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Equivalent efficiency of a simulated photon-number detector
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Homodyne detection is considered as a way to improve the efficiency of communication near the single-
photon level. The current lack of commercially availabi&ared photon-number detectors significantly re-
duces the mutual information accessible in such a communication channel. We consider simulating direct
detection via homodyne detection. We find that our particular simulated direct detection strategy could provide
limited improvement in the classical information transfer. However, we argue that homodyne ddimutbes
polynomial number of linear optical elemehtsannot simulate photocounters arbitrarily well, since otherwise
the exponential gap between quantum and classical computers would vanish.
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The fundamental limitations to classical communication At communication frequencies, photon counting has been
in optical channels are due to the quantum nature of thachieved with InGaAs or Ge avalanche photodiodes operat-
signals being transmitted. These limitations are well undering in so-called Geiger modg5,6]. Due to the high dark
stood forideal optical communication channe[4,2]. The  count rate, the performance of these detectors as photon
capacity of a communication channel is defined to be thé&ounter is very low. The best efficiency reported is around
maximum mutual informatiorioptimized over the choice of 20% at 1.3um with the optimal temperature 77[§], and is
source alphabet used by the sender and the detection stratedfpund 10% at 1.um with the optimal temperature 213 K
used by the receivgacross the communication channel with L°J-

respect to some physical channel constraint—such as the !N this paper we consider an alternate encoding and de-

mean energy throughput. This characterization of a commut-eCtion strategy W.hiCh _is .sui.table for trulylwgak s.ignals and
urrent technological limitations. The basic idea isstmu-

nication channel is important because Shannon’s noisy cocf— . . .
ing theorem proves that any attempt at communication be-ate direct detecpon via a dual-homodyne scheme. Because
yond this capacity necessarily fails due to unrecoverabIeStrong local oscillators are continuously producing a strong

. output photocurrent, even high dark count rate detectors like
errors[3]. A corollary to this theorem states that, even for ap|N photodiodes, which have the highest quantum efficien-

ponoptimal source alphabet or dptection strateqgy, the fT“““%Ees, may be used. For example, at communication frequen-
information of the communication channel {assymptoti-  qieq sch devices can have efficiencies approaching[90%
cally) achievable using error correcti¢8,4]. and even 98% at optical frequencigdj. We determine the

~ For a single-mode optical communication channel the opmytual information for inefficient direct detectors and com-
timal capacity, under a mean energy constraint, is achievefare it to that of efficient homodyne detectors for a source
with a source alphabet of photon-number states and ideg|phabet preferring direct detection strategies. In doing so we
photon-number detectof$,2]. In this ideal case the orthogo- are able to compute an equivalent efficiency for our simu-
nality of the signals and hence their perfect distinguishabilitated photon-number detectors for communication purposes.
makes error correction unnecessary. Unfortunately, however, As we shall see, there is a communication penalty for
such ideal operation is currently impracticasince neither simulating direct detection in this way. Notwithstanding this
ideal photon-number state preparation nor ideal photonpenalty, the reduced signal-to-noise ratio due to high dark

number detection is achievable. counts suggests that our indirect detection strategy is worth
The detection of weak signalfew photon$ is especially consideration. . . .
difficult at communications wavelengths (1.3—1,68). Let us first consider two random variabldsand B, with

Ideally, we would wish to achieve this by simply counting individual values labeled and b, respectively, and a joint
the photons. Now the process of photocounting is often synprobability of P, ,. The mutual information between these
onymous with using an avalanching device with saturatedyariables is defined by

gain, since each photon produces a strong and standard sig-

nal at the output. Unfortunately, it is a technological fact that P.b

both at infrared and optical frequencies, the best avalanche I(A:B)=E Pa,bln(ﬁ), (D)
photodiodes never have as high a quantum efficiency as the ab at’b

best available linear detectofBaving linear gain, such as

PIN photodiodek In fact, currently, nocommercialphoto-  and is, in some sense, a measure of the information content
counters are available at communications frequencies. Thuthat is common to both variables. This quantity of mutual
at these frequencies PIN photodiodes are routinely used d@&formation is important in communication theory, because it
spite their high dark count rates. Partly because of this, thean be used to quantify the information content that a re-
traditional solution at communications wavelengths has beeneiver, observing variablB, learns about the sender’s mes-
to encode signals on intengmany-photoi pulses. sage represented by varial#le
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FIG. 1. The nonperfect measurement scheme: This models the = 04}
nonperfect direct photon-number detection with a perfect photon
counter and the beam splittéBS), which determines the finite 02t
efficiency as»?.
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channel with a mean energy constraint is achievable with a
mean-channel state that is thermal and is calculated from Eq. FIG. 2. The mutual information nats versus quantum efficiency

