)

Here a and b are the usual boson annihilation operators for
the two electromagnetic field modes at the beam-splitter. The
action of the beam-splitter is such that two coherent states |γ 〉a

and |β〉b get transformed as

B(θ)|γ 〉a|β〉b = |γ cos θ +iβ sin θ〉a|β cos θ +iγ sin θ〉b. (2)

A phase shifter is just a delay with respect to the local oscillator
and can be described by the operator P(θ) = exp[iθ â†â]
which just introduces a phase to the coherent state: P(θ)|α〉 =
|eiθα〉. From these basic components, we can construct other
operators; for instance, the displacement operator

D(α) = exp(αa† − α∗a) (3)

acting on a state |φ〉 can be constructed by mixing that state with
a strong coherent state on a weak beam-splitter. On coherent
states the displacement operators just displace the coherent
state: D(β)|α〉 = exp[(βα∗ − β∗α)/2]|α + β〉.

To these passive elements we also want to add single
photon counters, which can resolve the ‘quanta’ in the
electromagnetic field, and homodyne detectors. While high-
efficiency homodyne detection is currently achievable [20],
single photon counters are extremely challenging, but there
is an active research program to construct them (see for
instance [21, 22]).

Finally, to this collection of elements we add the ability
to generate optical ‘Schrödinger cat’ states. These are states
which are coherent superpositions of coherent states |α〉 for
different α. In particular, we are interested in the even and odd
cat states:

|�±〉 = 1√N±
[|α〉 ± |−α〉] , (4)

where N± = 2 ± 2e−2|α|2 . There are several proposals on how
to generate these states (e.g. [23, 24]). It is easy to show that
the even (odd) cat states have only even (odd) photon number
terms—which is where they get their name. From this we
can see that the two states are orthogonal and a single photon
counter will be able to distinguish between them.

One of the most powerful features of this toolbox that is
not immediately obvious is that we now have the ability to
easily generate entangled states [25]. By combining a single
mode cat state of the form |√2α〉 + |−√

2α〉 with the vacuum
state on a 50/50 beam-splitter, the output state is of the form
of a Bell state in the {|α〉, |−α〉} subspace:

|�〉 = 1√
N̄

[|α〉|α〉 + |−α〉|−α〉] , (5)

where N̄ is the normalization constant. In this subspace we can
also perform Bell-basis measurements by simply running the
Bell state creation in reverse: we interfere the two modes at a
beam splitter, then use photon counters to measure the number
of photons in each output mode [9]. We can then identify the
four possible results: (i) (even, 0), (ii) (odd, 0), (iii) (0, even),
(iv) (0, odd), where (m, n) indicates counting m and n photons
in the two modes respectively. These results correspond to
each of the four Bell-cat states: (i) (|−α,−α〉 + |α, α〉)/√2,
(ii) (|−α,−α〉 − |α, α〉)/√2, (iii) (|−α, α〉 + |α,−α〉) /√2,
or (iv) (|−α, α〉 − |α,−α〉)/√2. Note that there is also a
fifth possibility of detecting zero photons in both modes which
indicates a failure of the measurement. Fortunately, this occurs
with probability of only ∼e−α2

, and for αmoderately large this
is insignificant.

We can go further with entanglement and generate multi-
mode entangled states. If a single mode cat state |α〉 + |−α〉
is input into one mode of an N port symmetric beam-splitter
with the remaining input ports empty. The output state from
this beam-splitter is then the massively entangled GHZ-like
state

|ψ〉 = 1√
2

[∣∣∣∣ α√
N
,
α√
N
, · · · , α√

N

〉

+

∣∣∣∣− α√
N
,− α√

N
, · · · ,− α√

N

〉]
. (6)

3. Universal quantum logic gates

The first application of this toolbox that we will review is a
scheme for quantum computation with coherent states [11, 10].
Consider an encoding of logical qubits in coherent states with
the logical 0 and 1 states being |0〉L = |−α〉 and |1〉L = |α〉
respectively. (An entirely equivalent encoding would be
|0〉L = |0〉 and |1〉L = |2α〉 as discussed in [11], and these
two encodings are simply related by a displacement D(−α).)
For convenience and without loss of generality we will choose
α to be real. These qubits are not strictly orthogonal, but
the approximation is good for α even moderately large as
|〈α|−α〉|2 = e−4α2

. For α � 2 the overlap between the zero
and one logic qubit states is only |〈α|−α〉|2 � 10−6.

