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Abstract
We explore the intimate relationship between quantum lithography,
Heisenberg-limited parameter estimation and the rate of dynamical
evolution of quantum states. We show how both the enhanced accuracy in
measurements and the increased resolution in quantum lithography follow
from the use of entanglement. Mathematically, the hyper-resolution of
quantum lithography appears naturally in the derivation of
Heisenberg-limited parameter estimation. We also review recent
experiments offering a proof of the principle of quantum lithography, and
we address the question of state preparation and the fabrication of suitable
photoresists.
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An important branch of quantum mechanics is parameter
estimation. Heisenberg’s uncertainty principle seems to
prevent us from determining a physical parameter such as a
phase with infinite precision, and it is therefore important to
understand what are the limits of the estimation process. It
is also a branch of physics that particularly interested Haus
(e.g., Haus 1995).

In this paper we consider the link between phase
estimation and the rate of dynamical evolution of quantum
states. This will lead us to the concept of quantum lithography
and the question of the role of entanglement. Finally, we will
review some experiments that show the viability of quantum
lithography (at least in principle), and briefly consider the
generation of the necessary optical quantum states.

1. Parameter estimation

Consider a physical process that induces a relative phase ϕ in
the state of a system. For example, one can send light through
a medium with an unknown index of refraction nr to induce
a phase shift ϕ = 2πL(nr − 1)/λ, with λ the wavelength of
the light and L the length of the medium. This phase shift can
be measured relative to a reference beam in a Mach–Zehnder

interferometer. When we assume that L and λ are known
with very high precision, we can infer the index of refraction
with an accuracy that is proportional to the error in the phase.
Many precision measurements can be reformulated in terms of
a phase measurement, with the search for gravitational waves
as one of the most urgent cases (Fritschel et al 1998). It is
therefore important to have definite bounds on the error in the
phase, given a particular set of resources. We should realize,
however, that there are two distinct questions we can ask about
the uncertainty in the phase.

First, there is the relative phase difference δϕ that renders
two quantum states |ψ(0)〉 and |ψ(δϕ)〉 distinguishable, i.e.,

〈ψ(0)|ψ(δϕ)〉 = 0. (1)

Here, we assume that the dependency on δϕ actually does
render |ψ(δϕ)〉 orthogonal to |ψ(0)〉. We can then minimize
δϕ to satisfy equation (1). This depends on the characteristics
of |ψ(0)〉 and |ψ(δϕ)〉. Thus, δϕ is a measure of the dynamical
rate of the (unitary) evolution.

A second question we can ask is how well one can measure
ϕ, given a state |ψ(ϕ)〉. That is, we want an expression for the
error �ϕ in the phase. Since there is no phase operator, we
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usually measure a suitably chosen (Hermitian) operator X̂ such
that

�ϕ = �X̂

|d〈X̂〉/dϕ| . (2)

Mathematically, these two problems are very similar, since
measuring |ψ(ϕ)〉 typically involves interference with some
other state |ψ(ϕ′)〉. Choosing situations where δϕ = �ϕ

allows us to derive bounds on the fundamental quantum limits
of parameter estimation (�ϕ) by calculating the maximum rate
of dynamical evolution (δϕ).

It was recognized early on by Mandelstam and Tamm in
1945 that the uncertainty relation between time and energy
for a given frequency ω can be used to prove the following
inequality (Mandelstam and Tamm 1945):

�ϕ = ω�t � π

2

h̄ω

�E
, (3)

where t is the time it takes to evolve from the initial state to
the next orthogonal state, h̄ω is the energy difference between
the two orthogonal states, and we have used δϕ = �ϕ.
Furthermore, �E is the uncertainty in energy. This inequality
can be interpreted as follows: the minimum phase difference
�ϕ that can be detected is inversely proportional to the
normalized energy spread of the state |ψ〉 (with (�E)2 =
〈ψ |E2|ψ〉 − 〈ψ |E |ψ〉2). The normalization is given by
h̄ω. The factor π/2 has a geometric interpretation that is
highly relevant for this paper: the minimum distance between
two points that can be distinguished by a wave is given by
the distance between a crest and the adjacent trough of the
wave. This (normalized) distance of π/2 is also known as the
Rayleigh limit.