(1), yielding [1] 72 of a nonperfect measurement scheme is plotted for a mean pho-
od — - - — ton number of 1. This curve shows that a slight reduction below
ZPY(A:B)=(1+n)In(1+n)—nlinn, (2)  perfect efficiency causes a significant reduction in mutual informa-
— tion.
wheren is the mean photon number of the thermal state  |oss away from perfect detection results in a significant de-
1 — 'n crease in the mutual information, while the loss of mutual
n

3) information is almost linear in the low efficiency regime
=<0.5. This implies that a small improvement in the photon
detection efficiency of current technology cannot be ex-

We model loss by introducing extra beam splitters into thepected to bring a significant increase in the information

channel or in front of the detector, discarding photons in thehroughput.

unused port. A schematic representation of this is shown in We now consider near-ideal homodyne measurements in

Fig. 1. The parametey, is the amplitudeefficiency corre- comparison to nonideal photon counting. As we have dis-

sponding to the amplitude-reflection coefficient of the beancussed, such measurements can achieve very high efficien-

splitter, so7? represents the quantum efficiency of the over-cies because homodyne detectors may be operated without
all detector. regard to dark current. Hence as a first approximation we
Assume that the input signal is characterized by a meanwill treat the homodyne measurements as ideal. Our detec-
channel state that is thermé), with vacuum entering the tion strategy is based on dual homodyne detection, which
second input of the beam splitter, then the probability distri-can simultaneously detect both quadrature-phase amplitudes.
bution for detectingn photons with our model of an ineffi- A schematic representation of dual homodyne detection is

cient detector is given by shown in Fig. 3.

Suppose that a number state is sent down the channel as
an input signal and vacuum enters the first beam splitter as

4 its second modéas shown in Fig. B This specifies an input
Aas|n)®|0), or simply denotedin0), . Similarly the output

This corresponds to a Poisson distribution with reduced is collapsed into eigenstates of quadrature-phase ampli-

mean number of detected photons, dowmfa. The mutual
information for a source alphabet of number states and inef- i o 3
ficient detection is then simply Homodyne'

etector | - ‘
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FIG. 3. Dual homodyne measurement strategy: Each gray box
We observe in Fig. 2 that the mutual information decreaseshows an individual homodyne detector to measure a different
for finite loss of photons. In particular, a small amount of quadrature-phase amplitude of the input signal.
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tudes which are analogs of position and momentum and we 05 T y T 3
denote by|XP)g states. The probability of measuridgand 045 o
P at the outputB, given an inputA specified by|n0),, is R
given by the square of the inner prodygn0|XP)g . Taking 04 f ’/’
|k) as number states, this probability may be written o oss b S
nop\12 2 % 03 ,/
Px,pin= > ( ) V2 (X[K)(P|n—k) ITE o
k=0 1k o 25 ‘
m L) /l
n 2 S
_ 1 e i—i 9 o (X2+P?) 02 r °
22N nl oX P 015 o
2 ‘ -~
a\" N e
:_Ier (20_ e—uv . (6) 0.1 2
™ v (U)=(X—iP X+iP) 0.05

10" 10° o 10°
Clearly, this probabilityP x p), is dependent only on the Mean photon number

Z w24 p2)- :
productuv (=X*+P); P/wzence we change the \{arlziblezzs 10 FIG. 4. The equivalent efficiency*? determined by inverting
the zpol_ar _coordlnateslf ,0) where the intensityl =X Eq. (11); shown on a semilogarithmic scale in the mean photon
+P<, yielding number.

-1 7) of the dual-homodyne detection schefaeleast for the pur-
poses of classical communication as analyzed )héraus,
the equivalent efficiency may be determined by inverting the
relation

1 n
P(X’P)‘n:_’ﬂn! I"e

Finally, integrating this over all angle® gives

2 1 _ -
Pin= | d6P(pn=pri"e™". ®) 17" (m)=Z"(n) (1

Now the quantityP,, is a conditional probability for a for the efficiency»* 2. (In other words, the photon detection
given input photon numben. From it we can compute the €fficiency is chosen to be that efficiency for which the mu-
unconditioned probability averaged over the mean-channdbal information obtained by direct detection is exactly that
thermal state with a mean photon numiverThe resulting given by dual-homodyne detectiorihis effl_clency is obvi-
distribution is ously dependent on the mean photon numbgr the source

alphabet. For instance, the equivalent efficiency of the dual-

1 _ homodyne measurement for a mean photon number of 1 is

Pi= 2> PyoPr=——=e"/*", (9 just%}2=0.327. More general cases are shown on the graph
n=0 1+n of equivalent efficiency versus mean photon number in Fig.