It is well known that one set of universal gates for qubits is
comprised of arbitrary single qubit rotations together with an
entangling gate. The single qubit rotations for our qubits can
be built from four basic single qubit gates. The first two gates
are the bit and sign flip operations and are given as follows.
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• A bit-flip: the logical value of a qubit can be flipped by
delaying it with respect to the local oscillator by half a
cycle. Thus the ‘bit-flip’ gate X is given by X = P(π).
For example, X (µ|−α〉 + ν|α〉) = µ|α〉 + ν|−α〉.

• A sign-flip: the sign flip gate Z can be achieved using
a teleportation protocol and the maximally entangled
resource (5). Consider that we wish to sign flip the qubit
µ|−α〉 + ν|α〉. A Bell state measurement is performed
between one half of the resource (5) and the qubit
of interest. Depending on which of the four possible
outcomes are found the other half of the Bell state is
projected into one of the following four states with equal
probability: (i)µ|−α〉+ν|α〉, (ii)µ|−α〉−ν|α〉, (iii)µ|α〉+
ν|−α〉, and (iv)µ|α〉−ν|−α〉. The bit flips in results three
and four can be corrected using the X gate above. After
X correction the gate has two possible outcomes: either
the identity has been applied, in which case we repeat the
process, or else the required transformation:

Z(µ|−α〉 + ν|α〉) = µ|−α〉 − ν|α〉. (7)

The teleportation trick used in the Z gate is incredibly useful
and can be used to ‘clean up’ qubits that move slightly away
from the {|−α〉, |α〉} subspace [10]. The remaining two
operations are arbitrary rotations about the Z and X axis and
like the sign flip operation Z they also use a teleportation
protocol to achieve the gate. These operations are given by
the following.

• An arbitrary rotation φ about the Z axis, schematically
depicted in figure 1 can be implemented by first displacing
our arbitrary input qubit µ|−α〉 + ν|α〉 by a small amount
β = αθ in the imaginary direction. This results in the
state

µe−iθα2 |−α(1 − iθ)〉 + νeiθα2 |α(1 + iθ)〉 (8)

which is a small distance outside the computational space.
The teleportation then projects us back into the qubit space
resulting in the state

e−θ2α2/2(e−i2θα2
µ|−α〉 + ei2θα2

ν|α〉). (9)

This is a rotation around Z by 4θα2. This gate is
near deterministic for a sufficiently small values of θ2α2.
Repeated application of this gate can build up a finite
rotation with high probability.

• The fourth gate to consider is a rotation of π/2 about
the X axis. The gate is shown schematically in figure 2.
For an arbitrary input state µ|−α〉 + ν|α〉, the interaction
CaCbUBS produces the output state (after correcting with
X and Z )

e−θ2α2/4[(ei2θα2
µ + e−i2θα2

ν)|−α〉
+ (e−i2θα2

µ + ei2θα2
ν)|α〉], (10)

where Ca and Cb represent cat state projections onto
either the even or odd parity cat (i.e. photon counting
and conditioning on even or odd numbers of photons).
By choosing 4θα2 = π/2 the gate will implement a π/2
rotation around the X axis.

Qin〉

0〉

D(iθα)
Bell cat
measure
    ment

Classical Inform
ation

X Z Qout〉

Displacement

50/50 BS

2α〉+ 2α〉

Figure 1. Schematics for implementing a rotation around Z . We
begin by first shifting our qubit a small distance out of the
computational basis and then using teleportation to project back into
the qubit space.

Qin〉

0〉

θ

cat projector

Classical Inform
ation

Z Z Qout〉
50/50 BS

2α〉+ 2α〉

Figure 2. Schematics for implementing a rotation of π/2 about the
X axis.
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X Z Qout2〉

Qin1〉

Qout1〉

50/50 BS

50/50 BS

X Z

cos θ/2 BS

2α〉+ 2α〉

2α〉+ 2α〉

measure

Figure 3. Schematics of implementing an entangling gate. For a
sufficiently small value of θ2α2 this gate is near deterministic.
Repeated application of this gate can build up to a gate locally
equivalent to a CNOT gate, with high probability.