However, it became clear that the Mandelstam–Tamm
(MT) inequality is not applicable to situations involving certain
pathological states (Shapiro et al 1989, Braunstein et al 1992,
Uffink 1993). When coherent (classical) states with �E =
h̄ω

√〈n〉 are used, the MT-inequality yields the Poissonian
error

�ϕ � π

2

1√〈n〉 , (4)

where 〈n〉 is the average number of quanta in the coherent state.
The indication was that phase estimation could not improve
beyond the so-called Heisenberg limit (Ou 1996):

�ϕ � 1

〈n〉 . (5)

But there exist states with finite average energy E and
unbounded �E . According to the MT-inequality, such states
could have a precision that is proportional to, for example,
〈n〉−2.

If there are states for which the MT-inequality does not
give a saturated bound, then the next question is whether
an additional bound can be derived. In 1998, Margolus and
Levitin did just that (Margolus and Levitin 1998). They
showed that

�t � π

2

h̄

E
, (6)

which for narrow-band schemes around frequency ω with
E = h̄ω〈n〉 yields

�ϕ � π

2

1

〈n〉 . (7)

This inequality therefore restricts the precision in a phase
measurement by the average energy, rather than the energy
spread. The pathological states mentioned above turn out to
have sufficiently small average energies so that equation (5)
is still satisfied. Recent examples of applied phase estimation
include frequency measurements (Bollinger et al 1996), the
quantum gyroscope (Dowling 1998), quantum positioning and
clock synchronization (Giovannetti et al 2001), and length and
weak force measurements using coherent optical states (Ralph
2002, Munro et al 2002).

2. The role of entanglement in parameter estimation

Suppose we want to estimate a parameter ϕ by measuring a
particular observable. Construct the state

|ϕ〉 = 1√
2

(|0〉 + eiϕ |1〉) , (8)

where the basis {|0〉, |1〉} is chosen in some convenient way
determined by the physics of estimating ϕ with the choice of
observable as σx = |0〉〈1|+ |1〉〈0|. Then the expectation value
of σx is given by 〈ϕ|σx |ϕ〉 = cosϕ. When we repeat this
experiment N times, we obtain

〈σ N
x 〉 = 1〈ϕ| · · · N 〈ϕ|

N⊕
k=1

σ (k)x |ϕ〉1 · · · |ϕ〉N = N cosϕ. (9)

Furthermore, we know that σ 2
x = 1l, and the variance of

σx given N samples is readily computed to be (�σx )
2 =

N(1 − cos2 ϕ) = N sin2 ϕ. According to estimation theory,

�ϕ = �σx

|d〈σ N
x 〉/dϕ| . (10)

The standard variance in the parameter ϕ after N trials is thus
given by

�ϕst =
√

N sin ϕ

N sin ϕ
= 1√

N
. (11)

In other words, the uncertainty in the phase is inversely
proportional to the square root of the number of trials. This is
the classical Poissonian error in the phase.

With the help of quantum entanglement we can achieve
the Heisenberg limit of 1/N . Consider an entangled input state
on N systems:

|ϕN 〉 = 1√
2

(|0, . . . , 0〉1···N + eiNϕ |1, . . . , 1〉1···N
)
. (12)

The relative phase eiNϕ can be obtained by a unitary evolution
|1〉 → eiϕ |1〉 and |0〉 → |0〉, thus yielding the required
factor. When we suggestively write |0〉 = |0, . . . , 0〉1···N and
|1〉 = |1, . . . , 1〉1···N , then the state becomes

|ϕN 〉 = 1√
2

(|0〉 + eiNϕ |1〉) . (13)

This is mathematically equivalent to a single (nonlocal!)
system with a relative phase shift of Nϕ. In order to measure
this phase, we need to measure the (nonlocal) observable 	N :

	N = |0〉〈1| + |1〉〈0|. (14)
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This yields
〈ϕN |	N |ϕN 〉 = cos Nϕ. (15)

As before, we obtain

�ϕq = �	N

|d〈	N 〉/dϕ| = 1

N

sin Nϕ

sin Nϕ
= 1

N
. (16)

Here we see that the precision in ϕ is increased by a factor√
N over the standard noise limit when we exploit quantum

entanglement.
When the loss of subsystems is considered (for example,

when n out of N photons fail to arrive), the entangled state in
equation (12) becomes separable and mixed:

ρN−n = 1
2 |0〉1···N−n〈0| + 1

2 |1〉1···N−n〈1|. (17)

Not only is it separable, there is also no information about ϕ in
this state. This state can therefore not be used for the parameter
estimation at all.