These probabilities from Eq$8) and (9) allow us to calcu- 4. The region 0.£n=<1 is the most sensitive to the mean
late the mutual information between sender and receiver fophoton number in the growth of the equivalent efficiency

©

this dual-homodyne detection scheme. It is given by 7*%. For smaller mean photon numbers, the mutual informa-
L tion 1"d(n) of Eq. (10) does not gain much by small in-
ThIAB) = (1+mIn(1+1)— yn— >, (L_) Inn, creases in the mean photon number. Similarly,rferl no
=1\ 1+n significant gain in equivalent efficiency is obtained for small
(100  changes in the mean photon number of the source alphabet.
For an input alphabet of photon-number states, it is clear
wherey=0.5772 ... isEuler’'s constant. We note here that that schemes based upon homodyne measurement cannot be
we could have replaced the dual homodyne detection by heexpected to perform as well as ideal direct photon detection.
erodyne measuremeff,10]. Nonetheless, such ideal direct photodetectors are not cur-

We now introduce a measure of efficiency for the dual-rently technologically realistic, especially at communications
homodyne measurement. There are a number of possibleavelengths. By contrast, since homodyne detectors may be
ways to evaluate efficiency of detection schemes. The meaperated without regard to dark current a significantly higher
sure of efficiency that we introduce here is based on a comguantum efficiency is readily available for them. We have
parison with the direct detection scheme with finite effi-found that replacing inefficient direct detectors with
ciency. In particular, we will equate the mutual information homodyne-based simulated direct detectors can yield reason-
achievable in each of these two schemes with an alphabable improvements, even near the single-photon level of op-
chosen to prefer direct detection. The choice of finite effi-eration. In this paper, we have shown that this improvement
ciency »*2 in the direct detection scheme for which this is theoretically possible for the purposes of classical commu-
equivalence holds is dubbed by us thguivalent efficiency nication through a single-mode bosonic channel. Our analy-
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sis used a communication alphabet of photon-number eigemeed to be abandoned. This suggests using homodyne detec-
states, which were thus optimized fadeal) direct detection  tors within some kind of continuous quantum variable sce-
schemes. This choice is strongly prejudiced toward direchario. For such variables a generalized Gottesman-Knill
detection and against our homodyne scheme. Thus, our estheorem has been derivédl]. This theorem states, under
mate of equivalent efficiency is likely to be an underestimaterelatively mild assumptions, that quantum computational cir-
of the performance of homodyne-based schemes in generaluits consisting of gate operations made from quadratic
If, instead, we had optimized the input alphabet for homo-Hamiltonians and homodyne-based measurements can be ef-
dyne detection, we would have seen a significant improveficiently simulated on a classical computer. Further, includ-
ment in capacity{2]. However, since this capacity is very ing direct photodetection is sufficient to provide these cir-
likely to be larger than that possible for the imperfect directcuits with the capability to perform universal quantum
detection schemes our strategy for computing a figure o€omputationg12]. This observation suggests that our par-
“equivalent efficiency” would not be applicable. ticular simulation strategy cannot be improved arbitrarily.
Another aspect that is missing from the analysis givenFor if homodyne-based measuremelasd linear optics
here is a detailed consideration of error correction codingould come arbitrarily close to simulating photocounting
schemes that would be required to achieve the performanagith only a polynomial number of components then a uni-
promised by Shannon’s measure of communication throughversal quantum computer could be simulated classically in
put, namely, the mutual information. In general, more com-polynomial time by this above theorem, which would imply
plicated encoding will be required to achieve the informationBQP=BPP. (BPP is the class of problems that can be solved
transfer given by this measure. using randomized algorithms in polynomial time, while BQP
Finally, it remains to be considered whether the approacls the class of all computational problems which can be
studied here really has any applicability to either quantunsolved efficiently on a quantum compujérhis outrageously
communication or computation. The maximum 50% equiva-unlikely outcome suggests that simulating direct detection
lent efficiency of the simulated photon detection here mightusing homodyne detectors must have limited efficiency.
rule out these possibilities for detecting quantum information
represented within discrete photonic Hilbert spaces. Thus, if
we hope to use these ideas beyond classical communication This work is funded by the Research Foundation for
this low efficiency implies that discrete Hilbert spaces will Opto-Science and Technology.
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