By combining these gates it is possible to achieve an
arbitrary single qubit rotation. If we can supplement these
gates with a single two-qubit entangling operation between
the qubits, then we have a universal set.

• We can implement an entangling gate in a similar way
to the single qubit Z rotation. A schematic circuit for
the gate is depicted in figure 3. If both our qubits are
first mixed on a beam-splitter and are then projected back
into the qubit space of {|±α〉} using teleportation, we find
for an arbitrary input state ν|−α〉a |−α〉b + µ|α〉a|−α〉b +
τ |−α〉a|α〉b + γ |α〉a|α〉b that the resultant state is

ei2θα2
ν|−α〉a|−α〉b + e−i2θα2

µ|α〉a|−α〉b

+ e−i2θα2
τ |−α〉a|α〉b + ei2θα2

γ |α〉a|α〉b, (11)

where, as before, we have assumed orthogonality of the
qubit basis state and θ2α2 � 1. If we choose 4θα2 = π/2
then this gate will implement a CNOT up to single-qubit
rotations [10].

This then completes a universal set of gates. In [10] details are
given on using further nested teleportation to make these gates
deterministic without requiring θ2α2 � 1. These gates can be
used for both quantum computation and communication.
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4. Quantum metrology

In this section we illustrate the utility of the Schrödinger cat
states for two metrology applications—the detection of weak
forces, and high precision phase measurements.

4.1. The detection of weak forces

Before we begin our discussion of the application of
Schrödinger cats states to weak force detection [13], it is
essential to establish the best classical limit. It is well known
that when a classical force given by F(t) acts for a fixed
time on a simple harmonic oscillator, it displaces the complex
amplitude of this oscillator in phase space. The resulting
amplitude and phase of the displacement are determined by
the time dependence of the force [26]. If the oscillator begins
in a coherent state |α0〉 (withα0 real) then a displacement D(iε)
(chosen to be orthogonal to the coherent amplitude of the initial
state) causes the coherent state to evolve to eiεα0 |α0 + iε〉. The
maximum signal to noise ratio is then SNR = S/

√
V = 2ε.

This must be greater than unity for the displacement to be
resolved and hence this establishes the standard quantum limit
(SQL) [1] of εSQL � 1/2.

It is also well known that this limit may be overcome if
the oscillator is prepared in a non-classical state. However,
what is the sensitivity achieved by (4), and does this reach the
ultimate (Heisenberg) limit? When a weak classical force acts
on the even photon number cat state |α〉+ |−α〉 with α real (see
figure 4(a)) it is displaced to

|φ〉out ≈ 1√
2

(
ei2εα|α〉 + e−i2εα|−α〉) . (12)

Our problem is thus reduced to finding the optimal readout to
be able to distinguish (12) from |α〉 + |−α〉. The theory of
optimal parameter estimation [27] indicates that the limit on
the precision with which the parameter εα can be determined
is (δθ)2 � 1/var(σ̂x )in, where var(σ̂x )in is the variance in the
generator of the rotation in the input state |α〉 + |−α〉. In
this case the variance is simply unity. It thus follows that
the minimum detectable force is ε � 1/2

√
n̄, where n̄ is the

mean photon number given by n̄ = |α|2. It is straightforward
to show this ‘measurement’ is the Heisenberg limit for a
displacement measurement. An interesting question is what
type of measurement is required to achieve this limit. In effect
we need to be able to distinguish the even parity cat state
from the odd parity cat state. Currently this is experimentally
challenging. However, by performing a Hadamard operation
(one of the single qubit gates discussed previously), the even
and odd Schrödinger cats are transformed to the coherent states
|α〉 from |−α〉 which can be easily distinguished via a standard
homodyne measurement.