One way to circumvent this practical difficulty is to use
separable states and nonlocal observables. When N −n out of
N systems arrive, the experimenter chooses to measure 	N−n

instead of 	N . This way, the parameter ϕ is estimated with an
enhanced precision proportional to 1/(N − n). The price to
pay is that often the measurement of 	N−n will fail because it
does not span the complete state space. It must also be noted
that this trick depends on the physical implementation, and
cannot always be applied.

3. Quantum lithography

One particular physical implementation of this process
involves light, and this will lead us to the main topic of this
paper. Suppose that the state in equation (13) is physically
implemented by a so-called two-mode Noon state (Kok et al
2002):

|ϕN 〉 = 1√
2

(|N, 0〉 + eiNϕ |0, N〉) , (18)

where |k〉 is an k-photon state. When we choose 	N to be

	N = |N, 0〉〈0, N | + |0, N〉〈N, 0|, (19)

then the uncertainty in the phase is again given by�ϕ = 1/N .
However, there is also something else going on . . ..

When we calculate the expectation value of 	N , we find
that it varies as cos Nϕ. That is, the geometric distance
between the two points that can be distinguished according
to the Rayleigh limit is now N times smaller than in the
classical case! As a consequence, we can in principle read
and write much smaller features with this technique. This is
called quantum lithography (Boto et al 2000), and we will
now give a full description of this phenomenon in terms of the
quantum interference of two optical modes.

3.1. Interference on a surface and the Rayleigh limit

Suppose two plane waves characterized by �k1 and �k2 hit a
surface at an angle θ from the normal vector. The wavevectors
are given by

�k1 = k(cos θ, sin θ) and �k2 = k(cos θ,− sin θ),
(20)

where we assume |�k1| = |�k2| = k. The wavenumber k is
related to the wavelength of the light according to k = 2π/λ.

In order to find the interference pattern in the intensity
I , we sum the two plane waves at position �r at the amplitude
level:

I (�r ) ∝
∣∣∣ei�k1 ·�r + ei�k2 ·�r

∣∣∣
2 = 4 cos2

[
1
2 (

�k1 − �k2) · �r
]
. (21)

When we calculate the inner product (�k1 − �k2) · �r/2 from
equation (20) we obtain the expression

I (x) ∝ cos2(kx sin θ) (22)

for the intensity along the substrate in direction x .
As we saw above, the Rayleigh limit is given by the

minimal resolvable feature size �x that corresponds to the
distance between an intensity maximum and an adjacent
minimum. From equation (22) we obtain

k�x sin θ = π

2
. (23)

This means that the maximum resolution is given by

�x = π

2k sin θ
= π

2
(

2π
λ

sin θ
) = λ

4 sin θ
. (24)

The maximum resolution is therefore proportional to the
wavelength and inversely proportional to the sine of the angle
between the incoming plane waves and the normal. The
resolution is thus maximal (�x is minimal) when sin θ = 1,
or θ = π/2. This is the limit of grazing incidence. The
classical diffraction limit is therefore�x = λ/4. Note that this
derivation does not use the approximation sin θ � θ , which is
common when considering diffraction phenomena.

3.2. Surpassing Rayleigh’s diffraction limit

So how does quantum lithography work? In the limit of grazing
incidence, we let the two counterpropagating light beams a and
b be in the combined entangled state of N photons

|ψN 〉ab = (|N, 0〉ab + eiNϕ |0, N〉ab

)
/
√

2, (25)

where ϕ = kx , with k = 2π/λ. We define the mode operator
ê = (â + b̂)/

√
2 and its adjoint ê† = (â† + b̂†)/

√
2. The

deposition rate � on the substrate is then given by (Boto et al
2000)

�N = 〈ψN |δ̂N |ψN 〉 with δ̂N = (ê†)N êN

N !
, (26)

i.e., we look at the higher-order moments of the electric field
operator on the substrate. The deposition rate � scales with
the N th power of intensity. Leaving the substrate exposed for
a time t to the light source will result in an exposure pattern
P(ϕ) = �N t . After a straightforward calculation we see that

�N ∝ (1 + cos Nϕ). (27)

We interpret this as follows. A path-differential phase-shift ϕ
in light beam b results in a displacement x of the interference
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pattern on the substrate. Using two classical waves, a phase-
shift of 2π will return the pattern to its original position.
However, according to equation (27), one cycle is completed
after a shift of 2π/N . This means that a shift of 2π will displace
the pattern N times. In other words, we have N times as many
maxima in the interference pattern. These will be closely
spaced, yielding an effective Rayleigh resolution of �x =
λ/(4N), a factor of N below the classical interferometric result
of �x = λ/4.

We have also shown that quantum lithography can be used
to create arbitrary patterns in one dimension, rather than just
closely spaced lines (Kok et al 2001). This can be achieved by
using superpositions of the more complicated state

|ψNm〉 = 1√
2

(
eimϕ |N − m,m〉 + ei(N−m)ϕ |m, N − m〉) .

(28)
There are two fundamentally different ways states of the form
in equation (28) can be superposed. We can either sum over
the photon number N :

|�m〉 =
N∑

n=0

αn|ψnm〉, (29)

with αn complex coefficients, or we can sum over the photon
distribution m:

|�N 〉 =
	N/2
∑
m=0

αm |ψNm〉, (30)

where 	N/2
 denotes the largest integer l with l � N/2
and αm again the complex coefficients. Every branch in this
superposition is an N -photon state.

These techniques not only allow us to create arbitrary
one-dimensional patterns, but extensions to four-mode states
also facilitate two-dimensional patterns (Kok et al 2001).
Furthermore, by choosing the αm coefficients of equation (30)
in a special way, Björk et al (2001) showed that one can
construct a subwavelength resolution pixel state. This state
can subsequently be used to illuminate a surface in order to
etch an arbitrary pattern.

3.3. Demonstration of quantum lithography and the
preparation of states

The principle of quantum lithography has been demonstrated
using two-photon path-entangled states generated by paramet-
ric down-conversion (d’Angelo et al 2001). In this experiment,
the photon pairs are created in a BBO crystal (β-BaB2O4). Im-
mediately behind the crystal, a double-slit aperture is placed,
which blocks most pairs. However, when two photons do get
through, they are extremely likely to have passed through the
same slit.

This way, the state of the light field just after the slits
is approximately |2, 0〉AB + |0, 2〉AB, where A and B denote
the two slits. This state is of the form of equation (25), and
can therefore be used to beat the Rayleigh limit. By scanning
the output field with a set of two detectors, the diffraction
pattern conditioned on a twofold detector coincidence was
mapped out. This pattern was twice as narrow as the single-
photon diffraction pattern, and the principle of sub-Rayleigh
resolution due to two-photon quantum lithography was thereby

demonstrated. Subsequent experiments with photon pairs have
confirmed these findings (Edamatsu et al 2002, Shimizu et al
2002).

However, in order for quantum lithography to work, we
also need a suitable photoresist. In other words, we need a
material that is sensitive to multi-photon events in order to etch
images on its surface. Last year, Korobkin and Yablonovitch
(2002) exposed commercial photographic film to photon pairs,
and produced the coveted twofold resolution enhancement.

Shortly after the experiment of d’Angelo et al, Cataliotti
et al (2001) performed frequency measurements using multi-
photon Raman transitions in rubidium atoms that are confined
in an optical dipole trap. The multi-photon events of up to
fifty photons resulted in a spectral width that is below the
Fourier limit. Although not exactly quantum lithography, this
experiment strongly suggests that the quantum Rayleigh limit
of λ/(4N) is correct.

Another essential ingredient for quantum lithography is
the generation of the required quantum states of the light field.
The states in equations (28) and (29) are very complicated,
and it is not quite clear how they can be generated efficiently
without large Kerr nonlinearities (Gerry and Campos 2001).
The production of N -photon entangled states conditioned on
non-detection was proposed (Fiurášek 2002), as well as the
creation of Noon-states based on single-photon detection (Lee
et al 2002, Kok et al 2002, Gerry et al 2002).

4. Conclusions

We have shown that quantum lithography and Heisenberg-
limited parameter estimation are two manifestations of the
same principle: instead of many separate measurements
of ϕ that lead to the shot-noise limit (in, for example,
an experiment using N trials with the single-photon path-
entangled state |1, 0〉 + eiϕ |0, 1〉), entangling the resources of
these N measurements to conduct a single-shot experiment
(e.g., using the N -photon Noon-state |N, 0〉 + |0, N〉) can
reduce the noise to the Heisenberg limit. Similarly, instead
of Rayleigh-limited single-photon diffraction patterns, we can
use N -photon entangled states to increase the resolution by
a factor N . Mathematically, the hyper-resolution of quantum
lithography appears naturally in the derivation of Heisenberg-
limited parameter estimation.
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