If the weak force acts over a reasonable spatial range it
would be possible to have a number of spatial modes of light
being affected. Could this help us exceed the limit above, even
if we constrained the total mean photon number of the entire
multimode system? We depict in figure 4(b) a schematic for the
setup of a proposed experiment. Using a single mode cat state
and an N port symmetric beam-splitter we can generate the
state (6), which has a total mean photon number of ntot = |α|2.
We now assume that the weak force acts simultaneously on all

〉 〉

α〉+ α〉 D(iε)

α〉+ α〉 eiN1/2 θα α〉+ e-iN1/2 θα α〉

eiθα α〉+e-iθα α〉

D(iε){                                     }

a)

b)weak force

weak force

N port BS

Figure 4. Schematic diagram of the action of a weak force causing
a displacement D(iε) on a Schrödinger cats state |α〉 + |−α〉. In
(a) a single mode case is illustrated while in (b) an N mode situation
is considered.

modes of this N party entangled state, displacing them each
by an amount D(iε) (for ε � 1). The resulting state after the
action of the force is

|ψ(θ)〉 = 1√
2

[
ei2

√
Nεα

∣∣∣∣ α√
N
, . . . ,

α√
N

〉

+ e−i2
√

Nεα

∣∣∣∣− α√
N
, . . . ,− α√

N

〉]
, (13)

where we have neglected the small displacement that occurs
to the coherent state. The theory of optimal parameter
estimation indicates that the limit on the precision with which
the displacement parameter ε be estimated is bounded by

εmin = 1√
N [1 + 4ntot]

∼ 1

2
√

Nntot
(14)

for ntot � 1. If, however, we had used N independent
cat states each with a photon number ntot/N then εmin for
the entire system would have scaled as εmin ∼ 1/

√
4ntot ,

which is the same result we obtained for the single mode
case. For large ntot, the preferred regime to work in, we
find that the N mode entangled situation gives an extra

√
N

improvement over the single mode cat situation for the same
total mean photon number. Now how do we interpret such
results? The effect that we are seeing is due to the weak
force acting equally on all N modes and the state between
the N port beam-splitters being highly entangled. Does this
result in a violation of the Heisenberg limit of 1/

√
ntot which

we previously mentioned? The answer is no. A careful
analysis using parameter estimation of this multimode situation
indicates that our result is at the Heisenberg limit. For
displacement measurements the Heisenberg limit does depend
on the number of modes.

These results indicate that subject to the spatial bandwidth
of the weak classical force it seems optimal for a cat state with
fixed mean photon ntot to be split and entangled over as many
modes as feasible. This in the absence of loss gives the best
sensitivity. Such techniques are likely to work for other non-
classical continuous variable states.

In the situation just discussed, maximum sensitivity
required the classical force to displace the cat states in a
direction orthogonal to the phase of the superposed coherent
amplitudes. In general there is no way to arrange this
beforehand, as the phase of the displacement depends on an
unknown time dependence of the classical force. However,
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a simple generalization of the previous cat states can be used
to relax this constraint. If we consider that the oscillator is
initially prepared in the state

|ψ〉in = |α〉 + |iα〉 + |−iα〉 + |−α〉 (15)

with α real, then under the action of a weak force characterized
by a complex amplitude displacement β , the output state is

|ψ〉out = e2iθ |α〉 + e2iφ |iα〉 + e−2iφ |−iα〉 + e−2iθ |−α〉, (16)

where θ = α Im(β) and φ = α Re(β). The state now carries
information on both the real and imaginary components of
the displacement due to the force which may be extracted by
measuring the projection operator onto the initial state.

4.2. High precision phase measurements

The second metrological example we are going to investigate
is the estimation of phase. The classic situation to consider
is Ramsey fringe interferometry, which was first introduced
by Bollinger et al [14] in the mid-1990s. In Ramsey
fringe interferometry the objective is to detect the relative
phase difference between two superposed qubit basis states
|0〉 and |1〉. This phase difference problem reduces to a
quantum parameter estimation situation in which a unitary
transformation U (θ) = exp[iθ Ẑ ] (with Ẑ = |1〉〈1| − |0〉〈0|)
induces a relative phase in the specified basis. For example, an
initial state of the form c0|0〉 + c1|1〉 evolves to c0e−iθ |0〉 +
c1eiθ |1〉 under the above unitary operation. When can we
distinguish these two states? Is there an optimal choice of
initial state? The theory of quantum parameter estimation [27]
indicates for this situation that we should choose the initial state
as |ψ〉i = (|0〉 + |1〉)/√2 and that the optimal measurement is
a projective measurement in the basis |±〉 = |0〉 ± |1〉. The
probability of obtaining the result + is P(+|θ) = cos2 θ . For N
repetitions of this measurement the uncertainty in the inferred
parameter θ is δθ = 1/

√
N . This is known as the standard

quantum limit. It was noted by Bollinger et al [14] that a more
effective way to use the N two-level systems is to first prepare
them in the maximally entangled state,

|ψ〉 = 1√
2
(|0〉1|0〉2 · · · |0〉N + |1〉1|1〉2 · · · |1〉N ), (17)

and then subject the entire state to the unitary transformation
U (θ) = ∏N

i=1 exp(−iθ Ẑi). After the unitary transformation
the state (17) evolves to

|ψ〉 = 1√
2
(exp(−iNθ)|0〉1|0〉2 · · · |0〉N

+ exp(iNθ)|1〉1|1〉2 · · · |1〉N ). (18)

The uncertainty in the estimation of the parameter θ then
achieves the Heisenberg lower limit of δθ = 1/N . This would
seem to indicate, as in the weak force case, that entanglement is
a critical requirement to achieve the improved sensitivity. Let
us examine this point a little further for the phase estimation
situation. The Hilbert space of N two-level systems is a tensor
product space of dimension 2N . The entangled state given
in equation (17), however, resides in a much smaller N + 1
dimensional irreducible subspace of permutation symmetric

α〉+ α〉
D(−α)D(α)

e-i2θα2 α〉+ei2θα2 α〉e-iθa+a

Phase Shift

Figure 5. Schematics of a quantum circuit illustrating how a phase
shift can be seen on an input state of the form.

states [28]. We may use an SU (2) representation to write the
entangled state 0〉1|0〉2 · · · |0〉N + |1〉1|1〉2 · · · |1〉N in the form

|ψ〉 = 1√
2
(|−N/2〉N/2 + |N/2〉N/2). (19)

This is just an SU (2) ‘cat state’ for N two-level atoms. Hence
a single N level atom can achieve the same phase sensitivity as
a maximally entangled GHZ state since it can be written in the
form |−N/2〉N/2 + |N/2〉N/2. This would also seem to indicate
that a superposition of coherent states (a cat state) can provide
the same phase resolution. In figure 5 a schematic diagram is
shown for the cat state yielding the Heisenberg limited phase
resolution. Such phase shifts could be used to resolve precisely
very small length intervals, a quantum ruler [29] in effect.
As α increases, a number of high visibility, narrowly spaced
fringes emerge, which could enable very short length intervals
to be accurately measured. As an example, suppose our laser
wavelength is 10 µm. In a standard interferometer this would
enable length intervals of 5 µm to be stepped off. However,
using the cat-state technique with an α of 10 leads to the fringe
separation being reduced to 1 µm.

The preceding discussion shows that entanglement is not
necessary to achieve a Heisenberg limited phase measurement.
What entanglement allows, however, is the creation of an
effective cat state without the need to resort to creating a
superposition between the ground state and a highly excited
one.

5. Concluding remarks

In the paper we have presented a toolbox of techniques
that make use of superpositions of coherent states. Using
this toolbox we have presented a quantum computation
scheme based on encoding qubits as coherent states, and their
superposition. The optical networks required are conceptually
simple and require only linear interactions, homodyne
measurements and photon counting. We have concentrated
on the simplest implementation, which unfortunately requires
large α. However, with a modest increase in complexity the
non-deterministic operation of the gates at low α can form the
basis of a scalable system [10]. We have also shown how the
same toolbox can be used to achieve extremely sensitive force
detection and phase measurements.

An open and very interesting question is whether the
toolbox of techniques and states we have described can be
transferred to other systems where we can formulate coherent
states, for example SQUIDs. In those systems it may be
possible to augment or simplify the toolbox making the
quantum information applications more accessible.
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